

ACORN 6809

TECHNICAL AND PROGRAMMING MANUAL

Chapter 1 - Introduction 1

2 - Monitor Operation 4

3 - Summary of Monitor Commands 11

4 - Monitor Expansion 16

5 - Hardware Description 23

6 - Software Description 33

7 - Instruction Set and Addressing Modes 38

8 - Programming Techniques 55

9 - Assembly Instructions 67

Appendix - Monitor Program Listing 77

© COPYRIGHT ACORN COMPUTER LTD 1980

ISSUE 1 FEB 1980

1.0 INTRODUCTION

The 6809 monitor is designed to operate at two different levels. At one

level it provides all the commands necessary for the efficient writing, and

debugging, of machine-code programs, and commands for saving and loading

programs to and from cassette tapes. At a second level, the monitor has been

designed with future expansion in mind, so that it will form the kernel of a

more sophisticated operating system.

1.1 Monitor Commands

The monitor commands are all single-letter mnemonics followed by a number

of parameters which are optional, and when these parameters are ommitted

then default values are assumed. Commands are looked up in a table, and

this table may be supplemented, or replaced, by external tables supplied by

the user. Thus user-written commands can be linked in with the standard

monitor commands to increase the capabilities of the monitor as desired;

examples will be given later.

1.2 Device Drivers

The monitor program includes driver routines for console input/output (i.

e. keyboard and display), cassette input/output, and printer output. The

addresses of these routines are held in RAM and all calls to them are made

via these addresses; thus user-written driver routines can be substituted

for any of the monitor routines to enable the monitor to be used with

different devices.

1.3 Keyboard

The keyboard in the monitor is interrupt driven, making operation of the

keyboard independent of the operation of other programs. Characters

1

entered at the keyboard are displayed on the screen and buffered in

memory, even if a user program is running. Up to 80 characters may be

typed ahead, and the console input routine will automatically supply

successive characters from the buffer. Two modes of operation are provided

for: in 'buffered' mode, the mode in which the monitor normally operates,

characters cannot be read from the buffer until the line being typed has

been terminated by 'return'. In this mode of operation mistakes can be

erased by typing 'rubout'. In the 'unbuffered' mode, characters can be

read from the buffer as soon as they are typed at the keyboard.

1.4 Display

The display is driven by software, and includes automatic scrolling and a

flashing-underline cursor. The interpretation of control characters is

performed by a look-up table which may be extended, or replaced, by the user.

The codes for 'return', 'line-feed', 'rubout', and 'form-feed' (clear

screen), which are already implemented, can thus be added to by the user.

The graphics facilities of the VDU can be used with the monitor's routines

just like the standard alphanumeric characters.

1.5 Command Passing

Although the monitor normally reads commands from the keyboard buffer,

routines are provided so that a line of commands can be passed to the

monitor, as a text string, by a user program. It is thus possible for user

programs to use the full facilities of the monitor in a very simple manner.

2

i.6 Interrupts

Interrupts are handled by the monitor in a very flexible manner.

All interrupts are vectored via addresses held in RAM. These addresses can

be replaced by the user to redefine some, or all, of the interrupt service

routines. Thus all the interrupts are potentially available for user

applications with a minimal overhead.

1.7 DISK Operating System

The Acorn 6809 card is fully supported by a range of memory and interface

cards, and so may be expanded into a complete computer system. With

future expansion in mind, the 6809 monitor has been provided with all the

routines necessary for loading a disk operating system from a minifloppy

disk drive; thus it will, without modification, form the basis of a much

larger system.

2.0 MONITOR OPERATION

Connect power and press reset. If all is well an asterisk will appear in

the top left-hand corner of the screen, followed by a flashing bar. The

asterisk is the monitor prompt; it indicates that the monitor is in

control, and is waiting for input. The flashing bar is a cursor indicating

where the next character will appear on the screen.

Type in the letters "ABCDEF". The letters will be echoed on the

screen, but nothing else will happen. Now type 'return'; the monitor will

reply:

What is:A

The convention will be used that what is output by the monitor will be

underlined in the examples in this manual.

The message 'What is:A' has been given because the first character of

the line, A, was not recognised by the monitor as a valid command. This

example illustrates a more important fact: the monitor only acts on a

command when 'return' is typed. Before 'return' is typed the line is just

held in memory, and it can be changed by typing 'rubout' to erase mistakes.

In all the examples which follow it is assumed that every line typed in is

terminated with 'return'; otherwise, nothing will happen.

2.1 Entering a Program

The 'M' (Modify) command is used to examine, and modify, the contents of

memory. All numbers are entered, and displayed, in hexadecimal.

In the examples 'XX' indicates that any two hexadecimal digits might be

displayed, depending on the previous contents of the memory.

Type in the following:

*M200

0200 XX 30,8D,00,04

0204 XX BD,F8,EC

0207 XX 39

4

0208 XX 08,8D,4F,4B,21,0D,0A

020F XX 08,8D,4F,4B,21,0D,0A

0216 XX 00 ;

*

This has entered the following simple program which calls a routine in

the monitor, STRING, to output a string of characters to the display:

0200 308D 0004 PROG LEAX STR,PCR GET STRING ADDRESS

0204 BD F8EC JSR STRING MONITOR ROUTINE

0207 39 RTS RETURN

0208 08 STR FCB $08,$8D,$4F,$4B,$21,$0D,$0A

020E 08 FCB $08,$8D,$4F,$4B,$21,$0D,$0A

0216 00 FCB $00 TERMINATOR

To execute the program use the 'G' (Go) command. Type: *G200

The program will display OK! in double-height flashing letters, and

return to the monitor's prompt. The program can be re-executed by simply

typing 'G' since the command remembers the last address used.

2.2 Cassette Calibration

The next step is to save the program on cassette. The playback level of

the cassette is quite critical, and so it is first necessary to find the

optimum playback level for the particular cassette recorder being used.

First, enter the following program which will record a stream of 'X's on

the tape:

*MO

0000 XX 86,58,BD,FD,25,20,FB ;

*

This corresponds to the following program:

0000 86 58 CALIB LDA £'X

0002 BD FD25 CALIB2 JSR MCASOP OUTPUT A TO CASSETTE

0005 20 FB BRA CALIB2 LOOP FOR EVER

5

Execute the program by typing:

*GO

and record for a minute or so. Stop the program by pressing 'reset', then

enter the following program which will read characters from the cassette and

store them in the display area of memory:

*M10

0010 XX 8E,04,00,BD,FD,53,A7,80

0018 XX 8C,08,00,26,F6,20,F1 ;

This corresponds to the following program:

0010 BE 0400 READ LDX E$400 DISPLAY AREA START
0013 BD FD53 READ2 JSR MCASIN INPUT A FROM CASSETTE
0016 A7 80 STA ,X+
0018 8C 0800 CMPX £$800 DISPLAY AREA END
0018 26 F6 BNE READ2
001D 20 Fl BRA READ

Execute at 10 and adjust the playback level so that a stream of 'X's appear

on the screen.

2.3 Store and Load

To save a program the 'S' command is used. Programs are identified on the

tape by a filename consisting of up to 6 letters. Thus, several programs

can be stored on one tape, and the load routine will search for the one

with the required name. For example, calling the above program PROG, it can

be saved with:

*S200 216 PROG

where the two numbers are the start and end addresses of the program. It

can then be loaded with:

*L PROG

Load displays the last address of each block loaded. Alternatively, typing:

*L PROG G200

will load the program and execute it as soon as it is loaded.

6

2.4 User's Registers

The contents of the registers are saved in memory when the user's

program returns to the monitor; these values are loaded into the

registers when a program is run using the 'G' command. To look at the

saved values of the registers, type 'R' (Registers). For example, with

the above program loaded, typing:

*G200 R

will display:

CC A B DP X Y U PC S

04 00 00 00 0217 0000 0000 FBEE 034D

PC-XX XX XX XX XX

The user's program can also be terminated by a SWI instruction (3F),

in which case the registers will be displayed automatically on return to

the monitor.

The memory area, where the user's register values are saved, can be

accessed automatically by typing 'MR'. The first location displayed

corresponds to the CC register, and the other registers follow in the order

displayed in the 'R' command. By modifying the contents of these locations

the initial contents of the registers can be specified before running a

program.

The program counter (or PC) is also saved in the register area after

a SWI instruction, and can be modified with the 'MR' command along with

the other registers.

A program may be executed from the saved PC address by means of the

'P' (Proceed) command.

2.5 Breakpoints

The simplest way to debug a program is to examine the contents of the

registers at various points during the program's execution.

7

This is achieved by inserting a breakpoint at the desired point is a SWI

instruction which will cause a return to the monitor a display of the

register contents. The monitor will insert and remove one breakpoint

automatically; for example, to insert a breakpoint after the first

instruction in the above example program:

*V204

Now, executing the program with:

*G200

will display:

CC A B DP X Y U PC S
80 00 00 00 0208 D000 0000 0204 034D
PC+BD F8 EC 39 08

Note that the X register contains the start address of the string, 0208, as

required. The PC contains 0204, the breakpoint address.

The third line of the display shows the five memory bytes following the

program counter; i.e. the next instruction of the program.

To continue execution of the program, type:

*P1

where the optional number after the Proceed command indicates the number of

breakpoints to be ignored; 1 in this case.

Alternatively we could type:

* VP

The V command without any address cancels the breakpoint.

Any number of additional breakpoints can be inserted using the M
command.

Suppose the breakpoint, inserted at 204 as described above, needs to

be moved to 207. One way is to type:

* V207

Alternatively the 'MV' command can be used. Type:

8

* MV

0204 BD

0205 F8

0206 EC

0207 39 ;

The breakpoint address is moved to the last address displayed.

2.6 Trace Facility

An important debugging facility provided by the monitor is the ability to

execute a program an instruction at a time, displaying the register

contents after each instruction. To turn the trace facility on, type:

*T1

where the parameter, 1, indicates how many instructions are to be

executed on each trace. Then, the '.' command will execute just one

instruction, from the previous halt address, and return to the monitor

after displaying the registers.

For example, with the example program loaded, set a breakpoint at the

start of the program and enable tracing with:

*V200 T1

Then start execution at 200 with:

*G200

Successively typing '.' will step through the program as described.

9

2.7 Error Messages

Whenever the monitor reads a character, such as 'X', that it cannot

understand, it prints:

What is:X

The rest of the line is ignored.

An unrecognized interrupt will give the message:

I-Err

For example, attempting to execute an SWI2 instruction (10 3F) without

first redefining the interrupt vector ISWI2 will give this error. The only

way to exit from this error is by 'reset'.

When the 'M' command is used to modify memory, a check is made that the

stored value is correct. If a discrepancy is found, the message:

Rom?

will be given to warn the user.

The cassette-tape format includes a checksum byte at the end of each block

of data. The load routine checks this, and if an error is found, the

message:

XXXX -Err

is given, where XXXX is the last address of the block containing the

error. The F (Finish) command can be used to finish loading a tape which

contains errors; it will load without searching for a filename.

Finally, errors during the disk bootstrap command 'D' are of the form:

Err XX

where XX specifies the error number. Err FF means that the disk did not

contain a valid boot file; other error codes are those generated by the

disk controller.

10

3.0 SUMMARY OF MONITOR COMMANDS

Some commands are followed by optional parameters. These will be

specified in quotation marks in the following list: e.g. 'name'. If any

parameters are omitted then sensible defaults will be assumed.

All numbers to be input are in hexadecimal, and leading zeroes are

ignored. Numbers may have leading spaces, and the number ends on the first

non-hex character. A comma is treated as the last character of the

previous number if no spaces intervene. A comma or carriage return with no

digits will become a default value. Note then that "123," is a single

number, but "123 ," is two numbers.

Commands may be strung together on one line, and no separators are

required unless the line is ambiguous in which case comma or space

should be used. Ambiguity can only arise with the commands C, D, and F,

since these are also hex digits.

Commands

Modify Memory

M 'address' MODIFY

The contents of the given address will be printed. Numbers entered will be

stored at successive memory locations starting at that address. The stored

result is checked, and if different the user will be queried.

A comma will move up one location, and a minus will move down one

location. A carriage return with no data will also move up one

location. The M command is exited with a semicolon, and the last

address accessed will be saved as the default address.

11

MG

Modify memory starting at the saved Go address. The Go address will be

changed to the address last accessed when the modify command is exited.

MR

Modify registers. The first location opened is the CC register. The

registers follow in the sequence:

CC, A, B, DP, X (high), X (low), Y (high), Y (low),

U (high), U (low), PC (high), PC (low).

MV

Modify memory starting at breakpoint address. The breakpoint address is

moved to the address last accessed when the modify command is exited.

MP

Modify memory starting at saved program counter address. The next P

command will cause execution of the user program to resume at the address

last accessed when the modify command is exited.

Program Execution

G 'address' GO

Go to address specified. Registers are loaded from user register area. Will

return to the monitor on an RTS or SWI instruction.

P 'number' PROCEED Proceed after hitting a breakpoint. Execution begins

at the saved program counter address. If a number is entered after the

P, this number of breakpoints will be ignored by the monitor. On

hitting a breakpoint the monitor is entered with an automatic R command.

12

Program Debugging

R REGISTERS

Registers; prints contents of user registers, and contents of the five

memory locations pointed to by the saved program counter.

V 'address' BREAKPOINT

Breakpoint insert/remove. If an address is specified, a breakpoint will be

inserted at this address. Any previous breakpoint is removed. The

breakpoint will not be inserted until the program is executed using G or

P.

If no address is specified the breakpoint is cancelled.

T 'number' TRACE

Trace facility. The command is followed by a number indicating the

number of instructions to be executed on each ".' command. If no number

is given the trace will be turned off, and '." will be ignored. The

monitor starts with trace switched off.

DO TRACE

Do Trace. The number of instructions set by the T command will be

executed, and the monitor will return with an automatic R command to

display the registers.

Cassette Interface

S 'start address' 'end address' 'file name' SAVE

Saves an area of memory between the specified addresses. The file name may

have up to 6 characters not including space, comma, or carriage return. The

name is padded to 6 characters, if needed, with spaces on the right. The

file is saved as a name header block followed by data blocks of up to 256

bytes, and terminated by a terminator block.

13

A minus sign following the filename will inhibit output of a

terminator block, thus allowing non-contiguous blocks of data to be

saved as a single file.

All three parameters of the S command will default to the last

values used.

L 'file name' 'offset' LOAD

Load a file into memory from cassette. All input data will be ignored

until the required header block is found.

The character "?" in the file name specified will match any

character in the input file name; e.g. "DATA??" will match "DATA01", "

DATA02", etc. The name "??????" will match any file name.

The optional offset will be added to the start and end addresses from

the input file, thus enabling a file to be relocated to an address in memory

different from where it was saved from. An offset can also be specified to

load a file back into an unused part of the address space to verify that it

was saved correctly without destroying the original version in memory.

The Load will print out the last address of each data block loaded. Each

data block includes a checksum; if an error is found the message " -Err° will

be printed after the last address of the block causing the error.

During loading the keyboard interrupt is disabled to prevent

errors caused by typing at the keyboard.

F

FINISH

Finish loading without searching for a name header block.

Can be used after an error to load the remainder of the file.

14

Printer Interface

C '+' COPY

The printer is switched on to echo all data shown on the VDU. If the

next character is not a "+" then the printer is switched off.

Disc Interface

D DISK

Loads a bootstrap program from a minifloppy disk drive, thus entering the

disk operating system.

15

4.0 MONITOR EXPANSION

This section describes how to take advantage of the expandability of

the monitor.

4.1 Extra Rom

The monitor occupies address space between F800 and FFFF. A second ROM

may be added in the space F000 to F7FF. The monitor checks for the

presence of the extra ROM, and calls it as a subroutine if it is

present. The extra ROM should contain:

F7FC SUBR

F7FE $A55A

where SUBR is the address of the subroutine called by the monitor. This

subroutine can be used to reassign the command-table addresses and thus

add commands to the existing monitor.

4.2 Adding to Monitor Commands

The following example shows how a user-written command can be linked in to

the monitor so that it behaves as if it were another monitor command. The

command described is one to list an area of memory on the screen, eight

bytes per line, both in hexadecimal and in ASCII. Thus a typical line

would appear:

0200 01 44 00 07 FF FD 52 BD -D----R-

showing the eight bytes from 200 to 207. The program lists 24 lines at a

time, since these fit conveniently on the screen. The command is assigned

the name 'D' (Dump), and is followed by the start address of the memory

area to be dumped. The command calls five routines which are provided in

the monitor; these handle the input and output of numbers and characters.

16

* DUMP COMMAND
*
* LINKED TO MONITOR COMMAND SET
*

0200 01 AUXTAB FCB 1 NO. OF COMMANDS IN TABLE
0201 44 FCB 'D COMMAND NAME

0202 0007 FDB DUMP-AUXTAB OFFSET TO ROUTINE
0204 FF FCB GO TO NEXT TABLE

0205 FF51 FDB CMNDS MONITOR COMMAND TABLE

*
0207 BD FB6C DUMP JSR NUMB GET HEX NO. IN D
020A 1F 02 TFR D,Y PUT IN Y
020C 86 18 LDA £24 NO. OF LINES
020E 3402 PSHS A SAVE COUNTER
0210 C608 GO LDB £8 BYTES PER LINE
0212 34 24 PSHS Y,B
0214 1F 21 TFR. Y,X X = ADDRESS
0216 BD FA75 JSR OPXREG PRINT X IN HEX + SPACE
0219 A6 AO D1 LDA ,Y+ GET BYTE
0218 BD FA97 JSR OPARSP PRINT A IN HEX + SPACE
021E 5A DECB
021F 26 F8 BNE D1
0221 35 24 PULS Y,B RESTORE
0223 A6 AO D2 LDA ,Y+ GET BYTE AGAIN
0225 81 20 CMPA £$20 ASCII PRINTABLE ?
0227 25 04 BCS D3
0229 81 7E CMPA £$7E TOO BIG ?
022B 23 02 BLS D4
022D 86 FF D3 LDA £$FF PRINT WHITE BLOCK
022F BD FA21 D4 JSR CONOUT CONSOLE OUTPUT A
0232 5A DECB
0233 26 EE BNE D1
0235 BD F8E9 JSR OPCRLF START NEW LINE
0238 6A E4 DEC ,S DECREMENT LINE COUNTER
023A 26 D4 BNE GO
023C 35 82 PULS A,PC PULL COUNTER + RETURN.

*
* ADDRESSES IN MONITOR
*

FF51 CMNDS EQU $FF51 COMMAND TABLE
FB6C NUMB EQU $FB6C INPUT HEX TO D
FA75 OPXREG EQU $FA75 OUTPUT HEX FROM X
FA97 OPARSP EQU $FA97 OUTPUT HEX FROM A
FA21 CONOUT EQU $FA21 PRINT A

F8E9 OPCRLF EQU $F8E9 NEW LINE *

END

17

When the dump program has been entered from the listing in Fig.

4.1 it can be executed by typing:

*G207

Any address typed after the Go command will be read by the call to

subroutine NUMB and used as the start address of the area to be dumped.

For example, to display the contents of memory starting from $F800,

execute with:

*G207 F800

To make the monitor recognize D as the DUMP command the auxiliary

command table, from 0200 to 0206, is needed. The address of this table,

0200, should be put at 0371 to replace the address of the monitor's

command table, FF51. The monitor will then search the auxiliary table

first, and the D command will be redefined to cause a jump to 0207.

The dump command can be saved on cassette so that, when loaded, it

will automatically install itself as part of the monitor's command set. To

do this, save it as follows:

*M371 02 00;

*S200 23D DUMP - S371 372

The first save command saves the program in a file named DUMP. The

minus sign inhibits the save command from writing an end-of-file marker

on the cassette, and the second save command writes a block of two

bytes to redefine the command-table address. If the program is now

loaded with:

*L DUMP

both blocks will be loaded, and D will have its new meaning, DUMP.

18

4.3 Interrupt Vectoring

All interrupts are vectored, using indirect jumps, via addresses held in

RAM. The RAM locations are assigned as follows:

0379 ISWI3 SWI3 vector
037B ISWI2 SWI2 vector
037D IFIRQ FIRQ vector
037F IIRQ IRQ vector
0381 ISWI SWI vector
0383 INMI NMI vector

These addresses can be altered to point to user interrupt service

routines, so that all the interrupts are potentially available for user

applications. Interrupts IRQ and SWI are used by the monitor; the other

interrupts are vectored to a routine which will display an error

message I-Err if an unexpected interrupt occurs.

The indirect jumps add an overhead of 8 cycles to the servicing of

each interrupt.

4.3.1 Example

The following example illustrates the use of FIRQ in a user program. Each

time the interrupt occurs an interrupt service routine ISR is called;

this writes a hex number to the display, and increments it. The routine

SETUP should be executed first to replace the address of the FIRQ

indirect vector with the address of the interrupt service routine.

* USE OF FIRQ
* *
* INTERRUPT SERVICE ROUTINE
* *

0100 34 10 ISR PSHS X FIRQ DOESN'T STACK REGS
0102 BE 0109 LDX COUNTER
0105 30 01 LEAX 1,X ADD 1
0107 BD FA75 JSR OPXREG PRINT HEX; SAVES REGS
010A BF 0109 STX COUNTER REPLACE IT
010D 35 10 PULS X RESTORE X
010F 3B RTI

*
* SET-UP ROUTINE
*

0110 8E 0100 SETUP LDX ISR
0113 BF 037D STX IFIRQ
0116 1C BF ANDCC £$BF ENABLE FIRQ
0118 39 RTS

*
0119 0000 COUNT FDB 0 COUNT FROM ZERO

19

4.4 Driver Routines

The monitor calls the input/output driver routines indirectly through

addresses in RAM, and these addresses may be changed by the user to enable

the monitor to drive other devices. The addresses are assigned as follows:

0365 COPADR Console output
0367 CINADR Console input (from buffer)
0369 CASOPA Cassette output
036B CASINA Cassette input
036D PRINTI Printer output

By default, these locations contain the following addresses:

0375 F95B FDB DISPLA
0377 FA5E FDB GETCHR
0379 FD25 FDB MCASOP
037B FD53 FDB MCASIN
037D FA9D FDB PRINT

4.5 Command Passing

A command line can be passed as a text string to the monitor by a user

program. The address of the command line should be stored in X, and the line

should be terminated by a null byte. Multiple input lines are allowed, each

line terminated with a carriage return. A typical calling sequence would be:

LDX £COMMD COMMAND LINE ADDRESS
JSR MEMUSE
TSTA
BEQ OK

ERROR

The routine MEMUSE, at F871, interprets the command line and exits with

A zero if all is well. A has the value FF if a null was found before it

was expected, and the value of any character causing an error.

20

4.5.1 Demonstration Program to Illustrate Command Passing

The following program DEMO shows how the command line "L DUMP" can

be passed to the monitor as described, causing the file DUMP to be

loaded from cassette:

* DEMONSTRATION OF COMMAND PASSING
*

0010 8E 001B DEMO LDX £STRING POINT TO COMMAND LINE(S)
0013 BD F871 JSR MEMUSE
0016 4D TSTA
0017 27 01 BEQ OX
0019 3F ERROR SWI ERROR RETURN
001A 39 OK RTS

*
001B 4C204445 STRING FCC /L DU/
001F 4D50 FCC /MP/
0021 OD00 FCB $0D,0 TERMINATOR

4.6 Use of a Serial Terminal with 6809 Card

The Acorn 6809 card is primarily designed for use with an Acorn VDU card

and a standard parallel keyboard, to form a complete 6809 development

system. The serial interface, normally used to provide data and program

storage on cassette, can also be used to interface the card to a serial

terminal such as a teletype. The terminal may be used as a secondary

output device in addition to the VDU, as the main output device, or for

input and output:

4.6.1 Terminal as secondary output device (e.g. for hard copy). Store the

cassette-output routine address CASOUT (FD25) at the printer indirect

address location PRINTI (036D), and set PFLAG (0361) non-zero. This is

achieved by typing:

M36D FD 25;M361 1;

4.6.2 Terminal as only output device, instead of VDU card.

Put CASOUT address (FD25) at console output address location COPADR (

0365) by typing:

M365 FD 25;

21

4.6.3 Use of serial terminal for input and output.

In addition to the steps described in section 4.6.2 the monitor's

input routine should be replaced by a user-written routine to get

characters from the terminal, through the serial interface, and store

them in the circular keyboard buffer.

The monitor automatically links to a ROM located between $F000 and

$F7FF, if present, and the replacement input routine can conveniently be

contained there.

4.6.4 Selection of baud rate.

The default baud rate for the serial interface is 300, and if other baud

rates are required the contents of DELCNT (0363) should be changed as

follows:

110 baud $0234

300 baud $00CD

1200 baud $0030

22

5.0 HARDWARE DESCRIPTION

5.1 Memory Organization

The 6809 card uses part of the first 4K of address space, block zero, and

part of the last 4K of address space, block F. The complete memory map is

shown in Fig. 5.1. The map also shows the addresses assigned to memory and

devices not on the 6809 card, but recognised by the monitor program. The

6909 card includes 1K of RAM from 0000 to 03FF, and this is contiguous with

the 1K of RAM on the VDU card which occupies from 0400 to 07FF. The monitor

uses locations 0359 to 03FF for the storage of variables, the user

registers, and for the line input buffer. The monitor uses memory below

this address for the hardware stack. The stack depth will not normally go

below 0300, so the memory from 0000 to 02FF is free for use by user

programs.

5.2 Memory Decoding

Memory decoding is performed by a 256 x 8 bipolar PROM, IC11, which

divides the 64K of the 6809's address space into 256 256-byte pages. Any

of the devices on the Acorn 6809 card may be mapped into any of these

pages by providing a suitably programmed ROM. As provided the following

signals are produced by the address PROM:

Signal Address space

RAM 0 - 3FF

VIA 900 - 9FF

ROMO F800 - FFFF

ROM1 F000 - F7FF

BLOCKO 0 - FFF

ONCARD 0 - 3FF, 900 - 9FF, F800 - FFFF.

All the signals are active low. The ONCARD signal is low whenever any

of the on-card devices are addressed, and this signal controls the

data-bus buffers. The BLOCK0 signal is low for addresses in the bottom

4K of memory, and is used to enable the VDU card.

23

Fig. 5.1. 6809 Card Memory Map.

24

5.3 Extra ROM

The standard 2K monitor is contained in a 2716-type EPROM, occupying

memory between F800 and FFFF. The Acorn 6809 card can be modified to

accomodate a 2732-type EPROM in its place, addressed between F000 and

FFFF, and the present monitor can be copied into the upper 2K of the 4K

ROM to provide space for extended facilities on the same card. Details of

how the extra ROM can be linked in with the present monitor are given in

section 4.1.

The following modifications are necessary to use a 2732 in the

place of IC4:

1. Break track from +5v to pin 21 of IC4.

2. Link pin 21 of IC4 to Bus All.

3. Link pins 9 and 11 of IC11. This will cause the ROM to be

enabled for addresses F000 to F7FF in addition to F800 to.FFFF.

4. Link pins 13 and 14 of IC11. This will include the address space

F000 to F7FF in the ONCARD signal.

5.4 Bus Buffering

The data bus is buffered by an octal tri-state bidirectional buffer, type

8208. The data-bus buffers are disabled when the E signal is low, and when

the processor is addressing memory space on the 6809 card. They will also

act correctly when a DMA device accesses memory, whether on or off the 6809

card.

The R/W and address lines are buffered by 74LS244 devices, and are tri-

stated to allow other devices to do DMA. The R/W line is ANDed with the E

signal to give separate NRDS and NWDS signals at the edge connector; these

are provided so that devices from the 8080 family can easily be interfaced

to the 6809 card, and the signals are used by some of the other cards in the

Acorn range. The NWDS bus line is generated from the unbuffered E signal for

improved timing.

The signals Q, E, BA, and BS are buffered but not tri-stated.

25

5.4.1 Reset - The reset line is not buffered. The 6809 will come out of

reset when RESET is at a level above about 4v. Other devices are designed

to reset at a lower voltage, typically 0.4v, so that on power-up they

will be fully reset before the processor begins execution.

Power-up reset may be provided by connecting a capacitor of about 200

uF between RESET and Ov; a space on the board is provided for this.

number of devices may be attached to the system using this line, and

daisy-chaining the bus available (BA) and bus request lines.

5.4.3 DMA - When a DMA device requests bus control by taking HALT or BREQ

low, the processor will eventually take BA (bus available) high. The cycle

during which this occurs should not be used for a bus

When the DMA device relinquishes control of the bus the processor will

set BA low. Again there is a null cycle while control is transferred. On the

6809 card IC12 is used to provide a delayed BA signal which will not go low

until the negative transition of E following BA going low. The circuit is

shown in Fig. 5.2. This ensures

bus buffers will be turned off.

5.5 System Clock

The system clock is derived from a 4 MHz crystal, giving a 1 usec.

instruction cycle time. The Q and E signals at the edge connector are

therefore 1 MHz.

26

Fig. 5.2. Generation of delayed BA signal.

27

5.65.6 Audio Cassette Interface

Programs and data say be saved on cassette and loaded from cassette

using the interface programs included in the 6809 monitor.

The 6809 card provides logic-level input and output lines, and the

cassette interface routines transfer data onto these lines in standard

serial format. The card does not include circuitry for the generation of

tones to encode the serial data in a form suitable for storage on an

audio tape, but the full circuit is given in Fig. 5.3. A kit of parts for

this circuit, with a circuit board, is available from Acorn.

For flexibility the bit rate is determined by a software timing loop

in the cassette input and output routines; the value of the delay counter

can be altered to give different baud rates. The default rate, initialised

on reset, is 300 baud but rates of up to 1200 baud are possible.

The serial input and output routines can also be used to provide

interfacing with serial devices such as a terminal or a teletype. Output

can be vectored to the serial output routine simply by changing a vector

address stored in RAM. To receive input from a serial device is also

possible, but requires the provision of specially-written routines to put

the received data into the keyboard buffer.

5.6.1 Cassette Input

The software asynchronous receiver gets 1 start bit, 8 data bits, and 1

stop bit. Data is shifted in from PB7 of the VIA, lowest bit first. The

data input is inverted.

Since keyboard interrupts could upset the cassette timing the

keyboard interrupt is disabled during cassette load.

5.6.2 Cassette Output

The software asynchronous transmitter outputs the byte from the A

register as a start bit, 8 data bits, and 2 stop bits. Data is

28

Fig. 5.3. Suggested circuit for a cassette interface.

The three signals on the right side of the circuit connect to

the 6809 card.

29

output from CB2 of the VIA, lowest bit first.

The IRQ and FIRQ masks are set during the output of a byte to the

cassette output so that the timing will not be upset by servicing

interrupts. Interrupts are permitted in between bytes.

5.6.3 Cassette Format

Three types of block are output by the cassette file save routine:

1. File Header Block

Format: $D8, $30, X, X, X, X, X, X, CK.

where X is any ASCII character, excluding space, comma, or carriage

return, and CK is the checksum byte.

2. Data Block

Format: $D8, $31, SH, SL, EH, EL, DO, D1, D2, Dn, CK. where SH and

SL are the high and low-bytes of the start address respectively, EH and EL

are the high and low-bytes of the end address, DO to Dn are the data bytes

in binary, and CK is the checksum byte. The number of data bytes is from 1

to 256.

3. Terminator Block

Format: $D8, $39.

The sum over all bytes after the header pair of bytes, and including the

checksum, is $FF in each block.

5.7 Keyboard Interface

The monitor is designed to receive commands from a parallel keyboard connected

to the inputs PBO - PB6, with a strobe line to CB1 on the VIA. The keyboard

should have a negative-going strobe signal and non-inverted data outputs. The

edge connections on the 6809 card include connections to the power rails, and

a 5v keyboard may be powered from these. The break key on the keyboard may be

wired to the reset line

30

which is also available at the keyboard connector. The break signal

should provide a negative-going signal when pressed.

The keyboard is interrupt-driven, making its operation totally

independent of external programs; data may be typed at the keyboard while

the processor is executing a program, and it will be echoed on the VDU and

buffered in the line buffer. Programs may be written to read characters from

the line buffer at any time. If there are already characters in the line

buffer the read-character routine will immediately return with the

character; otherwise it will wait for characters to be entered at the

keyboard.

A negative-going strobe signal on CB1 of the VIA will generate an

interrupt, if the IRQ mask is clear, and will set bit 4 in the VIA

Interrupt Flag Register. The IRQ service routine tests this bit to

determine whether the interrupt was due to a keyboard interrupt or an

interrupt from the VIA timer 1, used in trace mode.

5.8 Trace

A hardware trace function is provided on the 6809 card to enable programs

to be executed one, or more, instructions at a time. The function is

controlled by one of the two timers in the VIA, timer 1. Timer 1 is

addressed as follows:

Register: Address: Function:

4 0984 Counter low

5 0985 Counter high

6 0986 Latch low

7 0987 Latch high.

The following sequence is executed to jump to a user program in trace mode:

31

1. Initialize counter to $000F (15)

2. Pull all registers from the hardware stack.

The timer 1 counter will take the IRQ line low after 16.5 E cycles; i.e. on

the rising edge of E following 16 instruction cycles. By the next falling

edge of E, after 17 cycles, the IRQ will be latched by the processor. A

delay of at least one bus cycle will then occur before the interrupt is

serviced. The instruction to pull all the registers from the stack takes 17

cycles, and so the interrupt will not be serviced until after the next

instruction of the user's program has been executed.

5.9 Printer Interface

A parallel handshake interface to a printer is provided on the Acorn 6809

card, and printer driving routines are included in the monitor. The

handshaking signals comprise a BUSY line from the printer, which is connected

to PA7 of the VIA, and a strobe signal from the VIA pin CA2 to the printer.

When the BUSY signal goes low, the printer routine will put a byte on

the printer lines PAO - PA6, and take the strobe low for 7 usecs.

the existing software does not make use of this signal.

The outputs to the printer, PAO - PA6 and CA2, are buffered by an

octal buffer device.

32

6.0 SOFTWARE DESCRIPTION

This section describes the operation of the most useful subroutines

contained in the monitor; these can all be incorporated into user

programs without a full understanding of the monitor being needed.

6.1 Input

When a key is typed at the keyboard an IRQ interrupt occurs, if it has not

been masked, and the key's value is stored in the next location of the 80-

character circular buffer. The console input routine, CONIN, is normally

indirected via a RAM vector to the subroutine GETCHR. This reads a

character from the circular buffer, or waits for one to be entered if the

buffer is empty. CONIN can also be directed to return characters read from

an area of memory.

An alternative character-input routine is used by most of the

monitor routines: this is CONCHR, which will only return characters

read up to a carriage-return. Thereafter it will return carriage-returns

until the flag ONLINE is cleared. This ensures that monitor commands, such as

S, that expect several parameters will not cause reading past the end of the

line when parameters have been ommitted.

6.1.1 Routines

Name: Address:

CONIN F890 Console input routine. Gets character from

input routine via RAM vector CINADR if LINEPT=0, or from

memory at address LINEPT. If it finds a null in memory

it returns to caller with error $FF.

CONCHR F87F Alternative console input routine; reads up to CR

calling CONIN, and then returns CRs. Make ONLINE non-

zero to clear.

33

Name: Address:

GETCHR FA5C Default character-input routine. Gets character from buffer. If

none then clears interrupt mask and waits. All registers

saved, including CC.

The following routines call CONCHR to input single characters:

GETHEX FB95 Get hex digit in A, with V=0, else V=1 if non-hex.

GETHXS FB8A As above, but ignore leading spaces.

NUMB FB6C Get hex number, with any number of digits, from input stream.

Allow leading spaces, and stop on first non-hex character.

Number returned in D, with V=0. If no number then D=0 and

V=1.

NAMEIN FD75 Get name from input stream, up to 6 characters long. Name

stored at NAME (039D). No name leaves memory unaltered;

any name is padded with spaces to 6 characters.

6.2 Output

The console output routine, CONOUT, is normally indirected via a RAM vector

to subroutine DISPLA. This first checks the character for carriage-return,

linefeed, formfeed, or delete; if none of these, the character is written

to the next screen location, and the cursor is moved on one position.

Attempting to move the cursor below the bottom line will cause the screen

to be scrolled by reprogramming the 6845 CRT controller on the VDU card for

a different display start address. Before the screen has been scrolled the

address corresponding to the leftmost character in the top line is $0400.

After scrolling the memory-to-screen mapping becomes more complicated , and

the routine CCLOCN should be used to calculate the cursor location.

34

The four special characters have the following actions:

carriage-return: cursor to start of line.

linefeed: cursor to next line.

formfeed: display RAM cleared; screen format reset with

cursor off screen.

delete: backspace cursor; blank character under cursor.

When scrolling takes place the bottom line of the screen is cleared.

6.2.1 Routines

Name: Address:

CONOUT FA21 Console output routine. Sends character in A via RAM

vector COPADR, and to printer via vector PRINTI if PFLAG

is non-zero.

DISPLA F95B Default character-output routine called by CONOUT. Puts

character in A to VDU, handling CR, LF, FF, and delete.

All registers saved.

PRINT FA9D Default printer routine, called by CONOUT is PFLAG is non-

zero. This interfaces to Anadex or Centronics parallel

interface printers.

The following routines all call CONOUT to output characters:

STRING F8EC Output string pointed to by X, terminated by a null.

Leaves X pointing to null+l; other registers saved.

OPCRLF F8E9 Outputs CR, LF to console. Destroys X.

HEXOUT FA8D Output A as a single hex digit.

OPARSP FA97 Output A as a single hex digit followed by a space.

OPAREG FA81 Output A as two hex digits. All registers except A are

saved.

OPXREG FA75 Output X register as 4 hex digits. All registers are

saved.

35

6.3 Tape Routines

Name: Address:

MCASIN FD53 Software asynchronous receiver. Gets value into A

with 1 stop bit. Saves all other registers.

MCASOP FD25 Software asynchronous transmitter. Outputs value in A

as a start bit, 8 data bits, and two stop bits. Rate

controlled by DELCNT. Saves all registers,

CBIN1 FD1E Get one byte from tape, and update checksum.

CBIN2 FD13 Gets 2 bytes and forms a 16-bit value in D

6.4 Disk Routines

Name: Address:

BOOT FE44 Bootstrap from mini-floppy disk.

TRNSFR FEC9 Transfers data from disk to memory, starting at address in

U. Returns completion code in A when transfer finished or

error occurs.

DRVRDY FEB6 Test if drive ready. On entry X points to read drive status

command sequence; on exit drive is ready and X points to

next command sequence.

CMDPAR FE9F Send one command followed by a variable number of parameters.

X points to command; next byte is number of parameters,

possibly none. X left pointing to last parameter. Destroys

D.

36

6.5 Miscellaneous

Name: Address:

DISPCH F9A6 Dispach routine. Looks up character in A in a table

at X. Table format is:

First byte: number of entries, 1 to 255.

For each entry: Character to match

2-byte offset to routine for match

Flag byte: determines action if no match found

$01 - next word is offset to default routine

$00 - return to calling program

$FF - next word is address of another table

CCLOCN F905 Calculate real address of cursor in memory space.

Result returned in X.

RESET F800 Reset entry point.

MEMUSE F871 Pass command to monitor. X is start of line which is

terminated with a null. Multiple input lines are

allowed, separated by CR. Exits with A zero if no

error.

37

7.0 INSTRUCTION SET AND ADDRESSING MODES

7.1 Programming Model

A programming model of the 6809 is shown in Fig. 7.1. There are four 16-bit

pointer registers, the program counter, two 8-bit accumulators which can

be used as one 16-bit register, and two special purpose 8-bit registers.

7.1.1 Accumulators (A, B, D)

The A and B registers are general purpose accumulators which are used for

arithmetic and logical operations. Most instructions will operate in an

identical way with either accumulator. Certain instructions are provided

which will operate on the A and B registers considered as one 16-bit

register, referred to as the D register. The A register is the most

significant byte of the D register.

7.1.2 Direct Page Register (DP)

The direct page register defines which page of memory is to be accessed by

direct addressing; see section 7.3.5. When peripherals are being accessed

the direct page register can be set to the peripheral's page, thus speeding

up access.

7.1.3 Index Registers (X, Y)

The index registers are used in the indexed mode of addressing; the 16-bit

address in the specified register takes part in the calculation of the

effective address. This address may be used to point to data directly or may

be modified by an optional constant or register offset. During some indexed

modes the contents of the index register are incremented, or decremented, as

a result of the operation. All

four pointer registers, X, Y, U, and S, may be used as index registers.

7.1.4 Stack Pointers (U, S)

The hardware stack pointer, S, is used automatically by the processor

38

Fig. 7.1. Programming model of the 6809.

39

during subroutine calls and interrupts. The stack pointers point to the top

of the stack. The user stack pointer, U, is controlled exclusively by the

programmer thus allowing arguments to be passed to and from subroutines with

ease. Both stack pointers have the same indexed mode addressing capabilities

as the X and Y registers, but also support push and pull instructions.

7.1.5 Program Counter (PC)

The program counter is used by the processor to point to the next

instruction to be executed. Relative addressing is provided, allowing the

PC to be used like an index register in some situations.

7.1.6 Condition Code Register (CC)

The condition code register defines the state of the processor at any time:

Bit 0 - Carry Flag

For add operations the carry is set if and only if the

addition causes a carry from the most significant bit. For

subtract-like operations (SUB, SBC, CMP) the carry is set if

and only if the operation does not cause a carry from the

most significant bit.

Shifts and rotates affect the carry according to the data

being shifted.

The MUL multiply instruction sets the carry if and only if bit

7 of the result is set.

Bit 1 - Overflow Flag

Set if and only if the operation causes a signed two's-

complement overflow. Thus N + V will give the correct sign even

if the sign is not correctly represented in the result.

40

Bit 2 - Zero Flag

Set if and only if the result of the operation was equal to zero.

Bit 3 - Negative Flag

Contains the value of the most significant bit of the result of

the operation; thus a two's-complement result will set N if the

result was negative.

Bit 4 - IRQ Mask Bit

The processor will not recognise interrupts from the IRQ line

if this bit is set to a one. NMI, FIRQ, IRQ, RESET, and SWI

all set I to one; SWI2 and SWI3 do not affect I.

Bit 5 - Half-Carry Bit

This bit indicates a carry from bit 3 as a result of an 8-bit

addition (ADC or ADD). The bit is used by the decimal adjust (

DAA) instruction to perform a BCD adjust operation. The state of

this flag is undefined in all subtract-like operations.

Bit 6 - FIRQ Mask Bit

The processor will not recognise interrupts from the FIRQ

line if this bit is set to a one. NMI, FIRQ, RESET, and

SWI all set F to a one. IRQ, SWI2, and SWI3 do not affect F.

Bit 7 - Entire Flag

Set to a one if all the registers were stacked, as opposed to the

PC and CC only, after an interrupt. The E flag of the stacked CC

is used on return from an interrupt (RTI) to determine the

extent of the unstacking.

41

7.2 Instruction Set

A complete list of the 6809 instruction set is given in Figs. 7.2

to 7.6. Some of the more unusual instructions are explained in the

following sections.

7.2.1 Load Effective Address

The load effective address instruction, LEA, allows all the 6809's

addressing modes to be used to form an address, and this address is then

loaded into one of the four pointer registers. Some uses of this

instruction are described:

LEAX 3,X

adds the constant, 3, to the X regsiter.

LEAU D,U

adds the signed number in the D register to the number in the U

register and stores the result in U. Thus:

LEAX B,X

is similar to the ABX instruction, but whereas LEAX B,X treats B as a

two's-complement signed number between -128 and +127, ABX uses B as a

positive offset between 0 and 255.

LEAS -10,S

can be used to reserve 10 bytes of workspace on the hardware stack.

This workspace can be addressed indexed using S; for example:

LDA 4,S or DEC 2,S.

The workspace is restored after use with:

LEAS 10,S

The destination and source registers can be different, as in:

LEAX 4,S

which loads the X register with a pointer to the 4th byte on the

hardware stack.

LEAX DATA,PCR

loads the address of DATA into the X register; the code for the

42

Fig. 7.2. 8-bit accumulator and memory instructions.

43

Fig. 7.3. 16-bit accumulator and memory instructions.

Fig. 7.4. Index register/stack pointer instructions.

44

Fig. 7.5. Branch instructions.

Fig. 7.6. Miscellaneous instructions.
45

instruction is position-independent since it contains the offset of the

data from the instruction, not the absolute address of the data. Note

that:

LEAX (,X)

has the same effect as the instruction:

LDX ,X

7.2.2 Push/Pull

The push and pull instructions enable any combination of registers to be

saved and restored using either stack. The instruction is two bytes long

regardless of the number of registers pushed or pulled; each bit in the

second byte of the instruction corresponds to a register, and if the bit is

set that register is pushed/pulled. The order of stacking or restoring is a

hardware function, irrespective of the order specified in the assembler

statement, and is shown below:

CC A B DP X Y U/S PC

Thus the CC is pushed last and pulled first (if specified).

Since the PC is pulled last, the sequence:

PULS A,B,X

RTS

may be shortened to the identical sequence:

PULS A,B,X,PC

Note that:

PSHS A and STA ,-S

are similar in effect, but PSHS does not affect the status flags.

Similarly for the two instructions:

PULS A and LDA ,S+

46

7.2.3 OR/AND Condition Code Register

To set or clear selected bits in the condition-code regsiter the 6809

ORs or ANDs an immediate operand into the register. Thus the 6800's

six one-byte instructions SEC, CLC, SEV, CLV, SEI, and CLI hove been

replaced by the two two-byte instructions ORCC and ANDCC.

7.2.4 Multiply

The multiply instruction, MUL, multiplies the unsigned 8-bit binary

numbers in A and B and leaves the result in the A and B registers treated

as one 16-bit number. The MUL instruction can be used as the basis for

multiple-precision multiplications.

One common use for a multiply instruction is in the calculation of

array subscripts; for example, to get the element M(S1,S2) from an array

with dimensions M(100,50), the following code can be used:

LDY EM Get base address of array
LDA S1 First subscript
LDB £100 First dimension
MUL Multiply D = A * B
ADDD S2 Add second subscript
LDA D,Y Load value from array element.

7.2.5 Sign Extend

The sign extend (SEX) instruction causes all bits in the A register to

take on the value of the most significant bit in the B register. It is

used to convert signed 8-bit numbers to a signed 16-bit number

7.2.6 Exchange/Transfer Registers

Any register may be transferred to any other of like size with the TFR

instruction, or exchanged with any other of like size with the EXG

instruction. These instructions are each two bytes long; bits

4-7 of the postbyte specify the source register, and bits 0-3 specify the

destination register, as follows:

Register: D X Y U S PC A B CC DP

Hex Digit: 0 1 2 3 4 5 8 9 A B

47

For example, to transfer the contents of A to B (TFR A,B) the

postbyte is $89.

Note that the instructions:

TFR Y,X and LEAX ,Y

are similar in effect, but the TFR instruction does not affect any of

the status flags.

7.2.7 Synchronize with Interrupt

The 6809's SYNC instruction is used to synchronize software with an

external signal. The CPU will stop processing instructions when it

encounters a SYNC instruction, and will wait for an interrupt. If the

interrupt is non-maskable (NMI) or maskable and enabled, the processor

will clear the SYNC state and handle the interrupt just as it would

normally. If the interrupt is maskable and disabled, the SYNC state is

simply cleared, and execution continues without vectoring to the interrupt

service routine. For example, the following routine reads data from an

input port on each occurrence of a masked interrupt:

FAST SYNC Wait for interrupt
LDA ,X Read from port
STA ,Y+ Put in array
DECB All done?
BNE FAST If not, continue.

7.2.8 Software Interrupts

The 6809 provides 3 software interrupts, SWI, SWI2, and SWI3, all of which

save all the CPU registers on the S stack, and vector through an address

in page $FF of memory to a service routine. In addition, SWI disables the

FIRQ and IRQ interrupts. SWI is used in the Acorn 6809 monitor as a

breakpoint and for trace mode. The other two software interrupts are

useful for operating system calls and memory management.

48

7.3 Addressing Modes

The 6809 has the most powerful set of addressing modes available on any 8-

bit microcomputer; it has 59 basic instructions, but recognizes 1464

different variations of instructions and addressing modes. The new

addressing modes support modern programming techniques, and some of these

have been described in Section 7. The following addressing modes are

available on the 6809:

7.3.1 Inherent and Accumulator

In this addressing mode the op-code of the instruction contains all the

address information necessary. Examples of Inherent Addressing are: ABX,

DAA, SWI, ASRA, and CLRB.

7.3.2 Immediate Addressing

In Immediate Addressing the effective address of the data is the location

immediately following the op-code. Both 8 and 16-bit immediate values are

used, depending on the size of argument specified by the op-code. Examples

of instructions with Immediate Addressing are:

LDA E$20

LDX £$F000

LDY £LEAF

Note: £ signifies Immediate Addressing

$ signifies hexadecimal value

7.3.3 Extended Addressing

In Extended Addressing the contents of the two bytes immediately following

the op-code fully specify the 16-bit effective address used by the

instruction. Note that the address generated by an extended instruction

defines an absolute address and is not position independent. Examples of

Extended Addressing include:

LDA ACORN

STX TREE

LDD $2000

49

7.3.4 Extended Indirect

As a special case of indexed addressing (see Section 8.1.7) one

level of indirection may be added to Extended Addressing. In Extended

Indirect the two bytes following the postbyte of an indexed instruction

contain the address of the address of the data. Examples are:

LDA (ACORN)

LDX ($FFFE)

STU (TRUNK)

7.3.5 Direct Addressing

Direct addressing is similar to extended addressing except that only one byte

of address follows the op-code. This byte specifies the lower 8 bits of the

address to be used; the upper 8 bits are supplied by the direct page

register. Since only one byte of address is required in direct addressing,

this mode requires less memory and executes faster than extended addressing.

Of course, only 256 locations (one page) can be accessed without redefining

the contents of the DP register. To ensure compatability with the 6800 the

DP register is set to $00 on Reset. Indirection is not allowed in direct

addressing. Some examples are:

LDA $30

SETDP $10 (Assembler directive)

LDB $1030

LDD >CAT

Note: >is an assembler directive forcing direct addressing.

7.3.6 Register Addressing

Some op-codes are followed by a byte that defines a register or set of

registers to be used by the instruction.

TFR X,Y Transfers X into Y

EXG A,B Exchanges A and B

PSHS A,B,X,Y Push onto S stack Y, X, B, then A

PULU X,Y,D Pull from U stack D, X, then Y.

50

7.3.7 Indexed Addressing

In all indexed addressing modex one of the pointer registers X, Y, U, S,

and PC is used in a calculation of the effective address to be used by the

instruction. Five basic types of indexing are available, and are discussed

in the following sections. The postbyte of an indexed instruction

specifies the basic type and variation of the addressing mode as well as

the pointer register to be used. 7.3.7.1 Zero-Offset Indexed - In this

mode the selected pointer register contains the effective address of the

data to be used by the instruction. This is the fastest indexing mode.

Examples are:

LDD 0,X

LDA ,S

7.3.7.2 Constant Offset Indexed - In this mode a two's-complement offset

and the contents of one of the pointer registers are added to form the

effective address of the operand. The pointer register's contents are not

changed by the addition. Three sizes of offset are available:

5-bit (-16 to +15)

8-bit (-128 to +127)

16-bit (-32768 to +32767)

The signed 5-bit offset is included in the postbyte and is therefore most

efficient in use of bytes and cycles. The 8-bit offset is contained in a

single byte following the postbyte. The 16-bit offset is in the two bytes

following the postbyte. If an assembler is being used this will select the

optimal size automatically.

Examples of constant-offset indexing are:

LDA 23,X

LDX -2,S

LDY 300,X

LDU CAT,Y

51

7.3.7.3 Accumulator-Offset Indexed - This mode is similar to constant

offset indexed except that the two's-complement value in one of the

accumulators (A, B, or D) and the contents of one of the pointer registers

are added to form the effective address of the operand.

The contents of both the accumulator and the pointer register are

unchanged by the addition. The postbyte specifies which accumulator

to use as an offset and no additional bytes are required. The

advantage of an accumulator offset is that the value of the offset

can be calculated by a program at run-time. Some examples are:

LDA B,Y

LDX D,Y

LEAX B,X

7.3.7.4 Auto Increment/Decrement Indexed - In the auto increment addressing

mode the pointer register contains the address of the operand. Then, after

the pointer register is used, it is incremented by one or two. In auto

decrement the pointer register is decremented before its use as the address

of the data. These addressing modes are useful for stepping through tables,

moving data, or for the creation of software stacks; the pre-decrement,

post-increment nature of these modes makes them behave identically to the U

and S stacks. The size of the increment/decrement can be either one or two

to allow for tables of either 8 or 16-bit data to be accessed. Some examples

of the

auto increment/decrement addressing modes are:

LDA ,X+

STD ,Y++

LDB ,-Y

LDX ,--S

52

7.3.7.5 Indexed Indirect - All of the indexing modes, with the exception

of auto increment/decrement by one or a 5-bit offset, may have an

additional level of indirection specified. In indirect addressing the

effective address is contained at the location specified by the contents

of the index register plus any offset. In the example below the A

accumulator is loaded indirectly using an effective address calculated

from the index register and an offset:

Before execution: A = XX (anything)

X = $F000

$0100 LDA (10,X) effective address is $F010

$F010 $F1

$F011 $50 $F150 is new effective address

$F150 $AA Data

After execution: A = $AA

X = $F000 (not changed)

Some examples of indexed indirect addressing are:

LDA (,X)

LDD (10,S)

LDA (B,Y)

LDD (,X++)

7.3.8 Relative Addressing

The byte or bytes following the op-code for a branch instruction are

treated as a signed offset which is added to the program counter.

If the branch condition is true the calculated address is loaded into the

program counter, and program execution will continue at the location

indicated by the program counter. Short (one byte offset) and long (two byte

offset) relative addressing modes are available. All of the memory space can

be reached using long relative addressing as the effective address wraps

around between $FFFF and $0000. Some examples of relative addressing are:

BEQ NEAR (short)

LBGT FAR (long)

53

7.3.9 Program Counter Relative Addressing

The program counter can be used as the pointer register with 8 or 16-bit

signed offsets. As in relative addressing the offset is added to the current

program counter to create the effective address. The effective address is

then used as the address of the operand or data. Program counter relative

addressing is used for writing position independent programs; tables

related to a particular routine will maintain the same relationship to the

routine even if the program is moved. Examples are:

LDA TABLE,PCR

LEAX CONST,PCR

Since program counter relative addressing is a type of indexing, an

additional level of indirection is available:

LDA (CAT,PCR)

LDU (DOG,PCR).

Note that all the indexed addressing modes are available with

the JMP and JSR instructions, so that:

JMP CAT,PCR

can be used to give the same effect as:

LBRA CAT

54

8.0 PROGRAMMING TECHNIQUES

8.1 Position-Independent Code

One particularly powerful feature of the 6809 is its support of position-

independent code. Programs written to be position-independent can be loaded

anywhere in memory without needing to be re-assembled with a different

origin.

The 6809 makes this possible in five ways:

1. Position-independent transfer of control; long and short relative

branches are provided.

2. Position-independent temporary storage; workspace may be allocated on

the stack, rather than using fixed RAM locations.

3. Position-independent access to constants within the same block of

code, using program-counter relative addressing. E.g. LDA CONST,PCR.

4. Position-independent access to tables within the same block vi code. The

start address of the table is loaded into X using the 'load effective

address' instruction LEAX TABLE,PCR; the table can then be accessed using

indexed addressing.

5. Position-independent access to constants and variables located in ROM and

RAM outside the block of position-independent code, and whose addresses are

not known at the time that the code is assembled. This is achieved by

providing a table, external to the position-independent block of code, which

gives the addresses of all the external variables, and the constants, needed

by the program. Before the position-independent routine is called, a

register is pointed to this table: e.g. LDX £TABLE. The routine can then

load constants from the table using indexed addressing, as in LDA 2,X, and

access variables in RAM by indirecting through the addresses in the table:

e.g. LDA (5,X) , or STY (8,X).

55

8.1.1 Example

The following section takes a simple program, to convert a binary

number into decimal, and shows how to modify it so that it is

position independent, making use of the features just described.

The first version of the program, Fig. 7.1, is not relocatable

because the instructions:

LDX ££K10TAB

and CMPX £K10TAB+8

contain absolute addresses. If re-assembled with a different origin

these bytes in the program would change, and so the program is not

position independent.

The first version of the program suffers from two other drawbacks.

First, it is not re-entrant. In other words, it needs some dedicated RAM

locations for the variables COUNT and TEMP. The routine could not be used by

both an interrupt service routine and a main program because one call might

overwrite the variables being used by the other call. Secondly, the program

changes the values of some of the registers. This is bad practice; the

routine could not be incorporated into a larger program without some

caution.

The second version of the binary-to-decimal program, in Fig. 7.2,

removes all three drawbacks; it is position independent, re-entrant, and

saves the values of all the registers. The drawbacks are solved as

follows:

Firstly, program-counter relative addressing is used to pick up the

address of the table. The instruction:

LEAX £K10TAB

does not change depending on its position in memory. The end of the

table is detected by testing the value of the power of ten. Secondly,

the two temporary locations are replaced by two stack locations. The

space is allocated by the instruction:

LEAS -2,S

56

*
* BINARY-TO-DECIMAL VERSION 1
*
* NON RELOCATABLE
* NON RE-ENTRANT
*

0000 COUNT RMB1
0001 TEMP RMB1

*
0002 2710 K10TAB FDB 10000
0004 03E8 FDB 1000
0006 0064 FDB 100
0008 000A FDB 10

*

000A 8E 0002 BINDEC LDX £K10TAB POINT TO TABLE
000D 7F 0000 LOOP1 CLR COUNT
0010 20 03 BRA NOINC
0012 7C 0000 LOOP2 INC COUNT
0015 A3 84 NOINC SUBD ,X SUBTRACT POWER OF 10
0017 24 F9 BCC LOOP2
0019 E3 81 PRN5 ADDD ,X++ MAKE POSITIVE
001B B7 0001 STA TEMP
001E B6 0000 LDA COUNT
0021 BD FA8B JSR HEXOUT IN MONITOR
0024 B6 0001 LDA TEMP RESTORE D
0027 8C 000A CMPX £K10TAB+8 ALL DONE?
002A 26 El BNE LOOP1
002C IF 98 TFR B,A GET REMAINDER
002E BD FA8B JSR HEXOUT LAST DIGIT OF RESULT
0031 39 RTS

Fig. 8.1. Original binary-to-decimal routine.

57

*
* BINARY-TO-DECIMAL VERSION 2
*
* RELOCATABLE AND RE-ENTRANT
* ALL REGISTERS PRESERVED
*

0000 2710 K10TAB FDB 10000
0002 03E8 FDB 1000
0004 0064 FDB 100
0006 000A FDB 10
0008 FF FCB $FF END OF TABLE MARKER

*
0009 34 36 BINDEC PSHS A,B,X,Y SAVE REGISTERS
000B 30 8CF2 LEAX K10TAB,PCR POSITION INDEPENDENT
000E 32 7E LEAS -2,S GET WORKSPACE ON STACK
0010 6F E4 CV CLR ,S
0012 20 02 BRA NOINC
0014 6C E4 CV2 INC ,S
0016 A3 84 NOINC SUED ,X SUBTRACT POWER OF 10
0018 24 FA BCC CV2
001A E3 81 CV3 ADDD ,X++ MAKE POSITIVE AGAIN
001C A7 61 STA 1,S SAVE A
001E A6 E4 LDA ,S GET COUNT
0020 BD FA8B JSR HEXOUT PRINT A IN HEX DIGIT
0023 A6 61 LDA 1,S RESTORE A
0025 6D 84 TST ,X DONE?
0027 2A E7 BPL CV
0029 1F 98 TFR B,A GET REMAINDER
002B BD FA8B JSR HEXOUT PRINT IT
002E 32 62 LEAS 2,S RESTORE WORKSPACE
0030 35 B6 PULS A,B,X,Y,PC RESTORE REGS. & RETURN

Fig. 8.2. Improved binary-to-decimal routine.

58

and restored by the instruction:

LEAS 2,X

Finally, the contents of the registers used by the routine are saved

on the stack on entry to the routine with the instruction:

PSHS A,B,X,Y

and restored on exit from the routine.

59

8.2 Recursive Programming

The provision of a user stack, and the wide variety of addressing modes,

make the 6809 very suitable for recursive programming. Many programming

problems can be solved better recursively than by conventional iterative

methods, and such solutions are often shorter and simpler to understand.

Typical applications include the writing of high-level language compilers

and syntax analyzers, and algebraic manipulation.

A recursive routine is a routine whose definition includes a reference

to itself. As an example of the ease with which the 6809 handles recursive

programming a routine to calculate binomial coefficients will be considered.

The binomial coefficient nCr gives the number of different combinations of n

things taken r at a time. Thus the number of different combinations of three

things, A, B, and C, taken two at a time is 3C2 or 3; namely AB, AC, and BC.

One possible recursive definition of this function is as follows:

C(n,r) = 1 if n=0

= 1 if n=r

= C(n-1,r) + C(n-1,r-1) otherwise.

For this definition the function has beed written in the form C(n,r)

rather than the traditional nCr.

The provision of a user stack on the 6809 makes it possible to push

and pull the arguments to subroutines without interference from subroutine

return addresses. In the routine of Fig. 7.3 the values of

n and r are passed to the routine in the A and B registers respectively, and

the routine returns the result on the user stack. If n has a value other than

0 or r the routine will be entered recursively, and the user stack will

expand to hold intermediate results.

60

*
* RECURSIVE SUBROUTINE TO CALCULATE
* BINOMIAL COEFFICIENTS.
*
* RELOCATABLE & RE-ENTRANT
*

0000 36 06 NCR PSHU A,B
0002 5D TSTB
0003 27 04 BEQ ONE B=O?
0005 El C4 CMPB ,U
0007 26 05 BNE NONE A=B?
0009 CC 0001 ONE LDD El
000C 20 OD BRA RESULT RETURN 1
000E 4A NONE DECA
000F 8D EF BSR NCR C(A-1,B)
0011 EC 42 LDD 2,U
0013 5A DECB
0014 4A DECA
0015 8D E9 BSR NCR C(A-1,B-1)
0017 37 06 PULU A,B
0019 E3 Cl ADDD ,U++ ADD RESULTS
001B ED C4 RESULT STD ,U ON USER STACK
001D 39 RTS

*
* TEST C(7,3)
*RESULT SHOULD BE $23
*

001E CE 0300 TEST LDU £$0300 USER STACK
0021 CC 0703 LDD E$0703 SET UP A AND B
0024 BD 0000 JSR NCR
0027 37 10 PULU X PRINT RESULT
0029 7E FA75 JMP OPXREG FROM STACK.

*

Fig. 8.3. Recursive routine to calculate nCr.

61

8.3 Software Compatibility with 6800.

The 6809 is source-code compatible with the 6800; in other words, any

assembler program for the 6800 can be re-assembled for the 6809. However the

resulting program is unlikely to be optimal, and in most cases where size or

speed are important it is probably better to rewrite the program to take

advantage of the 6809's more advanced features. Many of the 6800's

instructions have direct equivalents on the 6809. The following section lists

exceptions to this:

6800 Instruction 6809 Equivalent

ABA PSHS B; ADDA ,S+

CBA PSHS B; CMPA ,S+

CLC ANDCC #$FE

CLI ANDCC #$EF

CLV ANDCC #$FD

CPX CMPX P

DES LEAS -1,S

DEX LEAX -1,X

INS LEAS 1,S

INX LEAX 1,X

LDAA LDA

LDAB LDB

ORAA ORA

ORAB ORB

PSHA PSHS A

PSHB PSHS B

PULA PULS A

PULB PULS B

SBA PSHS B; SUBA ,S+

SEC ORCC #$01

SEI ORCC #$10

SEV ORCC #$02

STAA. STA

STAB STB

TAB TFR A,B; TST A

TAP TFR A,CC

TBA TFR B,A; TST A

TPA TFR CC,A

TSX TFR S,X

TXS TFR X,S

WAI CWAI #$FF

62

8.3.1 Software Incompatibilities Between 6800 and 6809.

1. The new stacking order on the 6809 exchanges the order of ACCA

and ACCB; this allows ACCA to stack as the MS byte of the

pair.

2. The new stacking order on the 6809 invalidates previous 6800

code which displayed X or PC from the stack.

3. Additional stacking length on the 6809 stacks five more bytes

for each NMI, IRQ, or SWI when compared to 6800.

4. The 6809 stack pointer points directly at the last item placed

on the stack, instead of the location before the last item

as in 6800. In general this is not a problem since the

most-usual method of pointing at the stack in the 6800 is

to execute a TSX. The TSX increments the value during the

transfer, making X point directly at the last item on the

stack.

The stack pointer may thus be initialized one location

higher on the 6809 than in the 6800; similarly, comparison

values may need to be one location higher.

Any 6800 program which does all stack manipulation through X

(i.e., LDX #CAT, TXS instead of LDS #CAT) will have an

exactly-correct stack translation when assembled for 6809.

5. Instruction timings in 6809 will, in general, be different

from other 6800-family processors.

6. The 6809 uses the two high-order condition code register bits.

Consequently, these will not, in general, appear as l's as

on the 6800.

63

1. The 6809 TST instruction does not affect the C-flag, while 6800

TST does clear the C-flag.

2. The 6809 right shifts (ASR, LSR, ROR) do not affect V;

3. The 6809 H-flag is not defined as having any particular state

after subtract-like operations (CMP, NEG, SBC, SUB); the 6800

clears the H-flag under these conditions.

4. The 6800 CPX instruction compared MS byte then LS byte;

consequently only the Z-flag was set correctly for branching.

The 6809 instructions (CPX/CMPX) set all flags correctly.

5. 11. The 6809 instruction LEA may or may not affect the Z-flag

depending upon which register is being loaded; LEAX and LEAY do

affect the Z-flag, while LEAS and LEAU do not. Thus, the User

Stack does not exactly emulate the index registers in this

respect.

64

8.4 Software Compatibility with 6502.

Acorn have decided to support both the 6502 and the 6809 because

these processors each have advantages for different application areas. The

6502 will generally produce shorter, faster programs in simple

applications, such as industrial control, where only 8-bit arithmetic is

needed, and where data is to be moved between pre-defined areas

of memory. For more complicated programming tasks, such as the writing of

high-level language compilers, text processors, and interpreters, the 6809's

more sophisticated addressing modes and 16-bit arithmetic operations will

make the 6809 better suited to the task.

Most programs for the 6502 can be translated fairly directly

into instructions for the 6809, but because programs for the 6502 tend to

make use of assumptions about the positions of data and variables, programs

translated directly from 6502 to 6809 will generally be longer and slower.

The following differences between the two processors should be noted:

1. The order of the address bytes on the 6502 is the opposite to that on

the 6809. Thus: JSR $1234 is

20 34 12 on the 6502, but:

BD 12 34 on the 6809.

2. The SBC and CMP operations on the 6502 set the carry flag if there was

no borrow, but clear the carry under the same circumstances on the 6809.

For example:

LDA $40

SBC $20 sets the carry on the 6502 but clears it on the 6809.

3. The X and Y registers on the 6809 are each 16 bits wide, but only 8

bits wide on the 6502.

65

4. The 6502's instructions INX, DEX, INY, DEY correspond roughly to the

6809's instructions LEAX 1,X; LEAX -1,X; LEAY 1,Y; and LEAY -1,Y.

However, note that whereas the 6502's instructions affect both the N and Z

flags, the 6809 instructions affect only the Z flag.

5. The 6502's indexed indirect addressing mode can be directly replaced by

the 6809's indexed indirect mode:

LDA (TABLE,X) on the 6502 becomes:

LDA (TABLE,X) on the 6809.

However the 6502's post-indexed indirect mode:

LDA (TABLE),Y

has no direct equivalent in the 6809. Instead the address can be held in a

16-bit register, such as U, and the B register can then be used for

indexing:

LDU TABLE

LDA B,U

6. The 6502's BIT instruction not only sets the Z flag depending on the

result of ANDing the accumulator with the specified memory location, but

also copies bits 6 and 7 of the location into the N and V flags respectively.

The 6809's BIT instruction does not do this, but the TST instruction can be

used instead.

66

9.0 ASSEMBLY INSTRUCTIONS

9.1 6809 Card

Before attempting to assemble the 6809 card check that all the components

are present and that none have been damaged.

It is worthwhile taking a few minutes to make sure that all the components

can be identified. Sometimes components will be substituted in case of supply

difficulties. For instance, 0.047 uF capacitors may replace 0.1 uF capacitors

shown on the parts list. The components substituted will in no way

detrimental to the system's operation. Also some manufacturers have similar

but different type numbers •

For capacitors note that the value may be expressed in one of two ways:-

100 nF = 0.1 uF

10 nF = 0.01 uF

1 nF = 1000 pF

0.1 nF = 100 pF etc.

Capacitors supplied with the Acorn cards are usually identified by a 3 digit

number, the first two digits being the first two digits of the value and the

third being the number of following zeroes eg.

101 = 10 and one zero ie. 100 pF

103 = 10 and three zeroe's ie. 10000 pf = 10 nF

473 = 47 and three zero's i.e. 47000 pF =

47 nF = 0.047 uF.

If in doubt about the capacitor values, count the number of each of type

supplied in the kit and then identify them using the parts list quantities.

The electrolytic capacitors are polarised and the positive

end marked + must be located as indicated on the circuit card.

67

6809 C.P.U. Card Parts List

PCB Printed Circuit Board 200.012

IC1 6809 Microprocessor & 40 pin socket

IC2 6522 Versatile Interface Adapter "

IC3 74LS244 Buffer & 20 pin socket

IC4 2716 2K monitor ROM & 24 pin socket

IC5 2114 RAM & 18 pin socket

IC6 2114 RAM "

IC7 74LS244 & 20 pin socket

IC8 74LS244 "

IC9 74LS244 "

IC10 INS8208 (or DP8304) "

IC11 74S470 Bipolar ROM "

IC12 74LS74 & 14 pin socket

IC13 74LS00 "

IC14 74LS00 "

IC15 74LS86 "

XTAL 4 MHz Crystal

R1 - 3 3 off 1K resistor

R4 - 9 6 off 560R resistor

R10 - 15 6 off 3K3 resistor

Cl 22uF electrolytic capacitor

C2 - 6 5 off 47 (or 100) nF capacitor

C7 - 8 2 off 24pF capacitors

C9 Optional - not supplied.

68

Fig. 9.1. 6809 Card Component Layout.

69

The resistor colour code is shown here.

The first and second bands give the resistor value and

the decade band shows the number of zeros following:-

0 Black

1 Brown

2 Red

3 Orange e.g. Yellow, Violet, Orange

4 Yellow is Yellow, Violet . 4,7 and

5 Green Orange 3 zeros i.e. 000.

6 Blue So the value is 47000 ohms,

7 Violet i.e. 47 kilo-ohms or 47K.

8 Grey

9 White

The tolerance band is red for ± 2%, gold for ± 5% or silver

for ± 10%.

Assembling the card will require a considerable amount of

soldering and a small electric soldering iron is essential with a

diameter at the end of the bit not exceeding 0.1 inches. The iron

should be rated between 10 and 30 watts and fine 22 guage

flux cored solder should be used. If you have never soldered before

we advise you not try to assemble the card without assistance as Acorn

Computer Ltd. can not accept responsibility for kits which have beem

improperly assembled. When soldering make sure the component is well

pushed on to the board as shown, use a minimum of solder and once the

solder has run remove the iron.

70

Some of the integrated circuits used in the system employ M.O.S.

technology and they can be damaged by static electricity. As a

general rule if there is no noticable static charge in the area and

no nylon clothes or carpets are present all will be well. An earthed

soldering iron should be used when soldering on a board containing M.

O.S., I.C.'s and the I.C.'s should be kept on the conducting foam on

which they are supplied until required.

The Acorn Printed Circuit cards are double sided, through hole

plated glass fibre and are manufactured to the highest standards. A

layer of green solder resist ensures that accidental solder splashes do

not stick to the tracks and a clearly marked white silk screen

indicates component positions. Examine the cards for faults or damage

before proceeding. It is not necessary to solder through holes which

connect one side of a board to the other and do not have a component

lead in them and attempting to do so can break the through hole plating

and thus the connection. All soldering should only be done on the

opposite side of the board to the components (i.e. side 1).

The cards are each supplied with a full set of integrated circuit

sockets. The sockets must be fitted the right way round, on the

circuit board viewing it from the top pin 1 of an I.C. is identified

as shown:-

The sockets will have either a 45o chamfer for pin 1 or a

semi circular cut out as shown:-

Note that on the 6809 card IC1 and IC2 are the opposite

way round to the other sockets nearby. Fit the sockets one at a time

and ensure that they are pressed fully down with no leads bent under

the socket before first soldering two diagonally opposite pins at the

corners. Check that the socket is the right way round and successfully

fitted nefore soldering the rest of the pins.

There is no need to snip off the excess of the socket pins.

After the I.C. sockets the resistors and capacitors are fitted to

the circuit cards. Identify the component from the component list and

fit it to the board. Some capacitors will need to be fitted as shown.

Do not crack the
capacitor body when
bending the leads.

The crystal on the C.P.U. card is fitted as shown:-

Again bend the leads away from the component body and lay the

Crystal down on the board before soldering. Snip off any excess

leads under the board.

The connector is fixed to a card using two 2.5 mm screws and

nuts before soldering the pins. When all of the components are

soldered the integrated circuits may be fitted in their sockets, pin

1 is identified by either a semicircle or a dot as shown:-

Identify the I.C. type from the components list and plug it

into the appropriate socket. If the leads are splayed out press

them all in together until the I.C. fits easily to the socket.

Note that IC1 and IC2 are the opposite way round to the

other ICs on the 6809 card.

73

9.2 Visual Display Unit Card

The 6809 card is designed to work with the Acorn VDU Card, which will

drive a monitor or television. The standard output is a 1 volt 75 ohm

composite video signal, and a 75 ohm coaxial cable connected to this will

drive a monitor directly. This signal may also be used to drive a UHF

modulator to give an interface to a standard television.

9.3 Cassette Interface

The Acorn cassette interface card is a Computer Users Tape Standard

interface which connects to the recorder as shown:-

This recorder output consists of one of two tones, 2.4 KHz

represents a logic 1 and 1.2 KHz a logic 0. Each bit i.e. o or 1

lasts for 3.3 mS giving an operating speed of 300 bits/ second.

Both recording and playback are crystal controlled giving a low

error rate and except on very cheap recorders whose speed may vary,

no trouble should be experienced in transferring tapes from one

machine to another.

9.4 Keyboard and Cassette Interface Connections

A parallel ASCII keyboard is required to be fitted on the

front of C.P.U. card. A 5 volt supply for the keyboard is available

and the board requires a 'low for key depressed' strobe signal. The

connections may be soldered to the front of the board as follows:-

74

(top) 20 + 5 volts
19 Reset
18 Key strobe
17 Data bit 6
16 Data bit 5
15 Data bit 4
14 Data bit 3
13 Data bit 2
12 Data bit 1
11 Data bit 0
10 E
9 CASIN
8 CASOUT
7 -
6 -
5 -
4 -
3 -
2 -

(bottom) 1 0 volts

The reset is provided by a simple push button connected to 0

volts. This is often available as an extra key on ASCII

keyboards.

If desired a 20 way pcb header can be fitted to the C.P.U. card

in which case the keyboard connections are as follows:-

20 Data bit 5
19 Data bit 6

18 Data bit 4
17 Key strobe

16 Data bit 3
15 Reset

14 Data bit 2
13 + 5 volts

12 Data bit 1
11 0 volts

10 Data bit 0
9 -

8 E
7 -

6 CASIN
5 -

4.CASOUT
3 -

2 -
1 -

75

9.5 Backplane

The 'A' side of the edge connector on the 6809 card carries all the

essential bus signals, and these should be connected to other cards in the

system by means of a suitable backplane. A piece of 0.1" matrix strip

veroboard may be used, the cards connecting to the backplane by means of

32-way indirect plugs and sockets. Alternatively the Acorn backplane card

may be used; this will accomodate 64-way indirect connectors, thus

providing access to the 'B' side connections on the cards.

The connections between the cassette interface and the 6809 CPU

card may be made by connecting the following pins on the backplane

connectors:

CPU card pin A29 to cassette interface pin B11, E clock

" B19 " " B12, CASIN

" B20 " " B13, CASOUT.

9.6 Power Supply

To power the 6809 card and the VDU card a 5 volt stabilized power supply

will be needed; this should be capable of supplying at least 1.5 amps.

76

INDEX

. command 9, 13

+ in copy command 15
in indexed addressing 52

++ in indexed addressing 52

$ in hexadecimal value 49

; in modify command 11

- in indexed addressing 52
in modify command 11
in save command 14

-- in indexed addressing 52
- Err error message 10, 14

? in load command 14

A register 38
ABX instruction 42
Accumulator addressing 49

Accumulator-offset indexed
addressing 52

Accumulators 38
ACK signal 32
Adding to monitor commands 16
Address RESET 37 Addresses
interrupt vector 19 Addressing
modes 49

modes instruction set and 38
Addressing modes accumulator 49

accumulator-offset indexed 52
auto decrement indexed 52
auto increment indexed 52
constant offset indexed 51
direct 50
extended 49
extended indirect 50
immediate 49
indexed 51
indexed indirect 53
inherent 49 PC-
relative 54
program-counter relative 54
register 50
relative 53

ANDCC instruction 47
Audio cassette interface 28
Auto decrement indexed addressing 52

increment indexed addressing 52

B register 38
BA signal 26
Backplane connections 76
Baud rate ,selection 22

Binary-to-decimal program 56
program re-entrant 58 Binomial

coefficient program 60 Bit half-
carry 41
BIT instruction 65
BLOCK0 signal 23
BOOT routine 36
Branch instructions 45
Branches long 53
short 53

Breakpoint cancelling 9
command 8, 13

Breakpoints 7
Buffering bus 25
Bus available signal 26
buffering 25

BUSY signal 32

C command 15
flag 40

Calibration cassette 5
Cancelling breakpoint 8
Capacitor values 67 Carriage-
return character 35 Carry flag
40
CASIN signal 29
CASOUT signal 29
Cassette calibration 5
checksum 30
format 30
input 28
interface audio 28
interface card 74
interface circuit for 29
interface commands 13
interface connections 74
output 28
verify from 14

CBIN1 routine 36
CBIN2 routine 36
CC register 39, 40
CCLOCN routine 37
Character carriage-return 35
delete 35
form-feed 35
line-feed 35

Checksum 10
cassette 30

Circuit for cassette interface 29
Clock system 26
CMDPAR routine 36
Colour code resistor 70
Command passing 2, 20
passing program illustrating 21

Commands
. 9, 13
breakpoint 8, 13

(1)

C 15
cassette interface 13
copy 15
D 15
disk 15
disk interface 15
do trace 9, 13
F 10, 14
G 5, 12
go 5, 12
L 6, 14
load 6, 14
M 4, 11
MG 12
modify 4, 11
MP 12
MR 7, 12
MV 8, 12
P 7, 12 printer
interface 15
proceed 7, 12
R 7, 13
registers 7, 13
S 6, 13 save
13 store 6 T
9, 13 trace
9, 13
3 8, 13 Compatability

with 6502 65
with 6800 62

Component layout 6809 card 69
CONCHR routine 33
Condition code register 40
Condition-code flags
CONIN routine 33
CONOUT routine 35
Constant offset indexed addressing 51
Copy command 15
Crystal mounting 73

D command 15
register 38

Debugging program 13
Decoding memory 23
Delayed BA signal 27
Delete character 35
Direct addressing 50
Disk command 15
interface commands 15
routines 36

DISPCH routine 37
DISPLA routine 35
Display 2
DMA 26
Do trace command 9, 13
DP register 38
Driver routines 20

DRVRDY routine 36
Dump program 17
E flag 41
signal 29

Entering a program 4
Entire flag 41
Entry point reset 37
Err error message 10
Error messages 10
Error messages
-Err 10, 14
Err 10
I-Err 10, 19
Rom? 10
What is; 4, 10

Exchange registers 47
EXG instruction 47
Expansion monitor 16
Extended addressing 49

indirect addressing 50
Extra ROM 2732 as 25

ROM 16, 25
F command 10, 14
Finish command 10, 14
FIRQ mask 41

service routine program 19
Flag C 40

carry 40
E 41
entire 41
N 41
negative 41
ONLINE 33
overflow 40
3 40 Z
41 zero
41

Form-feed character 35
Format cassette 30

VDU 34

G command 5, 12
GETCHR routine 34
GETHEX routine 34
GETHXS routine 34
Go command 5, 12

Half-carry bit 41 Hardware
description 23 Hexadecimal
value S in 49 HEXOUT
routine 35

I-Err error message 10, 19
I/O driver routines 20

routine serial 28
Immediate addressing 49
Index register instructions 44 (
2)

registers 38
Indexed addressing 51
indirect addressing 53
jumps 54

Input cassette 28
routines 33

Instruction set 42
set and addressing modes 38

Instructions
ABX 42
ANDCC 47
BIT 65
branch 45
EXG 47
index register 44
LEA 42
load effective address 42
miscellaneous 45
MUL 40, 47
multiply 47
ORCC 47
pull 46
push 46
SEX 47
sign extend 47
stack pointer 44
SWI 7, 48
SWI2 48
SWI3 48
SYNC 48
synchronize with interrupt 48
TFR 47
16-bit 44
8-bit 43

Interface audio cassette 28
circuit for cassette 29
keyboard 30
printer 32

Interrupt instruction synchronize
with 48

keyboard 31
vector addresses 19
vectoring 19

Interrupts 3
software 48

Introduction 1
IRQ mask 41
Jumps indexed 54
Keyboard 1
connections 74
interface 30
interrupt 31

Kit assembly instructions 67
L command 6, 14
LEA instruction 42
Line-feed character 35

Listing of monitor program 77
Load command 6, 14

effective address instruction 42
with offset 14

Long branches 53
M command 4, 11
Map memory 24
Mask FIRQ 41

IRQ 41
MCASIN routine 36
MCASOP routine 36
Memory decoding 23

map 24
organization 23

MEMUSE routine 20, 37
MG command 12
Miscellaneous instructions 45

routines 37
Modes addressing 49
Modify command 4, 11
Monitor expansion 16

operation 4
program 77
return to 12

Monitor commands 1
adding to 16

summary 11
MP command 12

MR command 7, 12
MUL instruction 40, 47
Multiply instruction 47
MV command 8, 12
N flag 41
NAMEIN routine 34
Negative flag 41
NUMB routine 34
Offset load with 14
ONCARD signal 23
ONLINE flag 33
OPAREG routine 35
OPARSP routine 35
OPCRLF routine 35
OPXREG routine 35
ORCC instruction 47
Output cassette 28

device terminal as 21
routines 34

Overflow flag 40

P command 7, 12
Parts list 6809 card 68
Passing command 20
PC register 40
PC-relative addressing 54
Position-independent code 55
Postbyte for EXG/TFR 47

(3)

Power supply 76 PRINT
routine 35 Printer
interface 32
interface commands 15

Program counter 40
debugging 13
entering a 4

Program-counter relative addressing
54

Programming model of 6809 39
re-entrant 56 recursive 60
techniques 55

Programs
binary-to-decimal 56
binomial coefficient 60
dump 17
FIRQ service routine 19
illustrating command passing 21
monitor 77
re-entrant binary-to-decimal 58

Pull instruction 46
order 46

Push instruction 46
order 46

R command 7, 13
Re-entrant binary-to-decimal

program 58
programming 56

Recursive programming 60
Register addressing 50
Registers
A 38
B 38 CC
39, 40
command 7, 13
condition code 40
D 38 DP 38
exchange 47
PC 40
S 38
transfer 47
U 38
user's 7
X 38
Y 38

Relative addressing 53
addressing program-counter 54

Relocatable code 55
RESET address 37
Reset entry point 37
signal 26

Resistor colour code 70
Return to monitor 12
ROM extra 16, 25
Rom? error message 10
Routines

BOOT 36
CBIN1 36
CBIN2 36
CCLOCN.37
CMDPAR 36
CONCHR 33
CONIN 33
CONOUT 35
disk 36

DISPCH 37
DISPLA 35
driver 20
DRVRDY 36
GETCHR 34
GETHEX 34
GETHXS 34
HEXOUT 35
input 33
MCASIN 36
MCASOP 36
MEMUSE 20, 37

miscellaneous 37
NAMEIN 34
NUMB 34
OPAREG 35
OPARSP 35
OPCRLF 35
OPXREG 35
output 34
PRINT 35

serial I/O 28
STRING 35
tape 36
TRNSFR 36
using SYNC 48

S command 6, 13
register 38

Save command 13
non-contiguous blocks 18

Scrolling VDU 35 Serial I/O
routine 28

terminal 21
Service routine program FIRQ 19
SETDP directive 50 SEX instruction
47 Short branches 53 Sign extend
instruction 47 Signals

ACK 32
BA 26
BLOCK0 23
bus available 26
BUSY 32
CASIN 29
CASOUT 29
delayed BA 27
E 29
ONCARD 23

(4)

reset 26
VMA 26

Software description 33
interrupts 48

Stack depth 23
pointer instructions 44
pointers 38

Store command 6
STRING routine 35
SWI instruction 7, 48
SWI2 instruction 48
SWI3 instruction 48
SYNC instruction 48
routine using 48

Synchronize with interrupt
instruction 48

System clock 26

T command 9, 13
Tape routines 36
Techniques programming 55
Terminal as output device 21
serial 21
TFR instruction 47
Trace command 9, 13
facility 9
mode 31

Transfer registers 47
TRNSFR routine 36

U register 38 User
stack 60 User's
registers 7

V command 8, 13
flag 40

VDU card 74
format 34
scrolling 35

Vector addresses interrupt 19
Vectoring interrupt 19
Verify from cassette 14
VMA signal 26

What is; error message 4, 10

X register 38

Y register 38

Z flag 41
Zero flag 41

16-bit instructions 44

2732 as extra ROM 25

6502 compatability with 65
6800 compatability with 62

equivalents to 6809 instructions
62

6809 card component layout 69
card parts list 68
instructions 6800 equivalents to 62
programming model of 39

8-bit instructions 43

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105

