

The 6502 Second
Processor User Guide

Part no 408000
Issue no 2
Date March 1984

WARNING: THE SECOND PROCESSOR MUST BE EARTHED

Important: The wires in the mains lead for the 6502 Second Processor are coloured in accordance
with the following code:
Green and yellow Earth
Blue Neutral
Brown Live
As the colours of the wires may not correspond with the coloured markings identifying the terminals
in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which is
marked by the letter E, or by the safety earth symbol 4- or coloured green, or green and
yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the letter
N, or coloured black

The wire which is coloured brown must be connected to the terminal which is marked with the letter
L, or coloured red.

If the socket outlet available is not suitable for the plug supplied, the plug should be cut off and the
appropriate plug fitted and wired as previously noted. The moulded plug which was cut off must be
disposed of as it would be a potential shock hazard if it were to be plugged in with the cut off end of
the mains cord exposed. The moulded plug must be used with the fuse and fuse carrier firmly in
place. The fuse carrier is of the same basic colour* as the coloured insert in the base of the plug.
Different manufacturers' plugs and fuse carriers are not interchangeable. In the event of loss of the
fuse carrier, the moulded plug MUST NOT be used. Either replace the moulded plug with another
conventional plug wired as previously described, or obtain a replacement fuse carrier from an
authorised BBC Microcomputer dealer. In the event of the fuse blowing it should be replaced, after
clearing any faults, with a 3 amp fuse that is ASTA approved to BS1362.
* Not necessarily the same shade of that colour.

Within this publication the term BBC is used as an abbreviation for British Broadcasting
Corporation.

Exposure
Like most electronic equipment, the 6502 Second Processor should not be exposed to direct
sunlight or moisture for long periods.

© Copyright Acorn Computers Limited 1984

Neither the whole or any part of the information contained in, or the product described in, this manual may be adapted or reproduced
in any material form except with the prior written approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous development and improvement All
information of a technical nature and particulars of the product and its use (including the information and particulars in this manual)
are given by Acorn Computers in good faith. However, it is acknowledged that there may be errors or omissions in this manuaL A list
of details of any amendments or revisions to this manual can be obtained upon request from Acorn Computers Technical Enquiries.
Acorn Computers welcome comments and suggestions relating to the product and this manuaL

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN

All maintenance and service on the product must be carried out by Acorn Computers' authorised dealers. Acorn Computers can
accept no liability whatsoever for any loss or damage caused by service or maintenance by unauthorised personnel. This manual is
intended only to assist the reader in the use of this product, and therefore Acorn Computers shall not be liable for any loss or damage
whatsoever arising from the use of any information or particulars in, or any error or omission in, this manual, or any incorrect use of
the product

First published 1984
Published by Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN
Typeset by Bateman Typesetters, Cambridge

Contents

About this User Guide 1
The different typefaces used 1

Part 1
6502 Second Processor

1 Introduction 5

What is the Second Processor? 5

2 Installation 7
Checklist of items 7
Connecting the 6502 Second Processor to the BBC Microcomputer 7
DNFS and Hi-BASIC ROMs 7
What do they do? 7
Fitting the two ROMs 8
Connecting the Second Processor 8

3 Starting up 9
Using the BBC Microcomputer on its own 9

4 System memory 10
Introduction 10
The I/O Processor memory map 10
The 6502 Second Processor memory map 12
On switch-on 13

5 Using standard BASIC in the Second Processor 14

6 Hi-BASIC 15
Standard BASIC and Hi-BASIC 15
Using Hi-BASIC 16
Using Hi-BASIC with a disc system 17

7 Expanding the memory 18

8 Copying ROMs 20

9 Distinguishing between memories 21

10 Using the Second Processor from assembly
language 24

Introduction 24
Points to remember 24

Part 2
Hi-BASIC (BASIC II)

Introduction 29

1 Alterations and extensions to BASIC keywords 30
ABS 30
COUNT 30
ELSE 31
E VAL 31
INPUT 32
INSTR 32
ON ERROR 33
OPENIN and OPENUP 33

2 Error handling 35
Fatal errors 35
Alterations to error messages 36
New error messages 36

3 Increases in precision and efficiency 37
LN and LOG 37
PRINT and STR$ 37
SIN and COS 37
String handling procedures 37

4 New commands 39
OPENUP 39
OSCLI 39

5 New features for assembler programmers 41
ASC 41
EQUB, EQUW, EQUD, EQUS 41
OPT 43

Appendix A 45
Fitting the Hi-BASIC and DNFS ROMs

Appendix B 48
Disc and Econet filing system differences

About this User Guide

This User Guide is divided into two parts. Part 1 describes the 6502 Second Processor, and Part
2 explains the extended facilities of the BASIC language ROM (Ili-BASIC') supplied with the
6502 Second Processor. Similarly, Appendix B explains the differences between the disc and
Econet filing systems you may already have been using, and the new disc and E conet filing
systems which replace these when you install the DNFS ROM.

The different typefaces used
The different typefaces used in this book represent the following:
— Ordinary text appears like this, or like this for emphasis.
— Text typed into the computer or displayed on the screen appears like this.
— Words like RETURN mean that you press the key marked RETURN rather than actually

type the letters R E T U R N.

Part 1
6502 Second Processor

1 Introduction

The BBC Model B Microcomputer was designed with a second processor in mind, and this
makes installation and operation very straightforward.

Here is a brief description of the extra facilities made available to you by the 6502 Second
Processor
— Up to 44K of user memory for BASIC programs in the Second Processor alone.
— Program execution speed is up to 50% faster than before.
— Size of user memory is not affected by the current screen mode.
— Character fonts automatically exploded: all keyboard characters may be immediately

redefined, as well as the spare ASCII characters.
— BBC Microcomputer and Second Processor memory easily distinguishable.
— Languages can be stored on cassette or disc, as well as accessed from paged ROM.
— Paged ROM can be copied onto disc or cassette and then removed.

What is the Second Processor?
The Second Processor consists of a 6502 microprocessor system and 64K of Random Access
Memory (RAM). In addition, it contains an interface between itself and the BBC
Microcomputer called the Tube.

With a Second Processor fitted, the job of the BBC Microcomputer is to serve as an I/O
Processor; that is, to handle all the inputs and outputs (keyboard, RS423, text and graphics
output to monitors, printer output, disc drives, cassette recorders and so on).

The job of the Second Processor is to run languages such as BASIC, assembly language, word
processing, and to run user programs. The Tube handles the two-way communication between
the BBC Microcomputer and the Second Processor, and this leaves the Second Processor to get
on with running programs, while the BBC Microcomputer looks after all the inputs and outputs
as requested by the Second Processor.

The Second Processor offers you two major features: very fast program execution, and far
more user memory.

6 Introduction

From now on, the BBC Microcomputer used with the Second Processor will be referred to as
the I/O Processor.

2 Installation

Checklist of items
Apart from this User Guide, you should have the following items in the box you have just
opened:

– A 6502 Second Processor fitted with a flat cable and a mains lead.
– Two chips: one is called DNFS, and the other is Hi-BASIC. These are ROMs (Read Only

Memory). If you have just bought your Second Processor from a dealer, these ROMs may
have already been fitted to your BBC Microcomputer.

– A guarantee registration card.

Should any of these items be missing, please contact the supplier without delay.

Connecting the 6502 Second Processor to the BBC
Microcomputer

If the DNFS and Hi-BASIC ROMs have not been fitted to your BBC Microcomputer,
instructions on how to do this are given in Appendix A. If after reading the instructions, you do
not feel qualified to fit the ROMs yourself, please call Acorn Computers Customer Service
Department, on Cambridge (0223) 210111, for advice.

DNFS and Hi-BASIC ROMs

What do they do?
The DNFS ROM contains software which is loaded into the I/O Processor (ie BBC
Microcomputer when used with the Second Processor) on power-up, and forms part of the I/O
Processor operating system. As a bonus, this ROM also contains software to drive the disc
filing system and the network filing system. If you already have either or both systems working
on your BBC Microcomputer, then you should replace either (or both) existing DFS/NFS
ROMs with the DNFS ROM.

The Hi-BASIC ROM is specifically for use with the Second Processor, and contains an
extended version of the BASIC language in the BASIC ROM you

8 Installation

already have installed. Both standard BASIC and Hi-BASIC will work on the Second
Processor, but Hi-BASIC will not work on the BBC Microcomputer with the Second Processor
disconnected. In addition, Hi-BASIC is designed to make full use of the extra memory in the
Second Processor. If you use standard BASIC, some of the Second Processor memory will be
wasted. For the time being, it's a good idea to have both standard BASIC and Hi-BASIC
installed in your BBC Microcomputer.

Fitting the two ROMs
Please refer to Appendix A for a detailed explanation of how to fit these two ROMs if this has
not already been done.

Connecting the Second Processor
With both machines switched off and sitting on a flat surface, place the Second Processor unit
at the right-hand side of the BBC Microcomputer and as close as possible.

Being careful of any cables already connected to the BBC Microcomputer, gently move both
units so that the front edge of each unit overlaps the edge of the surface, until the row of
connectors underneath the BBC Microcomputer case is accessible.

Plug the flat cable connector from the Second Processor into the socket marked `tube'. If you
are unsure which way round the flat cable connector plugs in, then look closely at it and find a
small ^ symbol. When plugged into the 'tube' socket, this arrow must be in line with the ^
symbol printed above the socket.

Note: Although the software which handles the disc filing system and E conet® is now fitted
to your machine, neither program will work unless the full disc or Econet upgrade has been
installed.

3 Starting up

Switch on both machines. For the 1/0 Processor to 'recognise' the Second Processor, the I/O
Processor must undergo a 'reset' (equivalent to pressing CTRL BREAK) after the Second
Processor has been switched on. So either switch on the Second Processor first, then the I/O
Processor (which automatically undergoes a 'reset' on switch-on), or press CTRL BREAK .
The following message, or something similar, should appear on your screen:

Acorn TUBE 6502 64K

Acorn DFS

BASIC

> _

If Acorn TUBE 6502 64K does not appear on your screen, first check that the DNFS ROM is
fitted, and if so, then contact your nearest Acorn Service Centre.

Using the BBC Microcomputer on its own
If you want to use the BBC Microcomputer on its own, simply switch the Second Processor
off at the switch on the back, and press CTRL BREAK . (Remember that you may have been
using a language stored on disc or cassette which was running on the Second Processor. If you

want to run this language on the BBC Microcomputer, it will have to be available in ROM. In

this case you may have to switch the BBC Microcomputer off and insert the required
language ROM if it isn't already plugged in.) The following message, or something similar,
should appear on your screen:

BBC Computer 32K

Acorn DFS

BASIC

>_

4 System memory

Introduction
The BBC Microcomputer contains memory which is used for storing the machine operating
system program, storing a language program like BASIC, storing the information which
appears on the screen, storing your own work (ie a BASIC program or a text file if you are
using a word processing language) and so on.

The BBC Microcomputer's memory contains 65536 units which can each store a number from
0 to 255. This is commonly known as `64K' of memory, and is normally referred to in
hexadecimal numbers. So we can say that the memory is numbered from 0000 to &FFFF, and
each memory unit can store a number from 00 to &FF. Please refer to the BBC
Microcomputer System User Guide for a more detailed explanation, and a description of
how the memory is divided up (the memory map).

The 6502 Second Processor also contains 64K of memory, but much more of it is available for
storing your own programs than in the BBC Microcomputer.

The I/0 Processor memory map
Figure 1 shows the memory map for the BBC Microcomputer when working with the 6502
Second Processor.

System memory 11

F i g u r e 1

OSHWM stands for operating system high water mark. This is the point at which the memory
reserved by the operating system ends, and will depend on what filing system ROMs are fitted
in selectable ROM. For example, with no filing system ROMs fitted, OSHWM = &E00; with a
disc filing system fitted (ie including a DFS ROM), OSHWM = &1900.

With the Second Processor connected, an extra &5FF is also reserved to allow sufficient
memory for holding new ASCII character definitions. This extra memory allows characters &20
to &FF to be redefined, in addition to the normal redefinable characters. This is exactly
equivalent to issuing a * F X2 0, 6 (refer to chapter 42 in the BBC Microcomputer System
User Guide). When the Second Processor is fitted, this happens automatically.

12 System memory

The 6502 Second Processor memory map
Figure 2 shows the memory map for the 6502 Second Processor.

Figure 2

The complete memory map of the Second Processor is in RAM. The drawing above shows the
memory map for normal BASIC. This is typical of languages designed for the BBC
Microcomputer. Note that there is a 14K block of memory above the language code which,
whilst available for use for storing BASIC variables, cannot be used for storing BASIC
programs (see chapter 6). However, no memory space is taken by the screen display or filing
systems.

System memory 13

On switch-on
The Tube software is copied from the DNFS ROM in the I/0 Processor to pages 4, 5, 6 and 7 in
the I/0 Processor.

The Second Processor operating system is copied from a ROM inside the Second Processor to
&F800—&FFFF.

The language ROM automatically selected by the I/0 Processor is copied to &8000—&C000 in
the Second Processor, except Hi-BASIC which is copied to &B800—&F800

5 Using standard BASIC
in the Second Processor
BASIC works in exactly the same way in the Second Processor as in the BBC Microcomputer.
The only differences are as follows:

Keywords such as PAGE, HIMEM, LOMEM and TOP will give different values from normal.
This is because they work on the Second Processor user memory where your BASIC programs
are stored, and no longer 'see' the I/0 Processor's user memory.

Unless you specify otherwise, PAGE will always be at &800. In the BBC Microcomputer, the
default value of PAGE depends on any filing system ROMs you have fitted, and whether or not
the character fonts have been exploded for redefinition (* FX 20).

The value of HIMEM is always &8000, regardless of the current screen mode. This is because
the memory used for the screen is in the I/O Processor itself, and not in the Second Processor.

In other words, running BASIC in the Second Processor is the same as BASIC in the BBC
Microcomputer, except that more memory is available.

6 Hi-BASIC

Hi-BASIC is an improved and extended version of standard BASIC. Part 2 of this book

describes Hi-BASIC in detaiL

Standard BASIC and Hi-BASIC
Using standard BASIC (which is automatically copied into the Second Processor), the
memory from &C000 to &F800 (14K) can be used for holding assembly language subroutines (

either from BASIC or from disc/cassette), or storing data using the ? or ! operators. It is also

available to standard BASIC for storing variables: set LOMEM to &C000, and HIMEM to

&F800. BASIC variables are then stored in this area rather than taking up BASIC program
space.

Hi-BASIC makes this additional 14K available to BASIC programming by relocating the

BASIC language code to just below the Second Processor operating system memory.
Compare the following memory map in figure 3 with the one in chapter 4.

Figure 3

16 Hi-BASIC

44K is now available for BASIC programs and data (note that HIMEM for Hi-BASIC is
&B800 – regardless of screen mode).

Using Hi-BASIC
If you have both standard BASIC and Hi-BASIC fitted, and the ROMs have been correctly
installed (see Appendix A), then standard BASIC will be selected on switch-on. To select Hi-
BASIC, you must tell the operating system which socket contains the Hi-BASIC ROM. If you
only have Hi-BASIC fitted, Hi-BASIC will be selected on switch-on, and you do not need to do
anything. The four sockets are numbered 12, 13, 14, 15 (see figure 4 below).

Figure 4

If you don't know where Hi-BASIC has been fitted, remove the lid of the 1/0 Processor, and
take a look. To access and run Hi-BASIC, type * FX142, followed by the number of the Hi-
BASIC socket, then press RETURN . If your dealer has not already done so, note here which
socket contains Hi-BASIC in your BBC Microcomputer. For example, if the Hi-BASIC ROM
is plugged into socket number 14, then type

*F X 1 4 2 , 1 4 RETURN

The message

BASIC

>_

should appear on your screen. If not, then you have probably typed in the wrong socket
number– press CTRL BREAK and try again. If you only ever wish to use your system with the
Second Processor connected, you can remove the standard BASIC ROM (marked `PB01' or
PB05') from its socket. When you switch on, Hi-BASIC will be automatically loaded into the
Second Processor and you will not have to issue the *FX calL However, you will not now be
able to use BASIC without the Second Processor.

Hi-BASIC 17

If you try to load a filing system ROM, you will get the error message

This is not a Language

The filing system ROM will have been loaded into the Second Processor, despite the error
message.

Note: To check that you are running Hi-BASIC and not standard BASIC on the Second
Processor, type

PRINT ~HIMEM RETURN

If the answer is

B800

then you know that you are running Hi-BASIC.

Using Hi-BASIC with a disc system
Having loaded Hi-BASIC into the Second Processor as described above, you can now make a
copy of it onto disc. This has two advantages: firstly, you can directly access Hi-BASIC off
disc, regardless of the current language (and create a ! BOOT file which will boot the Second
Processor into Hi-BASIC by pressing SHIFT BREAK — see the Disc Filing System User
Guide). Secondly, you can remove the Hi-BASIC ROM from the I/0 Processor, which leaves
you with a spare ROM socket.

Type

*SAVE HIBASIC B800+4000 RETURN

This will save the Hi-BASIC code currently at &B800–&F800 onto disc, as a file called
HIBASIC. Loading and running the language from disc is done in the standard way:

*HIBASIC RETURN

7 Expanding the memory

If you want to run machine-code programs in the Second Processor, and do not need to load a
language, then effectively you can add another 16K to the Second Processor user memory by
using up the memory normally occupied by a language. If you are currently running BASIC,
type

CALL &F800 RETURN

The > prompt is replaced by a * prompt. Because you are no longer running a language, the
only commands you can use are operating system and disc/net filing system commands. You
can now load and run machine-code programs from disc (or cassette, or Econet if fitted).
Although the previous language is still in memory, it can be overwritten.

Because you may want to do this from a language other than BASIC, for example VIEW, or
from a cassette/disc-based program which allows OS calls from the keyboard, the Second
Processor's operating system provides you with an additional command which is *GO. The
procedure is similar to CALL in BASIC. Type

*GO F800 RETURN

To get back to the previous language (as long as you haven't written all over it!) type

*GO RETURN

or

*GO 8000 RETURN

or whatever the start address of the previous language is. To reload the
previous language from cassette or disc type

*FRED RETURN

Expanding the memory 19

where FRED is the filename of the language stored on disc or cassette. Remember that *RUN
can be shortened to * for a disc-based program, but if you are using cassette, the minimum
abbreviation is */ for *RUN.

Alternatively, you can copy the previous language from ROM by name.

*BASIC RETURN

(to get back to BASIC for example), or press the CTRL and BREAK keys, which will copy the
language ROM normally accessed on power-up into the Second Processor.

Or copy it from ROM, using the ROM socket number

*F X1 42,1 4 RETURN

(to get back to Hi-BASIC for example, where the Hi-BASIC ROM is plugged into socket
number 14).

8 Copying ROMs

Using the 6502 Second Processor, it is possible to store code on disc that would normally be
placed in paged ROMs inside the BBC Microcomputer. If an unknown * command is entered
for which no paged ROM is present, the operating system will look for a file of that name on
disc (if a disc filing system is installed and selected), and will load the file into the Second
Processor for execution. This means that you can keep a 'library' of paged ROMs on disc,
which can be called up (provided the disc is installed) in the same way as ROMs installed
inside the BBC Microcomputer.

However, in using this facility you must ensure that you do not infringe the rights of the owner
of the copyright of the program contained in the ROM.

Where this copyright is owned by Acorn, the program may be copied from ROM in the
circumstances described in Acorn's 'Terms and Conditions of Sale and Use of Software' but not
otherwise. A copy of these terms and conditions may be obtained from Customer Services,
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge.

Where this copyright is not owned by Acorn, specific permission must be obtained from the
owner of the copyright before making such copies.

To copy a language ROM onto disc, first insert the ROM into one of the spare ROM sockets
inside the BBC Microcomputer (see Appendix A). Switch the computer on and load the
appropriate language by typing the appropriate command — eg

*LANG RETURN

Then type

*SAVE LANG 8000 +4000 RETURN

The ROM may then be removed. To recall the language from disc, type

*LANG

in the normal way. (Note that the procedure for saving Hi-BASIC is different — see chapter 6.)

9 Distinguishing
between memories
You will notice from the memory maps that the 1/0 Processor and the Second Processor
memories are both numbered from 0000 to &FFFF. With the Second Processor working, the
disc/cassette/Econet filing systems must somehow distinguish between the two memories in
order to SAVE or LOAD programs or data in the correct place. This is done by defining
Second Processor memory as running from 0000 to &FFFF, and I/O Processor memory from
&FFFF0000 to &FFFFFFFF.

For example, memory location &C000 resides, by definition, in the Second Processor memory
location &FFFFC000 resides in the I/O Processor.

Suppose you run a machine-code program which resides in the Second Processor from memory
location &6000 to &6500. This program draws a pretty picture on the screen in MODE 1, and
you would like to save both the program and the resulting picture onto disc.

To save the program onto disc, you would type

*SAVE GRAFPRG 6000 6500 RETURN

where GRAFPRG is the filename you have chosen. To load and run the program from disc,
you would type

*RUN GRAFPRG RETURN

The program would be loaded back into the Second Processor rather than the I/O Processor (no
leading 'FFFFs' in the load address and end address), and would run.

To save the resulting picture onto disc, you would have to save the screen memory used in
MODE 1 graphics, and this resides in the I/O Processor.

The screen memory for MODE 1 starts at &FFFF3000, and ends at &FFFF7FFF (ie memory
locations &3000 to &7FFF in the I/0 Processor). To save the resulting picture onto disc, you
would type

*SAVE PICTURE FF F F3000+5000 RETURN

22 Distinguishing between memories

(where PICTURE is the filename you have chosen). If you now reload this by typing

*LOAD PICTURE RETURN

the file PICTURE will be loaded into the I/O Processor, and as long as you are already in
MODE 1, the picture will reappear. (From this you can probably deduce why games programs
which directly access screen memory fail to work on the Second Processor.)

You may have noticed that when you execute a *INF0 on a disc file, addresses are preceded by
either 00 or FF, rather than 0000 or FFFF. For example, typing

*INFO PICTURE RETURN

might display

$.PICTURE FF3000 FF3000 FF4FFF 07A

and typing

*INFO GRAFPRG RETURN

might display

$.GRAFPRG 006000 006000 000500 05B

The disc filing system ignores the two most significant bytes of the addressing–the cassette
filing system displays the addressing in fulL

Important: It is only the filing systems that recognise these 'extended' addresses. Current
versions of BASIC and Hi-BASIC make no such distinction. Only the memory in the Second
Processor can be directly accessed from BASIC. This means that using the ! and ? operators to
access memory locations in the I/O Processor from the Second Processor doesn't work – for
example

?&FFFF2000 = &55 RETURN

Distinguishing between memories 23

will put the value &55 into memory location &2000 in the Second Processor, and not into
memory location &2000 in the I/0 Processor as specified by the leading FFFFs.

The same goes for saving and loading BASIC programs. If you save a BASIC program to disc
or cassette from the BBC Microcomputer, executing a *INF0 will display addresses with
leading FFs. Saving a BASIC program from the Second Processor and executing a *INF0 will
display addresses with leading 00s. However, BASIC will always load either program into
whichever processor is currently running BASIC. This means that your BASIC programs will
be totally compatible with either BBC Microcomputer, or I/0 Processor with Second
Processor.

However, it is possible to read and write to memory locations in the I/0 Processor, and this is
done using OSWORD calls 5 and 6. OSWORD calls are dealt with in chapter 43 of the BBC
Microcomputer System User Guide. Here is a useful program to write to and read from the
I/0 Processor:

10 DIM X% 20: Y%=X% DIV 256 : OSWORD=&FFF1
900 END
1000 DEF FNREADIO(addr): !X%=addr: A%=5: CALL OSWORD
1010 =X%?4
1020 DEF PROCWRITEIO(data,addr): !X%=addr:X%?4=data
1030 A%=6: CALL OSWORD: ENDPROC
A friendly word of warning: the Tube hardware is at addresses &FEF8 to &FEFF in the
memory map. It is 'read sensitive', which means that if you read any of these locations then
you could cause the system to crash. Likewise, don't use indexed instructions based in this
area, for example

LDA &FE F8,Y

when Y is & FE will correctly access zero page at &00F8, but as a 'side effect' it will also read
from the Tube at &FEF8 — the beginning of the Tube operating system.

10 Using the Second
Processor from
assembly language
Introduction
All communication between the Second Processor and the BBC Microcomputer is done via
the Tube. All file handling and operating system calls are made in exactly the same way as on
the BBC Microcomputer. In other words, an understanding of how the Tube reads and writes to
the BBC Microcomputer is unnecessary.

For a description of the OS calls available from assembly language, please refer to the BBC
Microcomputer System User Guide.

Points to remember
The following is a summary of special points to remember when programming in assembly
language on the Second Processor.

OS calls inside an event: In the Second Processor no OS calls are allowed inside event routines.
In the BBC Microcomputer all OSBYTE and some OSWORD calls are allowed.

OSBYTE calls made from the Second Processor: Low numbered OSBYTE calls (0-127) return
a value only in the X register, high numbered OSBYTE calls return values in the X and Y
registers, and the carry flag.

Note: OSBYTE call &82 always returns 00 in X and 00 in Y. OSBYTE call
&83 always returns 00 in X and 08 in Y.
OSBYTE call &84 always gives the execution address of the currently running program; eg
&8000 for standard BASIC and &B800 for Hi-BASIC.

Zero page to page eight are used as follows:
Page 0 to &EE is available
Page 1 = stack
Page 2 = OS indirections and user memory
Page 3 = error messages
Page 4 – 7 are available to the user, although not in BASIC
Page 8 – &F7 available to the user

Using the Second Processor from assembly language 25

Interrupts generated by devices connected to the BBC Microcomputer cannot be serviced by
the Second Processor.

Note: The saving and transmission of values across the Tube is done as economically as
possible. For example, with OSBYTE calls 0 to &7F, only X and A are transmitted and only X
is returned. Non-standard use of these calls will cause hardship.

Part 2
Hi-BASIC (BASIC II)

Introduction

Part 2 of this User Guide explains the differences between standard BASIC and BASIC II. Hi-
BASIC is the same as BASIC II, but is relocated in memory to &B800—&F 800.

In many respects BASIC II is similar to BASIC; however there are several differences between
the two. Some of the BASIC keywords have been extended so they are more powerful and
additional ones have been incorporated. Furthermore several of the arithmetic routines have
been recoded so that they give greater precision.

For the assembler programmer four new useful operations have been added and the OPT
instruction has been extended to enable programs to be relocated easily.

Apart from the extra facilities which BASIC II offers, please refer to the BBC
Microcomputer System User Guide for a detailed account of BBC BASIC.

I Alterations and
extensions to BASIC
keywords
ABS
The unary minus operator may be used in BASIC II, eg

PRINT -ABS(1)

This will now give the value -1.
In BASIC this gave a Type mismatch error.

COUNT
This counts the number of characters printed using PRINT, since the last new line. This has
now been altered so that COUNT is reset to zero after a change of mode, eg

10 PRINT "Hello";
20 MODE 3
30 PRINT "Goodbye";
40 PRINT COUNT

In BASIC this would leave the screen showing:

Goodbye 12

With BASIC II the following is obtained:

Goodbye 7

Alterations and extensions to BASIC keywords 31

ELSE
In BASIC ON. . . GOTO/GOSUB. . . ELSE could not be used inside procedures or
functions. Only the ON... GOTO/GOSUB part was available. Attempting to use an ELSE
part caused an error message to be printed. In BASIC II the ON. . .GOTO/GOSUB has
been extended so that it can be used with an ELSE part anywhere in a program.

Example

10 PRINT "If you want to know what all the little piggies were doing
this afternoon, give the number of the little piggy you are interested
in when asked."
20 INPUT "Which little piggy",A
30 PROCPIG(A)
40 GOTO 20
50 DEFPROCPIG(X)
60 ON X GOTO 70,80,90,100,110 ELSE GOTO 120 70 PRINT "The
first little piggy went to market.": ENDPROC
80 PRINT "The second little piggy stayed at home.": ENDPROC
90 PRINT "The third little piggy had roast beef.": ENDPROC
100 PRINT "The fourth little piggy had none.": ENDPROC
110 PRINT "The fifth little piggy ran all the way home.": ENDPROC
120 PRINT "There were only five little piggies.": ENDPROC

EVAL
This function has been extended. In BASIC, EVAL A$ could be used to evaluate strings such
as:

A$ = "SIN(X/120) + COS (X/30)"

A$ = "PI"

32 Alterations and extensions to BASIC keywords

In addition, in BASIC II the EVAL function can be used to evaluate pseudo-variables such as
TIME, PAGE, HIMEM and LOMEM, eg

AS = "TIME"
PRINT EVAL (AS)

will print out the current value of the pseudo-variable TIME.

INPUT
If more than one string or value is to be input at a time then the variable identifiers have to be
separated from each other. In BASIC this was done using commas, eg

INPUT NAMES, AGE, HEIGHT

In BASIC II either commas or semicolons may be used, eg

INPUT NAMES, AGE; HEIGHT

When entering values, however, these should be separated by commas as before, not
semicolons, eg

MICHAEL,21,170

INSTR
In BASIC, INSTR could be used to find the occurrence of one string inside another, eg

PRINT INSTR("Hello","l")

would print 3 since the first '1' is in the third character position. However, the second entry had
to be shorter than the first for the function to operate correctly, eg

INSTR("1","Hello")

would not work correctly inside a function or procedure.

Alterations and extensions to BASIC keywords 33

In BASIC II, INSTR has been extended so that if a longer string is searched for inside a
shorter one, as in the example, then this will result in INSTR returning the value 0.

This means that it is now possible to use, for example

100 INPUT "What is the longer string",A$
110 INPUT "What string do you wish to search for",B$
120 X = INSTR(A$,B$)

inside a procedure or function without having to check that A$ is longer than B $.

ON ERROR
In BASIC it was possible to jump to most line numbers using the command ON ERROR
GOTO..., but not all lines could be jumped to in this way, for example ON ERROR
GOTO 9999 could not be used. This command has now been altered to accommodate all line
numbers.

OPENIN and OPENUP
In both BASIC and BASIC II an existing file can be opened to allow data to be read or altered,
or to allow more data to be added to the end. In BASIC, this function was performed by the
instruction OPENIN; in BASIC II it is done by OPENUP. Since these keywords give
exactly the same result, the token for them both is &AD. Hence, if a program containing the
instruction OPENUP is written on a BBC Microcomputer containing BASIC II then the
instruction will become tokenised to &AD. If this program is then saved and loaded onto a
machine containing BASIC, the program will work in exactly the same way, but when listed it
will display the instruction as OPENIN. This will apply the other way round as well so
existing programs do not need to be altered to run in BASIC II.

The keyword OPENIN does exist in BASIC II but it has a different meaning. BASIC II uses
the keyword OPENIN to open a file for read-only operations; this was not possible in BASIC.
Since this is a new facility it has a new token, &8E. Note that programs written in BASIC II
which contain the instruction OPENIN will not run in BASIC. This applies to all programs
containing any of the new instructions.

34 Alterations and extensions to BASIC keywords

Examples

10 DIM A$(20)
20 channel = OPENIN("name") 30 FOR N = 1
TO 20
40 INPUT#channel,A$(N)
50 NEXT

10 channel = OPENUP("name")
20 FOR N = 1 TO 20
30 P = PTR#channel
40 INPUT#channel,A$
50 IF A$ = "Jim" THEN PTR#channel = P PRINT#channel,"Joe"
60 NEXT

2 Error handling

The standard error handling procedures in BASIC II do not use any space on the software
stack. This means that when a program runs out of all free space the error message printed out
is no longer followed by a No room message.

Fatal errors
STOP and No room are now classed as errors; they have an error number of 0. They are,
however, 'fatal errors' in that when they are processed they have an ON ERROR OFF effect,
eg

10 ON ERROR GOTO 30
20 STOP
30 PRINT "HELLO"

This will result in STOP at Line 20 being printed since the error is not trapped.

Any error with error number 0 is classed as a fatal error in BASIC II. Hence fatal errors can
now be generated by the user in assembler, eg

10 ON ERROR PRINT "An error has occurred"

100 [
110 .stophere BRK
120 EQUB 0
130 EQUS "Stop here"
140 EQUB 0
150]

200 CALLstophere

See page 41 for an explanation of EQUB and EQUS.

3 6 Error handling

The call of `stophere' will result in Stop here being printed. However, if line 120 is replaced by

120 EQUB 20

then the call of `stophere' will result in An error has occurred being printed. This is because
originally the error is given the number 0 and so is treated as a fatal error and is not trapped by
the ON ERROR command. In the second case, however, the error is given the number 20 and
is treated like a normal error.

Alterations to error messages
The message printed out by the command STOP has also been changed to STOP. In BASIC it
printed STOP at l i n e 0.

An illegal DIM statement, for example DIM P% -2, will now give the error message Bad DIM.

New error messages
A new error message has been introduced, error 45 Missing #.
This is printed if any of the following are used without a #' sign:

PTR, EOF, BGET, BPUT, EXT.

3 Increases in precision
and efficiency
LN and LOG
These functions have been rewritten to make them more accurate. This has a greater effect at
the limits of the number range allowed.

PRINT and STR$
With these functions in BASIC II, ten figures of precision on printing are allowed instead of
nine. This allows the maximum positive integer 2147483647 to be printed out, eg

X = 2147483647
@% = &100000A0A
PRINT X

In BASIC the result is 2.14748365E9.

In BASIC II the result is 2147483647.

To retain compatibility with PRINT, STR$ has been given the default value of ten figures.
This will result in STR$ giving different values from before, eg 7.7 which is a recurring binary
fraction will be converted to 7.699999999.

SIN and COS
These have been recoded in order to increase their accuracy.

String handling procedures
The allocation of space for strings is more efficient in BASIC II, eg

REPEAT A$ = A$ + "*" : UNTIL LEN A$ = 255

38 Increases in precision and efficiency

In BASIC this would have allocated a total of 3882 bytes, whereas in BASIC II only 263 bytes
are used. However, the optimisation is only implemented when just one string is being used at a
time, eg

REPEAT A$ = A$ + "*" :B$ = B$ + "!" :
UNTIL LEN A$ = 255

In both BASIC II and BASIC this uses 7764 bytes.

4 New commands

OPENUP
See `OPENIN and OPENUP' in chapter 1.

OSCLI
OSCLI takes a string expression and gives it to the operating system command line interpreter.
Hence it acts in a similar way to the operating system commands, eg

OSCLI"CAT"

acts like

*CAT

However OSCLI is more powerful than this, eg

A$ = "CAT"
OSCLI A$

is also equivalent to *CAT whereas

A$ = "CAT"
*A$

cannot be used.

OSCLI is particularly useful for loading files, eg

OSCLI "LOAD " + FILE$ + " " + STIR$- (TOP-2)

will load a BASIC program onto the end of another BASIC program.

The STR$ in the above example is a function which takes the value of TOP-2 as a number and
returns the equivalent string. The ~ sign means that the

40 New commands

hexadecimal representation of the number is taken rather than the decimal representation.

*LOAD FILE$ TOP-2

cannot be used instead of the OSCLI command since the * LOAD needs the address to be a
hexadecimal value and will not accept a variable such as TOP-2.

The shortest abbreviation for OSCLI is OS., and its token value is &FF. It has no unique errors
of its own, just the normal Type mismatch error.

5 New features for
assembler programmers
ASC
In BASIC II ASC " : " may be used in the assembler. In the original BASIC this led to
confusion.

EQUB, EQUW, EQUD, EQUS
These four operations are available in the assembler. They all take a single argument and put its
value into the assembly code. The last letter in the name determines whether it is a byte, word,
double word or string that it enters. puts all the characters of a string into the code without a
carriage return; if one is required this should be added to the string itself. An example cf the
use of EQUS is shown below:

10 DIM CODE 200
20 oswrch = &F FEE
30 nop = &EA
40 addr = &70
50 FOR pass = 0 TO 3 STEP 3
60 P% = CODE 70
80 OPT pass

90.go JSR vstring
100 EQUS "hello"
110 NOP
120 RTS

200.vstring PLA : STA addr
210 PLA : STA addr + 1
220 LDY #0

230.vloop INC addr
240 BNE nocarry
250 INC addr + 1

260.nocarry LDA (addr),Y

42 New features for assembler programmers

270 CMP # nop
280 BEQ out
290 JSR oswrch
300 JMP vloop
310.out JMP (addr)
320]
330 NEXT pass
340 CALL go

In the above program EQUS inserts all the characters from the string "hello" into the
machine code. JSR vstring then prints out all the characters until it reaches a N0P.

EQUS can also be used within assembler to generate macros, eg

10 FOR pass = 4 TO 7 STEP 3
20 [
30 OPT pass

...
100 EQUS FNADD(X,Y)

..................................
200]
210 DEF FNADD(X,Y)
220 [

...................................
300]
310 = " "

This would place the code generated by the function FNADD in the main body of the code
where the function was called. The = " " is there to signal the end of the macro since it ends the
function call by returning a null string.

The four operations listed above have no errors of their own apart from the Type mismatch
error.

Note that E QUB, EQUW, EQUD and EQUS have to be in upper case to be recognised.

New features for assembler programmers 43

OPT
In BASIC the lowest bit of the 0 P T statement's operand determines whether the assembled
code is listed or not and the second bit is used to suppress or report errors. In BASIC II the
third bit is used as well to determine whether the code is put at 0% (the code origin) or P% (the
program counter). If the bit is set then the code will be put at 0% and both 0% and P% will be
incremented. If it is unset only P% will be used. For example 0PT 4 (100 in binary) will
suppress assembler errors, give no listing and will put the code at 0% but with all references
referring to the locations they would be pointing to if the code were located at P%. This means
that it would then be straightforward to relocate the code to P% and run it.

In BASIC only the first and second bits were relevant so setting the third bit had no effect,
therefore the code was always put at P%.

Example

10 REM This compiles a program to produce code to run at &400 which is
in BASIC workspace so direct assembly is not possible.

20 FOR pass = 4 TO 7 STEP 3
30 0% = &2000
40 P% = &400
50
60.score EQUD 0
70 OPT pass

80.scoreadd TXA \The Lo byte of the
90 CLC \score to be added is

100 ADC score \stored on X
110 STA score
120 TYA \The Hi byte of the
130 ADC score + 1 \score to be added is
140 STA score + 1 \stored in Y
150 BCC nocarry
160 INC score + 2

170.nocarry RTS
180]
190 NEXT pass

The above assembly code is a routine to increment the score in a game and is intended to be
part of a larger program which initialises the score and then

44 New features for assembler programmers

jumps to the subroutine . scoreadd whenever it is required. When run, the program will
compile the machine code generated to &2000 but it has to be run at &400 since the address
references are fixed to point into this area.

To save the program you need to know the length of it. To find this, type

PRINT~0% - &2000

This will print out the number of bytes of object code produced by the program. If this was
&28A for example you could then type

*SAVE Score 2000 228A 400 400

where &228A = &2000 &28A.

Alternatively the OSCLI command described earlier could be used:

OSCLI "SAVE Score 2000 " + STR$~ (0%) + " 400 400"

In either case to run the program type

*RUN Score

Appendix A

Fitting the Hi-BASIC and DNFS ROMs
Important: The DNFS ROM must be fitted to your BBC Microcomputer for the Second
Processor to work.

There are three ways you can organise your BBC Microcomputer to run BASIC:

Option 1 – standard BASIC only
Option 2 – standard BASIC and Hi-BASIC Option 3 –
 Hi-BASIC only

Option 1 will work on both the BBC Microcomputer (Second Processor switched off) and on
the Second Processor. However, full use is not made of the Second Processor's extra memory.

Option 3 will work on the Second Processor only. Please note that there are a few games and
other programs which, for the sake of extra speed or other reasons, access the hardware of the
I/O Processor directly and not through the operating system. These will not work on the Second
Processor.

Option 2 is the most flexible. Where standard BASIC and Hi-BASIC are both fitted, standard
BASIC must be placed in a ROM socket to the right of the Hi-BASIC ROM.

Fitting the Hi-BASIC ROM
To use Hi-BASIC you should insert the Hi-BASIC ROM into one of the free sockets. The
ROM sockets are located on the front right-hand side of the circuit board inside the BBC
Microcomputer casing. Please refer to figure 5 at the end of this Appendix.

1. To get to the board, undo the four screws which hold the casing together– on some
computers these will be marked 'FIX'. Two of these screws are underneath the computer, and
the other two can be found on the back

2. Once the top is removed, release the bolts holding down the keyboard assembly. These are
located on either side of the keyboard. Some machines have two bolts, others may have three.

46 Appendix A

3. There is no need to disconnect the keyboard completely, so the multi-wire connector to the
main board can be left in place. Carefully displace the keyboard, rotating it clockwise through
about 20 degrees so that the front right-hand side is accessible.

4. Locate the row of five large sockets. The one on the left contains the operating system. The
BBC BASIC ROM should be in one of the other four. It can be identified by looking at the
second line of writing on its upper surface which is a series of letters and numbers ending in the
series 'B01' or 'B05'.

Language and filing system ROMs - operating procedure
The four ROM sockets have an operating priority, decreasing from right to left. On a hard reset,
or when the computer is switched on, the language ROM in the rightmost ROM socket takes
priority over the others. Similarly, the filing system ROM in the rightmost position takes
priority over any other filing system. So the position of the Hi-BASIC ROM in relation to any
other languages present will determine whether your machine starts up in Hi-BASIC or in
another language.

If you want to start up in Hi-BASIC then you must insert your ROM to the right of all other
language ROMs.

Removing the BASIC ROM
To avoid bending any pins, the ROM must be removed very carefully. Take a screwdriver or
similar tool and gently prise up each end, a bit at a time.

Inserting the Hi-BASIC ROM
1. Before taking the ROM out of its protective packaging, identify Pin 1 on the ROM. It is
either marked with a dot on the top, in the corner of Pin 1, or the half-moon notch at one end of
the ROM identifies the end of the ROM nearest Pin 1. Pin 1 should be on the left if the notch is
held up.

2. Hold the ends of the ROM between finger and thumb, and line up all the pins over the
destination socket. Pin 1 and the half-moon notch should point towards the back of the
computer casing.

3. Now apply firm pressure to the ROM, but try not to force it! When the ROM is in, it appears
to be slightly raised. Check that all the pins do enter the socket, and that none are bent out or
underneath.

Appendix A 47

Removing the DFS and NFS ROMs
If you already have a disc or Econet filing system fitted– or both– you will need to remove the
DFS and NFS ROMs in the same way as the BASIC ROM (see above).

Inserting the DNFS ROM
Follow the steps above for inserting the Hi-BASIC ROM.
The disc filing system has priority over the Econet filing system. To access the Econet filing
system, type

*NET RETURN
and to revert to the disc filing system, type:

*DISC RETURN

Figure 5 Inserting the Hi-BASIC ROM

Appendix B

Differences between the filing systems

If you have been using the disc filing system or Econet on your BBC Microcomputer, you may
notice that there are differences between the filing system software you are used to, and the
new software provided by the DNFS ROM. More specifically, these differences occur
between version 0.90 and version 1.00 (and above) of the disc filing system, and version 3.34
and version 3.40 (and above) of the Econet filing system.

Changes to the disc filing system

1. Version 1.00 does not allow control characters, top bit set characters and DELETE in
filenames or disc titles. For example, this means that coloured filenames in MODE 7 are not

possible.

2. The filing system commands LIB and DIR, and filename searching are different if any part
of the full filename is not specified. For example

*DIR x RETURN
*DIR :2 RETURN

In version 0.90, this will leave you in drive 2, directory $. In version 1.00, this will leave you
in drive 2, directory X.

LOAD ":2. FILE" RETURN

Version 0.90 looks for : 2 . $. FILE, regardless of the current directory. Version 1.00 will
observe the current directory, and if you are currently in directory X, then the version 2 will
search for : 2 . X. FILE.

The LIB command behaves in the same way.

3. Version 1.00 does not distinguish between upper case or lower case directory names, unlike
version 0.90. For example

Appendix B 49

SAVE T.Fred

and

SAVE t. Fred

will SAVE the file Fred into the same directory.
4. Some filing system messages have been rephrased in version 1.00.
5. Version 1.00 provides an extra option for OSWORD &7F. If the drive number given is
greater than &7F (ie a minus number), the filing system reverts to the currently selected drive.

6. Open file handles, OPT1, D I R, LIB etc are preserved over a soft reset in version 1.00.

7. Version 1.00 provides line numbers with leading zeros for BUILD and LIST.

Changes to the Econet filing system
1. Version 3.40 prints catalogues in multiple columns as opposed to single columns in version
3.34.

2. In version 3.40, passwords can be masked at 'log on' for security.
3. Printing protocols in version 3.40 allow control characters to be sent to the printer server,
enabling graphics dumps and diablo'-type printers to be used.

4. The E conet system can be run as IRQ task with net and disc activities in the foreground.
This means that these activities can occur whilst a program is running, and not interfere with
the program.

5. Stations fitted with versions 3.40 and above do not recognise 'privileged' station numbers,
and will be protected against immediate operations from any station.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58

