User sManual

4\
.;.
S
!
r‘

\'
jil

gt 1)

= =l L

ACORN 6809
TECHNICAL AND PROGRAMMING MANUAL

Chapter 1 - Introduction 1
2 - Monitor Operation 4
3 - Summary of Monitor Commands 11
4 - Monitor Expansion 16
5 - Hardware Description 23
6 - Software Description 33
7 - Instruction Set and Addressing Modes 38
8 - Programming Techniques 55
9 - Assembly Instructions 67
Appendix - Monitor Program Listing 77
© COPYRIGHT ACORN COMPUTER LTD 1980

ISSUE 1 FEB 1980

1.0 INTRODUCTION

The 6809 monitor is designed to operate at two different levels. At one
level it provides all the commands necessary for the efficient writing, and
debugging, of machine-code programs, and commands for saving and loading
programs to and from cassette tapes. At a second level, the monitor has been
designed with future expansion in mind, so that it will form the kernel of a

more sophisticated operating system.

1.1 Monitor Commands

The monitor commands are all single-letter mnemonics followed by a number
of parameters which are optional, and when these parameters are ommitted
then default values are assumed. Commands are looked up in a table, and
this table may be supplemented, or replaced, by external tables supplied by
the user. Thus user-written commands can be linked in with the standard
monitor commands to increase the capabilities of the monitor as desired;

examples will be given later.

1.2 Device Drivers

The monitor program includes driver routines for console input/output (i.
e. keyboard and display), cassette input/output, and printer output. The
addresses of these routines are held in RAM and all calls to them are made
via these addresses; thus user-written driver routines can be substituted
for any of the monitor routines to enable the monitor to be used with

different devices.

1.3 Keyboard
The keyboard in the monitor is interrupt driven, making operation of the

keyboard independent of the operation of other programs. Characters

entered at the keyboard are displayed on the screen and buffered in
memory, even if a user program is running. Up to 80 characters may be
typed ahead, and the console input routine will automatically supply
successive characters from the buffer. Two modes of operation are provided
for: in 'buffered' mode, the mode in which the monitor normally operates,
characters cannot be read from the buffer until the line being typed has
been terminated by 'return'. In this mode of operation mistakes can be
erased by typing 'rubout'. In the 'unbuffered' mode, characters can be

read from the buffer as soon as they are typed at the keyboard.

1.4 Display

The display is driven by software, and includes automatic scrolling and a
flashing-underline cursor. The interpretation of control characters is
performed by a look-up table which may be extended, or replaced, by the user.
The codes for 'return', 'line-feed', 'rubout', and 'form-feed' (clear
screen), which are already implemented, can thus be added to by the user.
The graphics facilities of the VDU can be used with the monitor's routines

just like the standard alphanumeric characters.

1.5 Command Passing

Although the monitor normally reads commands from the keyboard buffer,
routines are provided so that a line of commands can be passed to the
monitor, as a text string, by a user program. It is thus possible for user

programs to use the full facilities of the monitor in a very simple manner.

i.6 Interrupts

Interrupts are handled by the monitor in a very flexible manner.

All interrupts are vectored via addresses held in RAM. These addresses can
be replaced by the user to redefine some, or all, of the interrupt service
routines. Thus all the interrupts are potentially available for user

applications with a minimal overhead.

1.7 DISK Operating System

The Acorn 6809 card is fully supported by a range of memory and interface
cards, and so may be expanded into a complete computer system. With
future expansion in mind, the 6809 monitor has been provided with all the
routines necessary for loading a disk operating system from a minifloppy
disk drive; thus it will, without modification, form the basis of a much

larger system.

2.0 MONITOR OPERATION

Connect power and press reset. If all is well an asterisk will appear in
the top left-hand corner of the screen, followed by a flashing bar. The
asterisk is the monitor prompt; it indicates that the monitor is in
control, and is waiting for input. The flashing bar is a cursor indicating
where the next character will appear on the screen.

Type in the letters "ABCDEF". The letters will be echoed on the
screen, but nothing else will happen. Now type 'return'; the monitor will
reply:

What is:A

The convention will be used that what is output by the monitor will be
underlined in the examples in this manual.

The message 'What is:A' has been given because the first character of
the line, A, was not recognised by the monitor as a valid command. This
example illustrates a more important fact: the monitor only acts on a
command when 'return' is typed. Before 'return' is typed the line is just
held in memory, and it can be changed by typing 'rubout' to erase mistakes.
In all the examples which follow it is assumed that every line typed in is

terminated with 'return'; otherwise, nothing will happen.

2.1 Entering a Program

The 'M' (Modify) command is used to examine, and modify, the contents of
memory. All numbers are entered, and displayed, in hexadecimal.

In the examples 'XX' indicates that any two hexadecimal digits might be
displayed, depending on the previous contents of the memory.

Type in the following:

*M200

0200 XX 30,8D,00,04

0204 XX BD,F8,EC

0207 XX 39

0208 XX 08,8D,4F,4B,21,0D, 0A
020F XX 08,8D,4F, 4B,21,0D, 0A
0216 XX 00 ;

*

This has entered the following simple program which calls a routine ir

the monitor, STRING, to output a string of characters to the display:

0200 308D 0004 PROG LEAX STR,PCR GET STRING ADDRESS
0204 BD F8EC JSR STRING MONITOR ROUTINE
0207 39 RTS RETURN

0208 08 STR FCB $08,58D, $4F, $4B, $21, 50D, SO0A

020E 08 FCB $08,$8D, $4F, $4B, $21, 50D, $0A

0216 00 FCB $00 TERMINATOR

To execute the program use the 'G' (Go) command. Type: *G200
The program will display OK! in double-height flashing letters, and
return to the monitor's prompt. The program can be re-executed by simply

typing 'G' since the command remembers the last address used.

2.2 Cassette Calibration

The next step is to save the program on cassette. The playback level of
the cassette is quite critical, and so it is first necessary to find the
optimum playback level for the particular cassette recorder being used.
First, enter the following program which will record a stream of 'X's on
the tape:

*MO

0000 XX 86,58,BD,FD,25,20,FB ;
d

This corresponds to the following program:

0000 86 58 CALIB LDA £'X
0002 BD FD25 CALIB2 JSR MCASOP OUTPUT A TO CASSETTE
0005 20 FB BRA CALIB2 LOOP FOR EVER

Execute the program by typing:

*GO

and record for a minute or so. Stop the program by pressing 'reset', then
enter the following program which will read characters from the cassette and

store them in the display area of memory:

*M10

0010 XX 8E,04,00,BD,FD,53,A7,80
0018 XX 8C,08,00,26,F6,20,F1 ;

This corresponds to the following program:

0010 BE 0400 READ LDX ES$400 DISPLAY AREA START
0013 BD FD53 READ2 JSR MCASIN INPUT A FROM CASSETTE
0016 A7 80 STA , X+

0018 8C 0800 CMPX £$800 DISPLAY AREA END

0018 26 Fo BNE READ2

001D 20 Fl BRA READ

Execute at 10 and adjust the playback level so that a stream of 'X's appear

on the screen.

2.3 Store and Load

To save a program the 'S' command is used. Programs are identified on the
tape by a filename consisting of up to 6 letters. Thus, several programs
can be stored on one tape, and the load routine will search for the one
with the required name. For example, calling the above program PROG, it can
be saved with:

*5200 216 PROG

where the two numbers are the start and end addresses of the program. It
can then be loaded with:

*L PROG

Load displays the last address of each block loaded. Alternatively, typing:
*L PROG G200

will load the program and execute it as soon as it is loaded.

2.4 User's Registers

The contents of the registers are saved in memory when the user's
program returns to the monitor; these values are loaded into the
registers when a program is run using the 'G' command. To look at the
saved values of the registers, type 'R' (Registers). For example, with
the above program loaded, typing:

*G200 R

will display:

cc A B DP X Y U PC S
04 00 00 00 0217 0000 0000 FBEE 034D
PC-XX XX XX XX XX

The user's program can also be terminated by a SWI instruction (3F),
in which case the registers will be displayed automatically on return to
the monitor.

The memory area, where the user's register values are saved, can be
accessed automatically by typing 'MR'. The first location displayed
corresponds to the CC register, and the other registers follow in the order
displayed in the 'R' command. By modifying the contents of these locations
the initial contents of the registers can be specified before running a
program.

The program counter (or PC) is also saved in the register area after
a SWI instruction, and can be modified with the 'MR' command along with
the other registers.

A program may be executed from the saved PC address by means of the

'P' (Proceed) command.

2.5 Breakpoints

The simplest way to debug a program is to examine the contents of the

registers at various points during the program's execution.

This is achieved by inserting a breakpoint at the desired point is a SWI
instruction which will cause a return to the monitor a display of the
register contents. The monitor will insert and remove one breakpoint
automatically; for example, to insert a breakpoint after the first
instruction in the above example program:

*V204

Now, executing the program with:

*G200

will display:

CC A B DP X Y U PC S

80 00 00 00 0208 DOOO 0000 0204 034D
PC+BD F8 EC 39 08

Note that the X register contains the start address of the string, 0208, as
required. The PC contains 0204, the breakpoint address.
The third line of the display shows the five memory bytes following the
program counter; i.e. the next instruction of the program.

To continue execution of the program, type:
*P1
where the optional number after the Proceed command indicates the number of
breakpoints to be ignored; 1 in this case.

Alternatively we could type:
* VP

The V command without any address cancels the breakpoint.

Any number of additional breakpoints can be inserted using the M
command.

Suppose the breakpoint, inserted at 204 as described above, needs to

be moved to 207. One way is to type:

* V207

Alternatively the 'MV' command can be used. Type:

* MV
0204 BD
0205 F8
0206 EC
0207 39 ;

The breakpoint address is moved to the last address displayed.

2.6 Trace Facility

An important debugging facility provided by the monitor is the ability to
execute a program an instruction at a time, displaying the register
contents after each instruction. To turn the trace facility on, type:
*T1
where the parameter, 1, indicates how many instructions are to be
executed on each trace. Then, the '.' command will execute just one
instruction, from the previous halt address, and return to the monitor
after displaying the registers.

For example, with the example program loaded, set a breakpoint at the
start of the program and enable tracing with:

*Vv200 T1
Then start execution at 200 with:
*G200

Successively typing '.' will step through the program as described.

2.7 Error Messages

Whenever the monitor reads a character, such as 'X', that it cannot
understand, it prints:

What is:X

The rest of the line is ignored.

An unrecognized interrupt will give the message:
I-Err

For example, attempting to execute an SWI2 instruction (10 3F) without
first redefining the interrupt vector ISWI2 will give this error. The only

way to exit from this error is by 'reset'.

When the 'M' command is used to modify memory, a check is made that the
stored value is correct. If a discrepancy is found, the message:

Rom?

will be given to warn the user.

The cassette-tape format includes a checksum byte at the end of each block
of data. The load routine checks this, and if an error is found, the
message:

XXXX -Err

is given, where XXXX is the last address of the block containing the
error. The F (Finish) command can be used to finish loading a tape which

contains errors; it will load without searching for a filename.
Finally, errors during the disk bootstrap command 'D' are of the form:
Err XX

where XX specifies the error number. Err FF means that the disk did not
contain a valid boot file; other error codes are those generated by the

disk controller.

10

3.0 SUMMARY OF MONITOR COMMANDS

Some commands are followed by optional parameters. These will be
specified in quotation marks in the following list: e.g. 'name'. If any
parameters are omitted then sensible defaults will be assumed.

All numbers to be input are in hexadecimal, and leading zeroes are
ignored. Numbers may have leading spaces, and the number ends on the first
non-hex character. A comma is treated as the last character of the
previous number if no spaces intervene. A comma or carriage return with no
digits will become a default value. Note then that "123," is a single
number, but "123 ," is two numbers.

Commands may be strung together on one line, and no separators are
required unless the line is ambiguous in which case comma or space
should be used. Ambiguity can only arise with the commands C, D, and F,

since these are also hex digits.

Commands

Modify Memory

M 'address' MODIFY

The contents of the given address will be printed. Numbers entered will be
stored at successive memory locations starting at that address. The stored
result is checked, and if different the user will be queried.

A comma will move up one location, and a minus will move down one
location. A carriage return with no data will also move up one
location. The M command is exited with a semicolon, and the last

address accessed will be saved as the default address.

11

MG

Modify memory starting at the saved Go address. The Go address will be

changed to the address last accessed when the modify command is exited.

MR

Modify registers. The first location opened is the CC register. The
registers follow in the sequence:

cc, A, B, DP, X (high), X (low), Y (high), Y (low),

U (high), U (low), PC (high), PC (low).

MV

Modify memory starting at breakpoint address. The breakpoint address is

moved to the address last accessed when the modify command is exited.

MP

Modify memory starting at saved program counter address. The next P
command will cause execution of the user program to resume at the address

last accessed when the modify command is exited.

Program Execution

G 'address' GO

Go to address specified. Registers are loaded from user register area. Will

return to the monitor on an RTS or SWI instruction.

P 'number' PROCEED Proceed after hitting a breakpoint. Execution begins
at the saved program counter address. If a number is entered after the
P, this number of breakpoints will be ignored by the monitor. On

hitting a breakpoint the monitor is entered with an automatic R command.

12

Program Debugging

R REGISTERS
Registers; prints contents of user registers, and contents of the five

memory locations pointed to by the saved program counter.

V 'address' BREAKPOINT
Breakpoint insert/remove. If an address is specified, a breakpoint will be
inserted at this address. Any previous breakpoint is removed. The
breakpoint will not be inserted until the program is executed using G or
P.

If no address is specified the breakpoint is cancelled.

T 'number' TRACE
Trace facility. The command is followed by a number indicating the
number of instructions to be executed on each ".' command. If no number

is given the trace will be turned off, and '." will be ignored. The

monitor starts with trace switched off.

DO TRACE
Do Trace. The number of instructions set by the T command will be
executed, and the monitor will return with an automatic R command to

display the registers.

Cassette Interface

S 'start address' 'end address' 'file name' SAVE

Saves an area of memory between the specified addresses. The file name may
have up to 6 characters not including space, comma, or carriage return. The
name is padded to 6 characters, if needed, with spaces on the right. The
file is saved as a name header block followed by data blocks of up to 256

bytes, and terminated by a terminator block.

13

A minus sign following the filename will inhibit output of a
terminator block, thus allowing non-contiguous blocks of data to be
saved as a single file.

All three parameters of the S command will default to the last

values used.

L 'file name' 'offset' LOAD

Load a file into memory from cassette. All input data will be ignored
until the required header block is found.

The character "?" in the file name specified will match any
character in the input file name; e.g. "DATA??" will match "DATAO1", "
DATAQ2", etc. The name "??2??7??" will match any file name.

The optional offset will be added to the start and end addresses from
the input file, thus enabling a file to be relocated to an address in memory
different from where it was saved from. An offset can also be specified to
load a file back into an unused part of the address space to verify that it
was saved correctly without destroying the original version in memory.

The Load will print out the last address of each data block loaded. Each
data block includes a checksum; if an error is found the message " -Err°® will
be printed after the last address of the block causing the error.

During loading the keyboard interrupt is disabled to prevent

errors caused by typing at the keyboard.

FINISH

Finish loading without searching for a name header block.

Can be used after an error to load the remainder of the file.

14

Printer Interface

c '"+! COPY

The printer is switched on to echo all data shown on the VDU. If the

next character is not a "+" then the printer is switched off.

Disc Interface

D DISK

Loads a bootstrap program from a minifloppy disk drive, thus entering the

disk operating system.

15

4.0 MONITOR EXPANSION

This section describes how to take advantage of the expandability of

the monitor.

4.1 Extra Rom

The monitor occupies address space between F800 and FFFF. A second ROM
may be added in the space FO000 to F7FF. The monitor checks for the
presence of the extra ROM, and calls it as a subroutine if it is

present. The extra ROM should contain:

F7FC SUBR
F7FE $A55A

where SUBR is the address of the subroutine called by the monitor. This
subroutine can be used to reassign the command-table addresses and thus

add commands to the existing monitor.

4.2 Adding to Monitor Commands

The following example shows how a user-written command can be linked in to
the monitor so that it behaves as if it were another monitor command. The
command described is one to list an area of memory on the screen, eight
bytes per line, both in hexadecimal and in ASCII. Thus a typical line
would appear:

0200 01 44 00 07 FF FD 52 BD -D----R-

showing the eight bytes from 200 to 207. The program lists 24 lines at a
time, since these fit conveniently on the screen. The command is assigned
the name 'D' (Dump), and is followed by the start address of the memory
area to be dumped. The command calls five routines which are provided in

the monitor; these handle the input and output of numbers and characters.

16

0200
0201
0202
0204
0205

0207
020A
020cC
020E
0210
0212
0214
0216
0219
0218
021E
021F
0221
0223
0225
0227
0229
022B
022D
022F
0232
0233
0235
0238
023A
023C

01
44
0007
FF

FF51

BD
1F
86
3402
c608
34
1F
BD
A6
BD
5A
26
35
A6
81
25
81
23
86
BD
5A
26
BD
6A
26
35

FB6C
02
18

GO
24
21
FATS
AO
FA97

F8
24
AO
20
04
TE
02
FF
FA21

EE
F8E9
E4
D4
82

FF51
FB6C
FATS
FA97
FA21

F8E9

* DUMP COMMAND

*

* LINKED TO MONITOR COMMAND SET
*

AUXTAB

DUMP

PSHS

LDB

D1

D2

D3
D4

BNE

*

* ADDRESSES IN

*

CMNDS
NUMB
OPXREG
OPARSP
CONOUT

OPCRLF

FCB
FCB
FDB
FCB
FDB

JSR
TFR
LDA
A

£8
PSHS
TFR.
JSR
LDA
JSR
DECB
BNE
PULS
LDA
CMPA
BCS
CMPA
BLS
LDA
JSR
DECB
D1
JSR
DEC
BNE
PULS

EQU
EQU
EQU
EQU
EQU
EQU
END

1
'D
DUMP-AUXTAB

CMNDS
NUMB

D,Y
£24

NO. OF COMMANDS IN TABLE
COMMAND NAME

OFFSET TO ROUTINE

GO TO NEXT TABLE
MONITOR COMMAND TABLE

GET HEX NO. IN D
PUT IN Y
NO. OF LINES

SAVE COUNTER
BYTES PER LINE

Y,B
Y, X
OPXREG
LY+
OPARSP

D1

Y,B

, Y+
£$20
D3
£$7E
D4
£SFF
CONOUT

OPCRLF
,S

GO

A, PC

MONITOR

SFF51
SFB6C
SFAT5
SFA97
SFA21

SFB8E9

17

X = ADDRESS

PRINT X IN HEX + SPACE
GET BYTE

PRINT A IN HEX + SPACE

RESTORE
GET BYTE AGAIN
ASCII PRINTABLE ?

TOO BIG ?

PRINT WHITE BLOCK
CONSOLE OUTPUT A

START NEW LINE
DECREMENT LINE COUNTER

PULL COUNTER + RETURN.

COMMAND TABLE
INPUT HEX TO D
OUTPUT HEX FROM X
OUTPUT HEX FROM A
PRINT A

NEW LINE *

When the dump program has been entered from the listing in Fig.
4.1 it can be executed by typing:
*G207

Any address typed after the Go command will be read by the call to
subroutine NUMB and used as the start address of the area to be dumped.
For example, to display the contents of memory starting from $F800,
execute with:

*G207 F800

To make the monitor recognize D as the DUMP command the auxiliary
command table, from 0200 to 0206, is needed. The address of this table,
0200, should be put at 0371 to replace the address of the monitor's
command table, FF51. The monitor will then search the auxiliary table
first, and the D command will be redefined to cause a jump to 0207.

The dump command can be saved on cassette so that, when loaded, it
will automatically install itself as part of the monitor's command set. To
do this, save it as follows:

*M371 02 00;

*5200 23D DUMP - S371 372

The first save command saves the program in a file named DUMP. The
minus sign inhibits the save command from writing an end-of-file marker
on the cassette, and the second save command writes a block of two
bytes to redefine the command-table address. If the program is now
loaded with:

*L DUMP

both blocks will be loaded, and D will have its new meaning, DUMP.

18

4.3 Interrupt Vectoring
All interrupts are vectored, using indirect jumps, via addresses held in

RAM. The RAM locations are assigned as follows:

0379 ISWI3 SWI3 vector
037B ISWIZ2 SWI2 vector
037D IFIRQ FIRQ vector
037F IIRQ IRQ vector
0381 ISWI SWI vector
0383 INMI NMI vector

These addresses can be altered to point to user interrupt service
routines, so that all the interrupts are potentially available for user
applications. Interrupts IRQ and SWI are used by the monitor; the other
interrupts are vectored to a routine which will display an error
message I-Err if an unexpected interrupt occurs.

The indirect jumps add an overhead of 8 cycles to the servicing of

each interrupt.

4.3.1 Example

The following example illustrates the use of FIRQ in a user program. Each
time the interrupt occurs an interrupt service routine ISR is called;
this writes a hex number to the display, and increments it. The routine
SETUP should be executed first to replace the address of the FIRQ
indirect vector with the address of the interrupt service routine.

* USE OF FIRQ

* K
* INTERRUPT SERVICE ROUTINE
* K
0100 34 10 ISR PSHS X FIRQ DOESN'T STACK REGS
0102 BE 0109 LDX COUNTER
0105 30 01 LEAX 1,% ADD 1
0107 BD FA75 JSR OPXREG PRINT HEX; SAVES REGS
010A BF 0109 STX COUNTER REPLACE IT
010D 35 10 PULS X RESTORE X
010F 3B RTI

*

* SET-UP ROUTINE

*

0110 8E 0100 SETUP LDX ISR
0113 BF 037D STX IFIRQ
0116 1C BF ANDCC £$BF ENABLE FIRQ
0118 39 RTS
*
0119 0000 COUNT FDB 0 COUNT FROM ZERO

19

4.4 Driver Routines
The monitor calls the input/output driver routines indirectly through
addresses in RAM, and these addresses may be changed by the user to enable

the monitor to drive other devices. The addresses are assigned as follows:

0365 COPADR Console output
0367 CINADR Console input (from buffer)
0369 CASOPA Cassette output
036B CASINA Cassette input
036D PRINTI Printer output

By default, these locations contain the following addresses:

0375 F95B FDB DISPLA
0377 FASE FDB GETCHR
0379 FD25 FDB MCASOP
037B FD53 FDB MCASIN
037D FASD FDB PRINT

4.5 Command Passing

A command line can be passed as a text string to the monitor by a user
program. The address of the command line should be stored in X, and the line
should be terminated by a null byte. Multiple input lines are allowed, each

line terminated with a carriage return. A typical calling sequence would be:

LDX £COMMD COMMAND LINE ADDRESS
JSR MEMUSE

TSTA

BEQ OK

The routine MEMUSE, at F871, interprets the command line and exits with
A zero if all is well. A has the value FF if a null was found before it

was expected, and the value of any character causing an error.

20

4.5.1 Demonstration Program to Illustrate Command Passing

The following program DEMO shows how the command line "L DUMP" can
be passed to the monitor as described, causing the file DUMP to be
loaded from cassette:

* DEMONSTRATION OF COMMAND PASSING

*

0010 8E 001B DEMO LDX £STRING POINT TO COMMAND LINE (S)
0013 BD F871 JSR MEMUSE
0016 4D TSTA
0017 27 01 BEQ 0X
0019 3F ERROR SWI ERROR RETURN
001A 39 OK RTS
*
001B 4C204445 STRING FCC /L DU/
001F 4D50 FCC /MP/
0021 0DOO FCB $0D, 0 TERMINATOR

4.6 Use of a Serial Terminal with 6809 Card

The Acorn 6809 card is primarily designed for use with an Acorn VDU card
and a standard parallel keyboard, to form a complete 6809 development
system. The serial interface, normally used to provide data and program
storage on cassette, can also be used to interface the card to a serial
terminal such as a teletype. The terminal may be used as a secondary
output device in addition to the VDU, as the main output device, or for

input and output:

4.6.1 Terminal as secondary output device (e.g. for hard copy). Store the
cassette-output routine address CASOUT (FD25) at the printer indirect
address location PRINTI (036D), and set PFLAG (0361) non-zero. This is
achieved by typing:

M36D FD 25;M361 1;

4.6.2 Terminal as only output device, instead of VDU card.

Put CASOUT address (FD25) at console output address location COPADR (
0365) by typing:
M365 FD 25;

21

4.6.3 Use of serial terminal for input and output.

In addition to the steps described in section 4.6.2 the monitor's
input routine should be replaced by a user-written routine to get
characters from the terminal, through the serial interface, and store
them in the circular keyboard buffer.

The monitor automatically links to a ROM located between $F000 and
SFTFF, if present, and the replacement input routine can conveniently be

contained there.

4.6.4 Selection of baud rate.

The default baud rate for the serial interface is 300, and if other baud

rates are required the contents of DELCNT (0363) should be changed as

follows:
110 baud $0234
300 baud $00CD
1200 baud $0030

22

5.0 HARDWARE DESCRIPTION

5.1 Memory Organization

The 6809 card uses part of the first 4K of address space, block zero, and
part of the last 4K of address space, block F. The complete memory map is
shown in Fig. 5.1. The map also shows the addresses assigned to memory and
devices not on the 6809 card, but recognised by the monitor program. The
6909 card includes 1K of RAM from 0000 to 03FF, and this is contiguous with
the 1K of RAM on the VDU card which occupies from 0400 to O07FF. The monitor
uses locations 0359 to O03FF for the storage of variables, the user
registers, and for the line input buffer. The monitor uses memory below
this address for the hardware stack. The stack depth will not normally go
below 0300, so the memory from 0000 to O02FF is free for use by user

programs.

5.2 Memory Decoding

Memory decoding is performed by a 256 x 8 bipolar PROM, ICl1l, which
divides the 64K of the 6809's address space into 256 256-byte pages. Any
of the devices on the Acorn 6809 card may be mapped into any of these
pages by providing a suitably programmed ROM. As provided the following
signals are produced by the address PROM:

Signal Address space

RAM 0 - 3FF

VIA 900 - 9FF

ROMO F800 - FFFF

ROM1 FO00 - F7FF

BLOCKO 0 - FFF

ONCARD 0 - 3FF, 900 - 9FF, F800 - FFFF.

All the signals are active low. The ONCARD signal is low whenever any
of the on-card devices are addressed, and this signal controls the
data-bus buffers. The BLOCKO signal is low for addresses in the bottom
4K of memory, and is used to enable the VDU card.

23

OFFF

ocCoo

OABo

0480
o900

CRT CONTROLLER,

o300

VDU
RAM

0400
O3AE
035B
034D

0300

LNE INPUT BUFFER

MONITOR VARIABLES

USER REQSTERS

STACK

USER
RAM

Q000

Fig.

BiLocrk ©

FFEE
ACORN £%04
MONITOR
EBOO -EROF<) ROM
PISK oM
CARD RS
\
F8oo0
$ VoL
CARD
OPTVONAL
j WD -BLOF hun RoM

Fooo /\/

BLock F

5.1. 6809 Card Memory Map.

24

5.3 Extra ROM

The standard 2K monitor is contained in a 2716-type EPROM, occupying
memory between F800 and FFFF. The Acorn 6809 card can be modified to
accomodate a 2732-type EPROM in its place, addressed between F000 and
FFFF, and the present monitor can be copied into the upper 2K of the 4K
ROM to provide space for extended facilities on the same card. Details of
how the extra ROM can be linked in with the present monitor are given in
section 4.1.

The following modifications are necessary to use a 2732 in the
place of IC4:

1. Break track from +5v to pin 21 of IC4.

2. Link pin 21 of IC4 to Bus All.

3. Link pins 9 and 11 of IC1l1l. This will cause the ROM to be
enabled for addresses FO000 to F7FF in addition to F800 to.FFFF.

4. Link pins 13 and 14 of ICll. This will include the address space

FO00 to F7FF in the ONCARD signal.

5.4 Bus Buffering

The data bus is buffered by an octal tri-state bidirectional buffer, type
8208. The data-bus buffers are disabled when the E signal is low, and when
the processor is addressing memory space on the 6809 card. They will also
act correctly when a DMA device accesses memory, whether on or off the 6809
card.

The R/W and address lines are buffered by 74LS244 devices, and are tri-
stated to allow other devices to do DMA. The R/W line is ANDed with the E
signal to give separate NRDS and NWDS signals at the edge connector; these
are provided so that devices from the 8080 family can easily be interfaced
to the 6809 card, and the signals are used by some of the other cards in the
Acorn range. The NWDS bus line is generated from the unbuffered E signal for
improved timing.

The signals Q, E, BA, and BS are buffered but not tri-stated.

25

5.4.1 Reset - The reset line is not buffered. The 6809 will come out of
reset when RESET is at a level above about 4v. Other devices are designed
to reset at a lower voltage, typically 0.4v, so that on power-up they
will be fully reset before the processor begins execution.

Power-up reset may be provided by connecting a capacitor of about 200

uF between RESET and Ov; a space on the board is provided for this.

5.4.2 VMA - A bus VMA line is provided which is low when the bus buffers
are enabied. The VMA line is effectively open-collector so that any

number of devices may be attached to the system using this line, and

daisy-chaining the bus available (BA) and bus request lines.

5.4.3 DMA - When a DMA device requests bus control by taking HALT or BREQ
low, the processor will eventually take BA (bus available) high. The cycle

during which this occurs should not be used for a bus

transfer; i.e. VMA should be high. The DMA device should ensure this.

When the DMA device relinquishes control of the bus the processor will
set BA low. Again there is a null cycle while control is transferred. On the
6809 card ICl2 is used to provide a delayed BA signal which will not go low
until the negative transition of E following BA going low. The circuit is

shown in Fig. 5.2. This ensures

that VMA remains high during the null cycle, and that all irrelevant

bus buffers will be turned off.

5.5 System Clock

The system clock is derived from a 4 MHz crystal, giving a 1 usec.
instruction cycle time. The Q and E signals at the edge connector are

therefore 1 MHz.

26

BA

P
D> - DELAYED
QF— 8a
E _4>____> cLock
Qb—
c

Fig. 5.2. Generation of delayed BA signal.

27

5.65.6 Audio Cassette Interface

Programs and data say be saved on cassette and loaded from cassette
using the interface programs included in the 6809 monitor.

The 6809 card provides logic-level input and output lines, and the
cassette interface routines transfer data onto these lines in standard
serial format. The card does not include circuitry for the generation of
tones to encode the serial data in a form suitable for storage on an
audio tape, but the full circuit is given in Fig. 5.3. A kit of parts for
this circuit, with a circuit board, is available from Acorn.

For flexibility the bit rate is determined by a software timing loop
in the cassette input and output routines; the value of the delay counter
can be altered to give different baud rates. The default rate, initialised
on reset, is 300 baud but rates of up to 1200 baud are possible.

The serial input and output routines can also be used to provide
interfacing with serial devices such as a terminal or a teletype. Output
can be vectored to the serial output routine simply by changing a vector
address stored in RAM. To receive input from a serial device is also
possible, but requires the provision of specially-written routines to put

the received data into the keyboard buffer.

5.6.1 Cassette Input

The software asynchronous receiver gets 1 start bit, 8 data bits, and 1
stop bit. Data is shifted in from PB7 of the VIA, lowest bit first. The
data input is inverted.

Since keyboard interrupts could upset the cassette timing the

keyboard interrupt is disabled during cassette load.

5.6.2 Cassette Output
The software asynchronous transmitter outputs the byte from the A

register as a start bit, 8 data bits, and 2 stop bits. Data is

28

zce Ri- K9 e

+%v

[}
PaTY
Qv
R2
To REColveR NPT 4 wK
ov 2
PRot REcolpel oothuT2
Oov 1
Ce, InF e Ice
o6l F"
2s hatl
3
R13, 4K rox
Ry 430K ov
T2 g
o [’ —_—!
- < '
7 >, al
voo_
ce ihoH FE CASIN
ot ov s e
|6 -
ov 2c3- ount d i

I -40138
IS - woetl
T3 - LM3ISE

X C- NoT FirTeED

Fig. 5.3. Suggested circuit for a cassette interface.
The three signals on the right side of the circuit connect to

the 6809 card.

29

output from CB2 of the VIA, lowest bit first.

The IRQ and FIRQ masks are set during the output of a byte to the
cassette output so that the timing will not be upset by servicing

interrupts. Interrupts are permitted in between bytes.

5.6.3 Cassette Format

Three types of block are output by the cassette file save routine:

1. File Header Block

Format: $D8, $30, X, X, X, X, X, X, CK.

where X is any ASCII character, excluding space, comma, or carriage

return, and CK is the checksum byte.

2. Data Block

Format: $D8, $31, SH, SL, EH, EL, DO, D1, D2, Dn, CK. where SH and
SL are the high and low-bytes of the start address respectively, EH and EL
are the high and low-bytes of the end address, DO to Dn are the data bytes
in binary, and CK is the checksum byte. The number of data bytes is from 1

to 256.

3. Terminator Block

Format: $D8, $39.

The sum over all bytes after the header pair of bytes, and including the

checksum, is $FF in each block.

5.7 Keyboard Interface

The monitor is designed to receive commands from a parallel keyboard connected
to the inputs PBO - PB6, with a strobe line to CBl on the VIA. The keyboard

should have a negative-going strobe signal and non-inverted data outputs. The
edge connections on the 6809 card include connections to the power rails, and
a 5v keyboard may be powered from these. The break key on the keyboard may be

wired to the reset line

30

which is also available at the keyboard connector. The break signal
should provide a negative-going signal when pressed.

The keyboard is interrupt-driven, making its operation totally
independent of external programs; data may be typed at the keyboard while
the processor is executing a program, and it will be echoed on the VDU and
buffered in the line buffer. Programs may be written to read characters from
the line buffer at any time. If there are already characters in the line
buffer the read-character routine will immediately return with the
character; otherwise it will wait for characters to be entered at the
keyboard.

A negative-going strobe signal on CBl of the VIA will generate an
interrupt, if the IRQ mask is clear, and will set bit 4 in the VIA
Interrupt Flag Register. The IRQ service routine tests this bit to
determine whether the interrupt was due to a keyboard interrupt or an

interrupt from the VIA timer 1, used in trace mode.

5.8 Trace

A hardware trace function is provided on the 6809 card to enable programs
to be executed one, or more, instructions at a time. The function is
controlled by one of the two timers in the VIA, timer 1. Timer 1 is

addressed as follows:

Register: Address: Function:

4 0984 Counter low

5 0985 Counter high
6 0986 Latch low

7 0987 Latch high.

The following sequence is executed to jump to a user program in trace mode:

31

1. Initialize counter to $000F (15)
2. Pull all registers from the hardware stack.

The timer 1 counter will take the IRQ line low after 16.5 E cycles; i.e. on
the rising edge of E following 16 instruction cycles. By the next falling
edge of E, after 17 cycles, the IRQ will be latched by the processor. A
delay of at least one bus cycle will then occur before the interrupt is
serviced. The instruction to pull all the registers from the stack takes 17
cycles, and so the interrupt will not be serviced until after the next

instruction of the user's program has been executed.

5.9 Printer Interface

A parallel handshake interface to a printer is provided on the Acorn 6809

card, and printer driving routines are included in the monitor. The

handshaking signals comprise a BUSY line from the printer, which is connected

to PA7 of the VIA, and a strobe signal from the VIA pin CA2 to the printer.
When the BUSY signal goes low, the printer routine will put a byte on

the printer lines PAO - PA6, and take the strobe low for 7 usecs.

Although the ACK line from the printer is connected to CAl of the VIA,

the existing software does not make use of this signal.

The outputs to the printer, PAO - PA6 and CA2, are buffered by an

octal buffer device.

32

6.0 SOFTWARE DESCRIPTION

This section describes the operation of the most useful subroutines
contained in the monitor; these can all be incorporated into user

programs without a full understanding of the monitor being needed.

6.1 Input

When a key is typed at the keyboard an IRQ interrupt occurs, if it has not
been masked, and the key's value is stored in the next location of the 80-
character circular buffer. The console input routine, CONIN, is normally
indirected via a RAM vector to the subroutine GETCHR. This reads a
character from the circular buffer, or waits for one to be entered if the
buffer is empty. CONIN can also be directed to return characters read from
an area of memory.

An alternative character-input routine is used by most of the
monitor routines: this is CONCHR, which will only return characters
read up to a carriage-return. Thereafter it will return carriage-returns
until the flag ONLINE is cleared. This ensures that monitor commands, such as
S, that expect several parameters will not cause reading past the end of the

line when parameters have been ommitted.

6.1.1 Routines

Name: Address:

CONIN F890 Console input routine. Gets character from

input routine via RAM vector CINADR if LINEPT=0, or from
memory at address LINEPT. If it finds a null in memory
it returns to caller with error S$FF.

CONCHR F87F Alternative console input routine; reads up to CR
calling CONIN, and then returns CRs. Make ONLINE non-

zero to clear.

33

Name: Address:

GETCHR FA5C Default character-input routine. Gets character from buffer. If
none then clears interrupt mask and waits. All registers

saved, including CC.

The following routines call CONCHR to input single characters:

GETHEX FB95 Get hex digit in A, with V=0, else V=1 if non-hex.
GETHXS FB8A As above, but ignore leading spaces.
NUMB FB6C Get hex number, with any number of digits, from input stream.

Allow leading spaces, and stop on first non-hex character.
Number returned in D, with V=0. If no number then D=0 and
v=1.

NAMEIN FD75 Get name from input stream, up to 6 characters long. Name
stored at NAME (039D). No name leaves memory unaltered;

any name is padded with spaces to 6 characters.

6.2 Output

The console output routine, CONOUT, is normally indirected via a RAM vector
to subroutine DISPLA. This first checks the character for carriage-return,
linefeed, formfeed, or delete; if none of these, the character is written
to the next screen location, and the cursor is moved on one position.
Attempting to move the cursor below the bottom line will cause the screen
to be scrolled by reprogramming the 6845 CRT controller on the VDU card for
a different display start address. Before the screen has been scrolled the
address corresponding to the leftmost character in the top line is $0400.
After scrolling the memory-to-screen mapping becomes more complicated , and

the routine CCLOCN should be used to calculate the cursor location.

34

The four special characters have the following actions:
carriage-return: cursor to start of line.
linefeed: cursor to next line.
formfeed: display RAM cleared; screen format reset with
cursor off screen.
delete: backspace cursor; blank character under cursor.

When scrolling takes place the bottom line of the screen is cleared.

6.2.1 Routines

Name: Address:

CONOUT FA21 Console output routine. Sends character in A via RAM
vector COPADR, and to printer via vector PRINTI if PFLAG
is non-zero.

DISPLA F95B Default character-output routine called by CONOUT. Puts
character in A to VDU, handling CR, LF, FF, and delete.
All registers saved.

PRINT FA9D Default printer routine, called by CONOUT is PFLAG is non-
zero. This interfaces to Anadex or Centronics parallel

interface printers.

The following routines all call CONOUT to output characters:

STRING F8EC Output string pointed to by X, terminated by a null.

Leaves X pointing to null+l; other registers saved.

OPCRLF F8E9 Outputs CR, LF to console. Destroys X.

HEXOUT FA8D Output A as a single hex digit.

OPARSP FA97 Output A as a single hex digit followed by a space.

OPAREG FA81 Output A as two hex digits. All registers except A are
saved.

OPXREG FA75 Output X register as 4 hex digits. All registers are
saved.

35

6.3 Tape Routines

Name:

MCASIN

MCASOP

CBIN1
CBIN2

6.4 Disk Routines

Name:
BOOT
TRNSFR

DRVRDY

CMDPAR

Address:

FD53

FD25

FD1E
FD13

Software asynchronous receiver. Gets value into A
with 1 stop bit. Saves all other registers.

Software asynchronous transmitter. Outputs value in A
as a start bit, 8 data bits, and two stop bits. Rate
controlled by DELCNT. Saves all registers,

Get one byte from tape, and update checksum.

Gets 2 bytes and forms a 16-bit value in D

Address:

FE44 Bootstrap from mini-floppy disk.

FEC9 Transfers data from disk to memory, starting at address in
U. Returns completion code in A when transfer finished or
error occurs.

FEB6 Test if drive ready. On entry X points to read drive status
command sequence; on exit drive is ready and X points to
next command sequence.

FE9F Send one command followed by a variable number of parameters.

X points to command; next byte is number of parameters,
possibly none. X left pointing to last parameter. Destroys

D.

36

6.5 Miscellaneous

Name:

DISPCH

CCLOCN

RESET

MEMUSE

Address:

F9A6

F905

F800

F871

Dispach routine. Looks up character in A in a table
at X. Table format is:

First byte: number of entries, 1 to 255.

For each entry: Character to match

2-byte offset to routine for match
Flag byte: determines action if no match found

$01 - next word is offset to default routine

$00 - return to calling program

SFF - next word is address of another table
Calculate real address of cursor in memory space.
Result returned in X.

Reset entry point.

Pass command to monitor. X is start of line which is
terminated with a null. Multiple input lines are
allowed, separated by CR. Exits with A zero if no

error.

37

7.0 INSTRUCTION SET AND ADDRESSING MODES

7.1 Programming Model

A programming model of the 6809 is shown in Fig. 7.1. There are four 16-bit
pointer registers, the program counter, two 8-bit accumulators which can

be used as one 16-bit register, and two special purpose 8-bit registers.

7.1.1 Accumulators (A, B, D)

The A and B registers are general purpose accumulators which are used for
arithmetic and logical operations. Most instructions will operate in an
identical way with either accumulator. Certain instructions are provided
which will operate on the A and B registers considered as one 1l6-bit
register, referred to as the D register. The A register is the most

significant byte of the D register.

7.1.2 Direct Page Register (DP)

The direct page register defines which page of memory is to be accessed by
direct addressing; see section 7.3.5. When peripherals are being accessed
the direct page register can be set to the peripheral's page, thus speeding

up access.

7.1.3 Index Registers (X, Y)

The index registers are used in the indexed mode of addressing; the 16-bit
address in the specified register takes part in the calculation of the
effective address. This address may be used to point to data directly or may
be modified by an optional constant or register offset. During some indexed
modes the contents of the index register are incremented, or decremented, as
a result of the operation. All

four pointer registers, X, Y, U, and S, may be used as index registers.

7.1.4 Stack Pointers (U, S)

The hardware stack pointer, S, is used automatically by the processor

38

15 0
X — Index Register

Y — Index Register

- Pointer Registers
U — User Stack Pointer

S — Hardware Stack Pointer

PC Program Counter
A [B Accumulators
N\ -~ 4
o)
7 0
[oP 1 Cirect Page Register
7 0
E I F l H l | lN l z i Vl CJ CC — Condition Code Register
Carry
QOverflow
! Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

Fig. 7.1. Programming model of the 6809.

39

during subroutine calls and interrupts. The stack pointers point to the top
of the stack. The user stack pointer, U, is controlled exclusively by the

programmer thus allowing arguments to be passed to and from subroutines with
ease. Both stack pointers have the same indexed mode addressing capabilities

as the X and Y registers, but also support push and pull instructions.

7.1.5 Program Counter (PC)
The program counter is used by the processor to point to the next
instruction to be executed. Relative addressing is provided, allowing the

PC to be used like an index register in some situations.

7.1.6 Condition Code Register (CC)

The condition code register defines the state of the processor at any time:

Bit 0 - Carry Flag

For add operations the carry is set if and only if the
addition causes a carry from the most significant bit. For
subtract-like operations (SUB, SBC, CMP) the carry is set if
and only if the operation does not cause a carry from the
most significant bit.

Shifts and rotates affect the carry according to the data
being shifted.

The MUL multiply instruction sets the carry if and only if bit

7 of the result is set.

Bit 1 - Overflow Flag

Set if and only if the operation causes a signed two's-
complement overflow. Thus N + V will give the correct sign even

if the sign is not correctly represented in the result.

40

Bit 2 - Zero Flag
Set if and only if the result of the operation was equal to zero.
Bit 3 - Negative Flag

Contains the value of the most significant bit of the result of
the operation; thus a two's-complement result will set N if the

result was negative.
Bit 4 - IRQ Mask Bit

The processor will not recognise interrupts from the IRQ line
if this bit is set to a one. NMI, FIRQ, IRQ, RESET, and SWI
all set I to one; SWI2 and SWI3 do not affect I.

Bit 5 - Half-Carry Bit

This bit indicates a carry from bit 3 as a result of an 8-bit
addition (ADC or ADD). The bit is used by the decimal adjust (
DAA) instruction to perform a BCD adjust operation. The state of

this flag is undefined in all subtract-like operations.
Bit 6 - FIRQ Mask Bit

The processor will not recognise interrupts from the FIRQ
line if this bit is set to a one. NMI, FIRQ, RESET, and

SWI all set F to a one. IRQ, SWI2, and SWI3 do not affect F.

Bit 7 - Entire Flag

Set to a one if all the registers were stacked, as opposed to the
PC and CC only, after an interrupt. The E flag of the stacked CC
is used on return from an interrupt (RTI) to determine the

extent of the unstacking.

41

7.2 Instruction Set

A complete list of the 6809 instruction set is given in Figs. 7.2

to 7.6. Some of the more unusual instructions are explained in the

following sections.

7.2.1 Load Effective Address
The load effective address instruction, LEA, allows all the 6809's
addressing modes to be used to form an address, and this address is then
loaded into one of the four pointer registers. Some uses of this
instruction are described:

LEAX 3,X
adds the constant, 3, to the X regsiter.

LEAU D, U
adds the signed number in the D register to the number in the U
register and stores the result in U. Thus:

LEAX B, X
is similar to the ABX instruction, but whereas LEAX B,X treats B as a
two's-complement signed number between -128 and +127, ABX uses B as a
positive offset between 0 and 255.

LEAS -10,S
can be used to reserve 10 bytes of workspace on the hardware stack.
This workspace can be addressed indexed using S; for example:

LDA 4,8 or DEC 2,S.
The workspace is restored after use with:

LEAS 10,8
The destination and source registers can be different, as in:

LEAX 4,58
which loads the X register with a pointer to the 4th byte on the
hardware stack.

LEAX DATA, PCR

loads the address of DATA into the X register; the code for the
42

Fig.

Mnemonic(s)

Operation

ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory left

ASR, ASRA. ASRB

Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator
CLR, CLRA, CLRB |Clear accumulator or memory location
CMPA, CMP8B Compare memory from accumuiator
COM, COMA. COMBjComplement accumulator or memory location
DAA Decimal adjust A-accumulator
DEC, DECA. DECB |Decrement accumulator or memory location
EORA, EOCRB Exclusive or memory with accumulator
EXG R1. R2 Exchange R1 with R2 {(R1, R2 = A, B, CC, DP}
INC, INCA. INCB |increment accumulator or memory location
LDA, LDB Load accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumulator or memory location

LSR, LSRA. LSRB

Logical shift right accumulator or memory location

MUL Unsigned multiply (A x B — D}
NEG, NEGA, NEGB {Negate accumulator or memory
ORA, ORB Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA. RORB

Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator to memory
SUBA, SUBSB Subtract memory from accumulator
TST, TSTA, TSTB |Test accumulator or memory location
TFR, R1, R2 Transfer R1 to R2 (R1, R2 = A, B, CC, DP)

NOTE: A, B. CC. or DP may be pushed to {pulled from) either stack with PSHS, PSHU.

{PULS, PULU) instructions

1.2,

8-bit accumulator and memory instructions.

43

Mnemonic(s)

Operation

ADDD Add memory to D accumulator
CMPD Compare memory frem D accumulator
EXGD R Exchange D with X, Y. §, U or PC
LDD Load D accumulator from memory
SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory
' susD Subtract memory from D accumulator
TFR D, R Transfer Dto X, Y, 8, U or PC
TFRR. D Transfer X, Y, S, UorPCto D

7.3. 16-bit accumulator and memory instructions.

Fig.
Mnemonic(s)) Operation
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y, S, U, or PCwith D, X, Y. S, U or PC
LEAS, LEAU Load effective address inte stack pointer
LEAX, LEAY Load effective address into index register
LDS, LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push any register(s) onto harcware stack {except S)
PSHU Push any register(s) onto user stack {(except U)
PULS Puil any register(s) from hardware stack {except S)
PULU Pull any register(s) from hardware stack {except U)
STS, STU Store stack pointer to memaory
STX. STY Store index register to memory
TFR R1, R2 Transfer D, X, Y, S, UorPCtoD, X, Y. S, Uor PC
ABX Add B accumulator to X (unsigned)
Fig. 7.4. Index register/stack pointer instructions.

44

Mnemonic(s) Operation
BCC, L8CC Brarcn if carry clear
8CS, LBCS Branch if carry set
BEQ, LBEQ Branch if equal
B8GE, LBGE Branch if greater than or equal (signed)
BGT, LBGT Branch if greater (signed)
BHI, LBHI 8ranch if higher (unsigned)
BHS, LBHS Branch if higher or same {unsigned)
BLE, LBLE Branch if fess than or equal (signed)
BLO, LBLO Branch if lower (unsigned)
BLS, LBLS Branch if fower or same (unsigned)
BLT, LBLT Branch if less than (signed)
BMI, LBM! Branch if minus
BNE, LBNE Branch if not equal
BPL, LBPL Brancn if plus
BRA, LBRA Branch aiways
BRN, LBRN Branch never
BSR, LBSRA Branch to subroutine
8VvC, LBVC Branch if overflow clear
BVS, LBVS Branch if overflow set

Fig. 7.5. Branch instructions.

Mnemonic(s) Operation
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR concition code register
JMP Jump
JSR Jump to subroutine
RT! Return from interrupt
RTS Return from subroutine
SWI, SWI2. SWI3 | Software interrupt (absolute indirect)
SYNC Synchronize with interrupt line J

Fig. 7.6. Miscellaneous instructions.
45

instruction is position-independent since it contains the offset of the
data from the instruction, not the absolute address of the data. Note
that:
LEAX (,X)

has the same effect as the instruction:

LDX ,X

7.2.2 Push/Pull

The push and pull instructions enable any combination of registers to be
saved and restored using either stack. The instruction is two bytes long
regardless of the number of registers pushed or pulled; each bit in the
second byte of the instruction corresponds to a register, and if the bit is
set that register is pushed/pulled. The order of stacking or restoring is a
hardware function, irrespective of the order specified in the assembler

statement, and is shown below:

0000

Increasing Address —————>» FFFF
cc A B DP X Y U/S PC
Thus the CC is pushed last and pulled first (if specified).
Since the PC is pulled last, the sequence:
PULS A,B,X
RTS
may be shortened to the identical sequence:
PULS A,B,X,PC
Note that:
PSHS A and STA ,-S
are similar in effect, but PSHS does not affect the status flags.
Similarly for the two instructions:

PULS A and LDA , S+

46

7.2.3 OR/AND Condition Code Register

To set or clear selected bits in the condition-code regsiter the 6809
ORs or ANDs an immediate operand into the register. Thus the 6800's
six one-byte instructions SEC, CLC, SEV, CLV, SEI, and CLI hove been

replaced by the two two-byte instructions ORCC and ANDCC.
7.2.4 Multiply

The multiply instruction, MUL, multiplies the unsigned 8-bit binary
numbers in A and B and leaves the result in the A and B registers treated
as one 16-bit number. The MUL instruction can be used as the basis for
multiple-precision multiplications.

One common use for a multiply instruction is in the calculation of
array subscripts; for example, to get the element M(S1,S52) from an array

with dimensions M(100,50), the following code can be used:

LDY EM Get base address of array

LDA S1 First subscript

LDB £100 First dimension

MUL Multiply D = A * B

ADDD S2 Add second subscript

LDA D,Y Load value from array element.

7.2.5 Sign Extend

The sign extend (SEX) instruction causes all bits in the A register to
take on the value of the most significant bit in the B register. It is

used to convert signed 8-bit numbers to a signed 16-bit number

7.2.6 Exchange/Transfer Registers

Any register may be transferred to any other of like size with the TFR
instruction, or exchanged with any other of 1like size with the EXG
instruction. These instructions are each two bytes long; bits
4-7 of the postbyte specify the source register, and bits 0-3 specify the
destination register, as follows:

Register: D X Y U S PC A B CC DP

Hex Digit: 0 1 2 3 4 5 8 9 A B

47

For example, to transfer the contents of A to B (TFR A,B) the
postbyte is $89.

Note that the instructions:
TFR Y, X and LEAX ,Y

are similar in effect, but the TFR instruction does not affect any of

the status flags.

7.2.7 Synchronize with Interrupt

The 6809's SYNC instruction is used to synchronize software with an
external signal. The CPU will stop processing instructions when it
encounters a SYNC instruction, and will wait for an interrupt. If the
interrupt is non-maskable (NMI) or maskable and enabled, the processor
will clear the SYNC state and handle the interrupt just as it would
normally. If the interrupt is maskable and disabled, the SYNC state is
simply cleared, and execution continues without vectoring to the interrupt
service routine. For example, the following routine reads data from an

input port on each occurrence of a masked interrupt:

FAST SYNC Wait for interrupt
LDA ,X Read from port
STA ,Y+ Put in array
DECB All done?
BNE FAST If not, continue.

7.2.8 Software Interrupts

The 6809 provides 3 software interrupts, SWI, SWI2, and SWI3, all of which
save all the CPU registers on the S stack, and vector through an address
in page $FF of memory to a service routine. In addition, SWI disables the
FIRQ and IRQ interrupts. SWI is used in the Acorn 6809 monitor as a
breakpoint and for trace mode. The other two software interrupts are

useful for operating system calls and memory management.

48

7.3 Addressing Modes

The 6809 has the most powerful set of addressing modes available on any 8-
bit microcomputer; it has 59 basic instructions, but recognizes 1464
different variations of instructions and addressing modes. The new
addressing modes support modern programming techniques, and some of these
have been described in Section 7. The following addressing modes are

available on the 6809:

7.3.1 Inherent and Accumulator

In this addressing mode the op-code of the instruction contains all the
address information necessary. Examples of Inherent Addressing are: ABX,

DAA, SWI, ASRA, and CLRB.

7.3.2 Immediate Addressing

In Immediate Addressing the effective address of the data is the location
immediately following the op-code. Both 8 and 16-bit immediate values are
used, depending on the size of argument specified by the op-code. Examples
of instructions with Immediate Addressing are:

LDA ES$20

LDX £SF000

LDY £LEAF

Note: £ signifies Immediate Addressing

$ signifies hexadecimal value

7.3.3 Extended Addressing

In Extended Addressing the contents of the two bytes immediately following
the op-code fully specify the 16-bit effective address used by the
instruction. Note that the address generated by an extended instruction
defines an absolute address and is not position independent. Examples of
Extended Addressing include:

LDA ACORN

STX TREE

LDD $2000

49

7.3.4 Extended Indirect

As a special case of indexed addressing (see Section 8.1.7) one

level of indirection may be added to Extended Addressing. In Extended
Indirect the two bytes following the postbyte of an indexed instruction

contain the address of the address of the data. Examples are:

LDA (ACORN)
LDX ($FFFE)
STU (TRUNK)

7.3.5 Direct Addressing

Direct addressing is similar to extended addressing except that only one byte
of address follows the op-code. This byte specifies the lower 8 bits of the
address to be used; the upper 8 bits are supplied by the direct page
register. Since only one byte of address is required in direct addressing,
this mode requires less memory and executes faster than extended addressing.
Of course, only 256 locations (one page) can be accessed without redefining
the contents of the DP register. To ensure compatability with the 6800 the
DP register is set to $00 on Reset. Indirection is not allowed in direct
addressing. Some examples are:

LDA $30

SETDP $10 (Assembler directive)

LDB $1030

LDD >CAT

Note: >is an assembler directive forcing direct addressing.

7.3.6 Register Addressing

Some op-codes are followed by a byte that defines a register or set of
registers to be used by the instruction.
TFR X, Y Transfers X into Y
EXG A,B Exchanges A and B
PSHS A,B,X,Y Push onto S stack Y, X, B, then A
PULU X,Y,D Pull from U stack D, X, then Y.
50

7.3.7 Indexed Addressing

In all indexed addressing modex one of the pointer registers X, Y, U, S,
and PC is used in a calculation of the effective address to be used by the
instruction. Five basic types of indexing are available, and are discussed
in the following sections. The postbyte of an indexed instruction
specifies the basic type and variation of the addressing mode as well as
the pointer register to be used. 7.3.7.1 Zero-Offset Indexed - In this
mode the selected pointer register contains the effective address of the
data to be used by the instruction. This is the fastest indexing mode.
Examples are:

LDD 0,X

LDA ,S

7.3.7.2 Constant Offset Indexed - In this mode a two's-complement offset
and the contents of one of the pointer registers are added to form the
effective address of the operand. The pointer register's contents are not

changed by the addition. Three sizes of offset are available:

5-bit (-16 to +15)
8-bit (=128 to +127)
16-bit (-32768 to +32767)

The signed 5-bit offset is included in the postbyte and is therefore most
efficient in use of bytes and cycles. The 8-bit offset is contained in a
single byte following the postbyte. The 16-bit offset is in the two bytes
following the postbyte. If an assembler is being used this will select the

optimal size automatically.

Examples of constant-offset indexing are:
LDA 23,X
LDX -2,S
LDY 300, X
LDU CAT,Y

51

7.3.7.3 Accumulator-Offset Indexed - This mode is similar to constant
offset indexed except that the two's-complement value in one of the
accumulators (A, B, or D) and the contents of one of the pointer registers
are added to form the effective address of the operand.

The contents of both the accumulator and the pointer register are
unchanged by the addition. The postbyte specifies which accumulator

to use as an offset and no additional bytes are required. The

advantage of an accumulator offset is that the value of the offset

can be calculated by a program at run-time. Some examples are:

LDA B,Y
LDX D,Y
LEAX B, X

7.3.7.4 Auto Increment/Decrement Indexed - In the auto increment addressing
mode the pointer register contains the address of the operand. Then, after
the pointer register is used, it is incremented by one or two. In auto
decrement the pointer register is decremented before its use as the address
of the data. These addressing modes are useful for stepping through tables,
moving data, or for the creation of software stacks; the pre-decrement,
post-increment nature of these modes makes them behave identically to the U
and S stacks. The size of the increment/decrement can be either one or two
to allow for tables of either 8 or 16-bit data to be accessed. Some examples
of the

auto increment/decrement addressing modes are:

LDA , X+
STD Y+
LDB , =Y
LDX ,—=S

52

7.3.7.5 Indexed Indirect - All of the indexing modes, with the exception
of auto increment/decrement by one or a 5-bit offset, may have an
additional level of indirection specified. In indirect addressing the
effective address is contained at the location specified by the contents
of the index register plus any offset. In the example below the A
accumulator is loaded indirectly using an effective address calculated

from the index register and an offset:

Before execution: A = XX (anything)
X = $F000
$0100 LDA (10,X) effective address is $F010
$SF010 $F1
$FO011 $50 S$SF150 is new effective address
SF150 $AA Data
After execution: A = SAA

X = $F000 (not changed)

Some examples of indexed indirect addressing are:

LDA (,X)

LDD (10,S)
LDA (B,Y)
LDD (,X++)

7.3.8 Relative Addressing

The byte or bytes following the op-code for a branch instruction are
treated as a signed offset which is added to the program counter.
If the branch condition is true the calculated address is loaded into the
program counter, and program execution will continue at the location
indicated by the program counter. Short (one byte offset) and long (two byte
offset) relative addressing modes are available. All of the memory space can
be reached using long relative addressing as the effective address wraps
around between $FFFF and $0000. Some examples of relative addressing are:

BEQ NEAR (short)

LBGT FAR (long)

53

7.3.9 Program Counter Relative Addressing

The program counter can be used as the pointer register with 8 or 16-bit
signed offsets. As in relative addressing the offset is added to the current
program counter to create the effective address. The effective address is
then used as the address of the operand or data. Program counter relative
addressing is used for writing position independent programs; tables
related to a particular routine will maintain the same relationship to the
routine even if the program is moved. Examples are:

LDA TABLE, PCR

LEAX CONST, PCR

Since program counter relative addressing is a type of indexing, an
additional level of indirection is available:

LDA (CAT, PCR)

LDU (DOG, PCR) .

Note that all the indexed addressing modes are available with
the JMP and JSR instructions, so that:

JMP CAT, PCR
can be used to give the same effect as:

LBRA CAT

54

8.0 PROGRAMMING TECHNIQUES

8.1 Position-Independent Code

One particularly powerful feature of the 6809 is its support of position-
independent code. Programs written to be position-independent can be loaded
anywhere in memory without needing to be re-assembled with a different
origin.

The 6809 makes this possible in five ways:

1. Position-independent transfer of control; long and short relative

branches are provided.

2. Position-independent temporary storage; workspace may be allocated on

the stack, rather than using fixed RAM locations.

3. Position-independent access to constants within the same block of

code, using program-counter relative addressing. E.g. LDA CONST, PCR.

4. Position-independent access to tables within the same block vi code. The
start address of the table is loaded into X using the 'load effective
address' instruction LEAX TABLE, PCR; the table can then be accessed using

indexed addressing.

5. Position-independent access to constants and variables located in ROM and
RAM outside the block of position-independent code, and whose addresses are
not known at the time that the code is assembled. This is achieved by
providing a table, external to the position-independent block of code, which
gives the addresses of all the external variables, and the constants, needed
by the program. Before the position-independent routine is called, a
register is pointed to this table: e.g. LDX £TABLE. The routine can then
load constants from the table using indexed addressing, as in LDA 2,X, and
access variables in RAM by indirecting through the addresses in the table:

e.g. LDA (5,X) , or STY (8,X).

55

8.1.1 Example

The following section takes a simple program, to convert a binary
number into decimal, and shows how to modify it so that it is
position independent, making use of the features just described.

The first version of the program, Fig. 7.1, is not relocatable
because the instructions:

LDX ££K10TAB
and CMPX £K10TAB+8
contain absolute addresses. If re-assembled with a different origin
these bytes in the program would change, and so the program is not
position independent.

The first version of the program suffers from two other drawbacks.
First, it is not re-entrant. In other words, it needs some dedicated RAM
locations for the variables COUNT and TEMP. The routine could not be used by
both an interrupt service routine and a main program because one call might
overwrite the variables being used by the other call. Secondly, the program
changes the values of some of the registers. This is bad practice; the
routine could not be incorporated into a larger program without some
caution.

The second version of the binary-to-decimal program, in Fig. 7.2,
removes all three drawbacks; it is position independent, re-entrant, and
saves the values of all the registers. The drawbacks are solved as
follows:

Firstly, program-counter relative addressing is used to pick up the
address of the table. The instruction:

LEAX £K10TAB

does not change depending on its position in memory. The end of the
table is detected by testing the value of the power of ten. Secondly,
the two temporary locations are replaced by two stack locations. The
space is allocated by the instruction:
LEAS -2,S
56

0000
0001

0002
0004
0006
0008

000A
000D
0010
0012
0015
0017
0019
001B
001E
0021
0024
0027
002A
002cC
002E
0031

8E
TF
20
e
A3
24
E3
B7
B6
BD
B6
8C
26
IF
BD
39

Fig.

2710
03ES8
0064
000A

0002
0000
03
0000
84
F9
81
0001
0000
FA8B
0001
000A
E1l
98
FA8B

8.1.

* % X % X

COUNT RMB1

TEMP RMB1

*

K10TAB FDB
FDB
FDB
FDB

*

BINDEC LDX
LOOP1 CLR
BRA
LOOP2 INC
NOINC SUBD
BCC
PRNS
STA
LDA
JSR
LDA
CMPX
BNE
TFR
JSR
RTS

NON RELOCATABLE
NON RE-ENTRANT

10000
1000
100
10

£K10TAB
COUNT
NOINC
COUNT

, X

LOOP2
ADDD , X++
TEMP
COUNT
HEXOUT
TEMP
£K10TAB+8
LOOP1

B,A
HEXOUT

BINARY-TO-DECIMAL VERSION 1

POINT TO TABLE

SUBTRACT POWER OF 10

MAKE POSITIVE

IN MONITOR

RESTORE D

ALL DONE?

GET REMAINDER
LAST DIGIT OF RESULT

Original binary-to-decimal routine.

57

0000
0002
0004
0006
0008

0009
000B
000E
0010
0012
0014
0016
0018
001A
001cC
001E
0020
0023
0025
0027
0029
002B
002E
0030

34
30
32
6F
20
6C
A3
24
E3
A7
A6
BD
A6
6D
2A
1F
BD
32
35

Fig.

ok & ok ok X

2710
03E8
0064
000A
FF

K10TAB

*

36 BINDEC
8CF2

TE

E4 cv

02

E4 Ccv2
84 NOINC
FA

81 Ccv3
61

E4

FA8B

61

84

E7

98

FA8B

62

B6

8.2.

FDB
FDB
FDB
FDB
FCB

PSHS
LEAX
LEAS
CLR
BRA
INC
SUED
BCC
ADDD
STA
LDA
JSR
LDA
TST
BPL
TEFR
JSR
LEAS
PULS

10000
1000
100
10
SFF

A,B,X,Y
K10TAB, PCR
-2,8

,S

NOINC

,S

, X

cv2

, X4+

1,

,S

HEXOUT

1,

, X

cv

B,A

HEXOUT

2,8
A,B,X,Y,PC

58

BINARY-TO-DECIMAL VERSION 2

RELOCATABLE AND RE-ENTRANT
ALL REGISTERS PRESERVED

END OF TABLE MARKER

SAVE REGISTERS
POSITION INDEPENDENT
GET WORKSPACE ON STACK

SUBTRACT POWER OF 10

MAKE POSITIVE AGAIN
SAVE A

GET COUNT

PRINT A IN HEX DIGIT
RESTORE A

DONE?

GET REMAINDER

PRINT IT

RESTORE WORKSPACE
RESTORE REGS. & RETURN

Improved binary-to-decimal routine.

and restored by the instruction:
LEAS 2,X

Finally, the contents of the registers used by the routine are saved

on the stack on entry to the routine with the instruction:

PSHS A,B,X,Y

and restored on exit from the routine.

59

8.2 Recursive Programming

The provision of a user stack, and the wide variety of addressing modes,
make the 6809 very suitable for recursive programming. Many programming
problems can be solved better recursively than by conventional iterative
methods, and such solutions are often shorter and simpler to understand.
Typical applications include the writing of high-level language compilers
and syntax analyzers, and algebraic manipulation.

A recursive routine is a routine whose definition includes a reference
to itself. As an example of the ease with which the 6809 handles recursive
programming a routine to calculate binomial coefficients will be considered.
The binomial coefficient "C, gives the number of different combinations of n
things taken r at a time. Thus the number of different combinations of three
things, A, B, and C, taken two at a time is 3C, or 3; namely AB, AC, and BC.

One possible recursive definition of this function is as follows:

C(n,r) =1 if n=0
=1 if n=r
= C(n-1,r) + C(n-1,r-1) otherwise.

For this definition the function has beed written in the form C(n,r)
rather than the traditional *C,.

The provision of a user stack on the 6809 makes it possible to push
and pull the arguments to subroutines without interference from subroutine
return addresses. In the routine of Fig. 7.3 the values of
n and r are passed to the routine in the A and B registers respectively, and
the routine returns the result on the user stack. If n has a value other than
0 or r the routine will be entered recursively, and the user stack will

expand to hold intermediate results.

60

0000
0002
0003
0005
0007
0009
00o0cC
000E
000F
0011
0013
0014
0015
0017
0019
001B
001D

001E
0021
0024
0027
0029

36
5D
27
El
26
cc
20
4A
8D
EC
5A
4A
8D
37
E3
ED
39

CE
cc
BD
37
TE

Fig.

06

04
C4
05

0001

oD

EF
42

E9
06
Cl
C4

0300
0703
0000

10

FATS

8.

3.

Xk ok ok o X

NCR PSHU
TSTB
BEQ
CMPB
BNE
ONE LDD
BRA
NONE DECA
BSR
LDD
DECB
DECA
BSR
PULU
ADDD
RESULT STD
RTS

*

* TEST C(7,3)

RELOCATABLE & RE-ENTRANT

A,B

ONE

, U
NONE
El
RESULT

NCR
2,0

NCR
A,B
, U+
,U

*RESULT SHOULD BE $23

*

TEST LDU
LDD
JSR
PULU X
JMP

£50300
ES0703
NCR

RECURSIVE SUBROUTINE TO CALCULATE
BINOMIAL COEFFICIENTS.

B=07?
A=B?
RETURN 1

C(A-1,B)

C(a-1,B-1)

ADD RESULTS
ON USER STACK

USER STACK
SET UP A AND B

PRINT RESULT

OPXREG

FROM STACK.

Recursive routine to calculate "C,.

61

8.3 Software Compatibility with 6800.

The 6809 is source-code compatible with the 6800; in other words, any
assembler program for the 6800 can be re-assembled for the 6809. However the
resulting program is unlikely to be optimal, and in most cases where size or
speed are important it is probably better to rewrite the program to take
advantage of the 6809's more advanced features. Many of the 6800's
instructions have direct equivalents on the 6809. The following section lists

exceptions to this:

6800 Instruction 6809 Equivalent
ABA PSHS B; ADDA , S+
CBA PSHS B; CMPA , S+
CLC ANDCC #SFE

CLI ANDCC #SEF

CLV ANDCC #S$SFD

CPX CMPX P

DES LEAS -1,S

DEX LEAX -1,X

INS LEAS 1,8

INX LEAX 1,X

LDAA LDA

LDAB LDB

ORAA ORA

ORAB ORB

PSHA PSHS A

PSHB PSHS B

PULA PULS A

PULB PULS B

SBA PSHS B; SUBA ,S+
SEC ORCC #501

SEI ORCC #510

SEV ORCC #502
STAA. STA

STAB STB

TAB TEFR A,B; TST A
TAP TFR A,CC

TBA TFR B,A; TST A
TPA TFR CC,A

TSX TFR S, X

TXS TFR X, S

WAT CWAT #SFF

62

5.

6.

8.3.1 Software Incompatibilities Between 6800 and 6809.

The new stacking order on the 6809 exchanges the order of ACCA

and ACCB; this allows ACCA to stack as the MS byte of the

pair.

The new stacking order on the 6809 invalidates previous 6800

code which displayed X or PC from the stack.

Additional stacking length on the 6809 stacks five more bytes

for each NMI, IRQ, or SWI when compared to 6800.

The 6809 stack pointer points directly at the last item placed

on the stack, instead of the location before the last item
as in 6800. In general this is not a problem since the
most-usual method of pointing at the stack in the 6800 is
to execute a TSX. The TSX increments the value during the
transfer, making X point directly at the last item on the

stack.

The stack pointer may thus be initialized one location
higher on the 6809 than in the 6800; similarly, comparison

values may need to be one location higher.

Any 6800 program which does all stack manipulation through X
(i.e., LDX #CAT, TXS instead of LDS #CAT) will have an

exactly-correct stack translation when assembled for 6809.

Instruction timings in 6809 will, in general, be different

from other 6800-family processors.

The 6809 uses the two high-order condition code register bits.

Consequently, these will not, in general, appear as 1l's as

on the 6800.

63

The 6809 TST instruction does not affect the C-flag, while 6800
TST does clear the C-flag.

The 6809 right shifts (ASR, LSR, ROR) do not affect V;

the 6800 shifts set V = b, ® b6"

The 6809 H-flag is not defined as having any particular state
after subtract-like operations (CMP, NEG, SBC, SUB); the 6800

clears the H-flag under these conditions.

The 6800 CPX instruction compared MS byte then LS byte;
consequently only the Z-flag was set correctly for branching.

The 6809 instructions (CPX/CMPX) set all flags correctly.

11. The 6809 instruction LEA may or may not affect the Z-flag
depending upon which register is being loaded; LEAX and LEAY do
affect the Z-flag, while LEAS and LEAU do not. Thus, the User
Stack does not exactly emulate the index registers in this

respect.

64

8.4 Software Compatibility with 6502.

Acorn have decided to support both the 6502 and the 6809 because

these processors each have advantages for different application areas. The
6502 will generally produce shorter, faster programs in simple
applications, such as industrial control, where only 8-bit arithmetic is
needed, and where data is to be moved between pre-defined areas

of memory. For more complicated programming tasks, such as the writing of
high-level language compilers, text processors, and interpreters, the 6809's
more sophisticated addressing modes and 16-bit arithmetic operations will
make the 6809 better suited to the task.

Most programs for the 6502 can be translated fairly directly

into instructions for the 6809, but because programs for the 6502 tend to
make use of assumptions about the positions of data and variables, programs
translated directly from 6502 to 6809 will generally be longer and slower.

The following differences between the two processors should be noted:

1. The order of the address bytes on the 6502 is the opposite to that on

the 6809. Thus: JSR $1234 is
20 34 12 on the 6502, but:
BD 12 34 on the 6809.

2. The SBC and CMP operations on the 6502 set the carry flag if there was
no borrow, but clear the carry under the same circumstances on the 6809.
For example:

LDA $40

SBC $20 sets the carry on the 6502 but clears it on the 6809.

3. The X and Y registers on the 6809 are each 16 bits wide, but only 8
bits wide on the 6502.

65

4. The 6502's instructions INX, DEX, INY, DEY correspond roughly to the
6809's instructions LEAX 1,X; LEAX -1,X; LEAY 1,Y; and LEAY -1,Y.
However, note that whereas the 6502's instructions affect both the N and Z

flags, the 6809 instructions affect only the Z flag.

5. The 6502's indexed indirect addressing mode can be directly replaced by
the 6809's indexed indirect mode:

LDA (TABLE, X) on the 6502 becomes:

LDA (TABLE, X) on the 6809.

However the 6502's post-indexed indirect mode:
LDA (TABLE),Y

has no direct equivalent in the 6809. Instead the address can be held in a
16-bit register, such as U, and the B register can then be used for
indexing:

LDU TABLE

LDA B,U

6. The 6502's BIT instruction not only sets the Z flag depending on the
result of ANDing the accumulator with the specified memory location, but
also copies bits 6 and 7 of the location into the N and V flags respectively.
The 6809's BIT instruction does not do this, but the TST instruction can be

used instead.

66

9.0 ASSEMBLY INSTRUCTIONS

9.1 6809 Card

Before attempting to assemble the 6809 card check that all the components
are present and that none have been damaged.

It is worthwhile taking a few minutes to make sure that all the components
can be identified. Sometimes components will be substituted in case of supply

difficulties. For instance, 0.047 uF capacitors may replace 0.1 uF capacitors

shown on the parts list. The components substituted will in no way
detrimental to the system's operation. Also some manufacturers have similar

but different type numbers .

For capacitors note that the value may be expressed in one of two ways:-

100 nF = 0.1 uF
10 nF = 0.01 uF
1 nF = 1000 pF
0.1 nF = 100 pF etc.

Capacitors supplied with the Acorn cards are usually identified by a 3 digit
number, the first two digits being the first two digits of the wvalue and the

third being the number of following zeroes eg.

101 = 10 and one zero ie. 100 pF
103 = 10 and three zeroce's ie. 10000 pf = 10 nF
473 = 47 and three zero's i.e. 47000 pF =

47 nF = 0.047 uF.

If in doubt about the capacitor values, count the number of each of type
supplied in the kit and then identify them using the parts list quantities.
The electrolytic capacitors are polarised and the positive

end marked + must be located as indicated on the circuit card.

67

PCB
IC1
Ic2
IC3
Ic4
ICS
IC6
IC7
Ics
IC9
IC10
ICl1
ICl2
IC13
ICl4
IC15
XTAL
R1 -

R10

Ccl

c2 -

co9

15

6809 C.P.U. Card Parts List

Printed Circuit Board 200.012

6809 Microprocessor

6522 Versatile Interface Adapter

7415244 Buffer

2716 2K monitor ROM

2114 RAM

2114 RAM

7415244

7415244

7415244

INS8208 (or DP8304)
745470 Bipolar ROM
741874

74Ls00

74LS00

74LS86

4 MHz Crystal

3 off 1K resistor

6 off 560R resistor

6 off 3K3 resistor

22uF electrolytic capacitor
5 off 47 (or 100) nF capacitor
2 off 24pF capacitors
Optional - not supplied.

68

40

20

24

18

20

14

socket

socket

socket

socket

socket

socket

14 —m

L

5

5

[+

5
qn

ce

ice
[
L1 UL
S
I8
U g - - r e ®
T EEEE
L, L
I U
- .7 —fj—
s 7
£e =
i o 6
ot I

I+

acorn

6809

||H —

Fig. 9.1. 6809 Card Component Layout.

69

The resistor colour code is shown here.

, 4
| lt e
L
\ tolerance band

second band
first band decade band

The first and second bands give the resistor value and

the decade band shows the number of zeros following:-

0 Black

1 Brown

2 Red

3 Orange e.g. Yellow, Violet, Orange
4 Yellow is Yellow, Violet . 4,7 and
5 Green Orange 3 zeros i.e. 000.

6 Blue So the value is 47000 ohms,
7 Violet i.e. 47 kilo-ohms or 47K.

8 Grey

9 White

The tolerance band is red for * 2%, gold for * 5% or silver

for + 10%.

Assembling the card will require a considerable amount of
soldering and a small electric soldering iron is essential with a
diameter at the end of the bit not exceeding 0.1 inches. The iron
should be rated between 10 and 30 watts and fine 22 guage
flux cored solder should be used. If you have never soldered before

we advise you not try to assemble the card without assistance as Acorn
Computer Ltd. can not accept responsibility for kits which have beem
improperly assembled. When soldering make sure the component is well
pushed on to the board as shown, use a minimum of solder and once the

solder has run remove the iron.

70

Some of the integrated circuits used in the system employ M.O.S.
technology and they can be damaged by static electricity. As a
general rule if there is no noticable static charge in the area and
no nylon clothes or carpets are present all will be well. An earthed
soldering iron should be used when soldering on a board containing M.
0.S., I.C.'s and the I.C.'s should be kept on the conducting foam on
which they are supplied until required.

The Acorn Printed Circuit cards are double sided, through hole
plated glass fibre and are manufactured to the highest standards. A
layer of green solder resist ensures that accidental solder splashes do
not stick to the tracks and a clearly marked white silk screen
indicates component positions. Examine the cards for faults or damage
before proceeding. It is not necessary to solder through holes which
connect one side of a board to the other and do not have a component
lead in them and attempting to do so can break the through hole plating
and thus the connection. All soldering should only be done on the

opposite side of the board to the components (i.e. side 1).

The cards are each supplied with a full set of integrated circuit
sockets. The sockets must be fitted the right way round, on the
circuit board viewing it from the top pin 1 of an I.C. is identified

as shown:-

Pin 1

The sockets will have either a 45° chamfer for pin 1 or a

semi circular cut out as shown:-

Note that on the 6809 card ICl and IC2 are the opposite
way round to the other sockets nearby. Fit the sockets one at a time
and ensure that they are pressed fully down with no leads bent under
the socket before first soldering two diagonally opposite pins at the
corners. Check that the socket is the right way round and successfully

fitted nefore soldering the rest of the pins.

There is no need to snip off the excess of the socket pins.

After the I.C. sockets the resistors and capacitors are fitted to
the circuit cards. Identify the component from the component list and

fit it to the board. Some capacitors will need to be fitted as shown.

Do not crack the
capacitor body when
bending the leads.

The crystal on the C.P.U. card is fitted as shown:-

Again bend the leads away from the component body and lay the
Crystal down on the board before soldering. Snip off any excess
leads under the board.

The connector is fixed to a card using two 2.5 mm screws and
nuts before soldering the pins. When all of the components are
soldered the integrated circuits may be fitted in their sockets, pin

1 is identified by either a semicircle or a dot as shown:-

PNl Pind

Identify the I.C. type from the components list and plug it
into the appropriate socket. If the leads are splayed out press
them all in together until the I.C. fits easily to the socket.

Note that IC1l and IC2 are the opposite way round to the

other ICs on the 6809 card.
73

9.2 Visual Display Unit Card

The 6809 card is designed to work with the Acorn VDU Card, which will
drive a monitor or television. The standard output is a 1 volt 75 ohm
composite video signal, and a 75 ohm coaxial cable connected to this will
drive a monitor directly. This signal may also be used to drive a UHF

modulator to give an interface to a standard television.

9.3 Cassette Interface
The Acorn cassette interface card is a Computer Users Tape Standard

interface which connects to the recorder as shown:-

Ic”
DIN Pl |, OUTAUT To REORDER —y
dINEeNEg , Ov =
DEIN PINTD , INPUT Flom RecoRDER b——
Oov =3
BAcK VIEQ .
OoF DIN PLOG. o T <2
N o CARBLE SI\DE ,

This recorder output consists of one of two tones, 2.4 KHz
represents a logic 1 and 1.2 KHz a logic 0. Each bit i.e. o or 1
lasts for 3.3 mS giving an operating speed of 300 bits/ second.

Both recording and playback are crystal controlled giving a low
error rate and except on very cheap recorders whose speed may vary,
no trouble should be experienced in transferring tapes from one

machine to another.

9.4 Keyboard and Cassette Interface Connections

A parallel ASCII keyboard is required to be fitted on the
front of C.P.U. card. A 5 volt supply for the keyboard is available
and the board requires a 'low for key depressed' strobe signal. The

connections may be soldered to the front of the board as follows:-

74

(top)

(bottom)

20
19
18
17
16
15
14
13
12
11
10

P o ws ooy Jd oo

+ 5 volts
Reset
Key strobe

Data
Data
Data
Data
Data
Data
Data
E

bit
bit
bit
bit
bit
bit
bit

CASIN
CASOUT

0 volts

O N W™ o

The reset is provided by a simple push button connected to 0

volts. This is often available as an extra key on ASCII

keyboards.

If desired a 20 way pcb header can be fitted to the C.P.U.

in which case the keyboard connections are as follows:-

20 Data

18 Data

16 Data

14 Data

12 Data

10 Data

8 E

6 CASIN

4.CASOUT

bit

bit

bit

bit

bit

bit

5

19 Data bit 6

17

15

13

11

Key strobe
Reset
+ 5 volts

0 volts

75

card

9.5 Backplane

The 'A' side of the edge connector on the 6809 card carries all the
essential bus signals, and these should be connected to other cards in the
system by means of a suitable backplane. A piece of 0.1" matrix strip
veroboard may be used, the cards connecting to the backplane by means of
32-way indirect plugs and sockets. Alternatively the Acorn backplane card
may be used; this will accomodate 64-way indirect connectors, thus
providing access to the 'B' side connections on the cards.

The connections between the cassette interface and the 6809 CPU
card may be made by connecting the following pins on the backplane

connectors:

CPU card pin A29 to cassette interface pin Bll, E clock

" B19 gy " B12, CASIN

" B20 " " B13, CASOUT.
9.6 Power Supply

To power the 6809 card and the VDU card a 5 volt stabilized power supply
will be needed; this should be capable of supplying at least 1.5 amps.

76

Faen
(-1 X

2u19
eez8
8408
@420
agea
aaac
0GaE

aa4@
enve
A6
8RO
enel
2A01
2AB2
onB4

2986

oezn
oR7F
@o7F

0020
002C
2020
- x]

16
0004

@258
258

R EEEE KK

¥

MPROM

-
ROUS
COLS
PSIZE
FAGE
CRTC
PAGHI
CURHI

DRIVE
FLOPY
FOCC
FDCS
FOCP
FOCR
FDRST
FDCOD

KUIA
KORB
KIRB
KORA
KIRA
KDORB
KDDRA
KTiCL
KT1CH
KTIiLL
KTILH
KT2CL
KT2CH
KSR
KACR
KPCR
KIFR
KIER
KORAZ

INTDEL
T1IFLG
CBIFLG

-
X
3
x

KIER

R ER B ERE R EEE

v
i

EQU
EQu

EQU

EQU
EQU
Equ
EQu
EQU

EQU

EQU
EQU

EQU
EQU

Acorn monitor for €809 srocessor
.

ISSUE 1 - V49 - FEB 1980

This program handles a memory mapped vdu, encoded keyboard,
cassette interface, parallel printer,and mini—floppy bootstrap.

$F80 normal monitor position at top of memory

$8200/256 direct page for monitor

25 number of rows on display

48 number of characters per row

1824 size of display memory in total

$2400 location of memory that vdu uses

$0800 location of cri controller on vdy card

12 page address register, high byte

14 cursor address register, high byte

$40 drive to dootstrap from, other drive is $80

$A08 location of floppy disc controller

FLOPY+0 command register

FDCC status register

FLOPY+1 parameter register

FDCP result register

FLOPY+2 reset register

FLOPY+4 data register

$0980 location of versatile intarface adaptor

KUIA+$O output register b

KORB input ragister b

KUlA+$1 output register a

KORA input register a

KUIA+$2 data direction register b

KUIA+$3 data direction register a

KUIA+$4 timer 1 counter low

KU1A+$5 timar 1 counter high

KUTA+$6 | timer 1 latch low

KUIA+$? timer 1 latch high

KUIA+$8 timer 2 counter low

KUIA+$9 timer 2 counter high

KUIA+$A shift register

'KUIA+$E auxilliary control register

KUIA+SC peripheraal control register

KU1A+$D interrupt flag register

KUIA+SE interrupt enadble register

KUIA+$F input/output register a without handshake

15%256 delay for single instruction trace is 15 cycles

791008000 interrupt flag position for timer 1

%00010000 interrupt flag position for keyboard input

Z11101111 initial value for peripheral control register,
bit @, positive edge printer interrupt on cal,

but not used in this monitor.
bits 1-3, output to activate printer, normally high
bit 4, negative edge keyboard interrupt
bits S-7, cassette output initially set high

Z11818000 interrupt enable register control
bit 4, keyboard interrupt enable
pit 6, timer 1 interrupt enable
bit ?, set interrupts enabled
other enables not altered

#e00o0v10 bit postion of printer strobe in pcr

#00123000a bit position that controls cassette ocutput in per
$2F a software interrupt used for breakpoints

81+1 buffar up to 80 characters from keyboard

- monitor prompt character

$7F keyboard character that does rubout operation
$?F character that backspaces vdu, also used to do rubout
$0A linefeed character

$00 carriage return character

$20 blank space character

. a comma character

i a minus character

$eC character used as clear screen command

' a semicolon

$1e

$84

definitions of variables on page 2
$8258B
stack pointer starts here

-
* ram table 1 starts here

this table copied from rom on start up

77

8098
o893
0100
01081
e102
0103
o104
0105
9106
[J1-rg
0108
o183
2130
o111
o112
21132
o114
o113
el116
e11?7
8118
2119
0120
2121
8122
123
2124
8125
8126
o127
oiz8
0129
2129
0121
0132
0133
2124
81335
2136
2137
2128
2129
a140
2141
@_42
21432
0144
2143
e14s6
a147

8149
2150
81351
8152
8153
01354
8155

0157
2158
8159
ai6e
o161
0.62
a162
2164
Q165
o166
0167
8168
2169
e178
2171
Q172
e172
e174
01?75
8176
8177
8178
e179
0180
8181
Q182
o183
21684
0185
0186
2187

0189
0190
2131
8192
8132

o358
@350
Q35F
0260

@387
0389
ez8B
2280
°28F
az9%e
2291

8395

L]
@2AC
@ZAE

FBee

iF

CE

17
1?7
oF
17
8E
oF
1c

86
BE
26
17

0062
2002
0eol
eoet

§3

FRRERRAAARLRTE

it

0002

i

2002
800

-

2001

i

0003
2001

i

e0e2
0001
2002
o002

:

2052

§

on

WAYWVAOOBUARARGVAWUNOAGNWRNENIANWNENAWW

WWON

RST1

STRT1

STRT2

-l N

RME

3

33333333433333333333
NNNRONNRRDRORNRONNRORNRNNR = -

2% 1333313333333333333313

positon of stack pointer when empty

numbar of instructions to tracesbefore stopping
character sent to backspace display

keyboard buffer/echo control

bits @-5, don’t cares

bit 6 echo consols input to consocle output if set
it 7 buffer input lines, allow rubout if set

printer control flag, echo console output to printer if
this character not sent to printer non-zero
delay count for cassette, controls baud rate

address for console output

address for consola input

address for cassette output

address for cassette input

address of printer output routine

address of vdu function table

address of monitor command table

address to go to on timer 1 interrupt

address of memory input line, @ if none

address of reserved vector routine

address of swi3 routine

address of swi2 routine

address of firq routine

address of irq routine

address of swi routine

address of nmi routine

cassette load offset

general variables for monitor use

; gNNNDNND-‘NNONNN"—NNNN
S b
z

2
§

static head pointer into line buffer

dynamMic head pointer into line buffer

tail pointer into line buffer

stack saved whilst memory 1nterpreting

current row of cursor on display

current column of cursor on display

current start of display page in memory

saved address for memory comma

savad address for go command

saved name for cassette inputsoutput

saved cassette output start address

saved cassette output end address

flag set to zero when find cr in input line
saved last character from input line

current address of a breakpoint, $FFFF if none
number of breakpoints to ignore before stopping user
user instruction at breakpoint address

number of instructions left to trace before stopping us
saved user stack pointer when user halted
temporary storage

line input buyffer

hardware reset starts at this address

#MONDP
A, OP

MONDP
#PTAB1
#RTABL
.34

,Us
#PTAB2
RST1
STACK
MPROM-2
#$A5SAH
STRT1

{ MPROM-41
#BACK

178

setup. .

. direct page

tell assembler

rom table start

ram table start
copy rom. .

v. to ram

until end.

.. of table

setup stack pointer
check for.

.. extra rom,

not there,

else call it

put monitor return .
. onto stack

put dummy. .

. registers.,

.. onto stack

save stack pointer
get start of buffer. .
<, and setup.

.. pointers

initialise crt controller
and via chips

set no saved character
remove if exists

than set..

.. nep-existing

allow {nterrupts

send prompl, .
.. unlass. .
.. mamory input

F857
Fa5n
Fesc

FBSE
F860@
FB862

F866
F868

'Fe6C

F86F

24

18FF

G%3 3%%3;333& RT3 3

SARRYSRARER

REIRIBRAIRRY

8238 RBRI BR2RB5:

B3%

FFBD

21B1
F8

0367 1

WOANNGYAGUH ANU

WNAN

UNGRNINN

-

AN RAAANGVOAGNU OAWVNIAOND

10

WRNUVANNWODUANNYONWYNOANANG

MON1L
PARSE

PARSEC

*EEREEE R

3
:

CONCHR

CON1

* #

O%# &

ONIN

-
CON2

*ERRE

XREG

mas

EX1

ExX2

EX2

* *

SETOP
PSHS
STS
STX
CLR
BRA

LDA
TST
BEQ
CMPA
BNE
CLR
RTS

SETDP

ONL INE set no cr yet

#MONDP

A, DP

MONDP

LINEPT see if mem input,
PARSEC if so, then

X see if null yet
MEND end if is a null
CONCHR get input

MON prompt on cr
CMNDI ¢lse command table..
DISPCH .+ search

PARSE

enter hare for monitor to use memory input line
x> is start of line, ends with a null.

multiple input lines are allowed, each line ends
with a carriage return

exits with Ca) zero if all ok, else (a> is S$FF
if found null too early, else Cad is character
caucing error,

Q

oP

MSTACK save stack for return
L INEPT save pointer in memory
LASTC set none saved

MON and call monitor

#CR assume cr now

ONLINE and if found cr then
CON1 is correct

CONIN get input

#CR if not cr then .

CONZ «.done

ONLINE set found cr

MONOP

consocle input routine, gets character from kayboard
buffer or memory 1if finds null in memory then returns to
to caller with error $FF

oP, %
WMONDP setup. .
A, DP . direct page
LASTC saved one?
CONS none saved
LASTC not saved anymore
DP, %, PC
LINEPT see if mem input
CON3 no, use buffer
FE.d get mem value
CONg ok if not null
set to $FF
MSTACK
LINEPT clear mem. .
LINEPT+1 .. input
DP, PC and return to caller
CCINADR] get console input
LINEPT store new mem pointer
DP, X, PC

this routine prints the registers from the stack as pointed
to by usrstk, then prints usrstk itself.
also prints 5 bytes starting at C(ped

#TITLES headings. .

STRING ..printed first
USRSTK

»4 ie, cc,a,b,dp

U get data..

OPARSP .. output as 2 hex digits
EX1 until all 4 output
»4 ie, x, 4, u, pc

S U get 2 bytes. .
OPXREG . as 4 hex digits
EX2 until all output
USRSTX then put out stack
OPXREG .. address

10, % get user pc valus
#PCHESS send. ,

STRING oo title

5 then S bytes

g

OPARSP

EXZ

output the string cr,1f to console

79

@291 FBEYS BE FF92 3 OPCRLF LDX #SCRLF string address of cr, 1f

[>Fackq »* output the string pointed to by (x> wuntil a null,
az94 - leaves x pointing to null+l, other registers intact
8295 *

8296 FBEC 24 @2 6 STRING PSHS A

@297 FBEE A6 80 6 STRNG1 LDA R get datd . -

9298 F8FO 27 o5 2 BEQ EOTXT .. finish if aull.]

8299 F8F2z 17 912C 9 LBSR CONOUT .. else output. .

820 FBFS 20 F?7 3 BRA STRNG1 .. and repeat

@281 FBF?7 325 82 8 EOTXT PULS A, PC get back a, and return

232082 *

ezez - calculate apparent address of cursor without
a204 - allowing for memory wrap around, result in d
225 »

9206 FOF9 86 28 2 CCOFST LDA #COLS

o207 F8FB D6 &F 4 LOB CROM

a2e8 FOFD 30 11 ML

a2e9 FOFE DB 50 4 ADDB CCOL

9210 F980 85 080 2 ADCA W0

eL11 F982 D3 91 6 ADDD CPAGE

8212 F904 29 S RTS

o212 *

214 * calculate real address of cursor in memory space,
9215 * rasult returned in x

azi16 »

8217 F905 24 06 7 CCLOCN PSHS D

@318 F987 80 Fo 7 BSR CCOFST apparent address

2219 F999 84 82 2 ANDA 711 wrap around in 1k page

8228 F99B C2 2400 4 ADDD WPAGE add start of page

8221 F90E 1F 21 [TFR D, X

o322 Foie 25 86 9 PULS 0,PC unsave and return

8323 *

824 * initialise versatile interface adapter.

225 »*

8226 F91z CC EFDO 2 VIal LOn #IKPCR*256+1K1ER

8227 F91S 8& a98e 3 LOX WWUIA point to via

8228 F918 A7 ec S STA KPCR-KV1A, X pearipheral control register
@229 F9tA E? OE 5 sTR KIER—KU1A, X interrupt enable register

@226 FI1L 86 ?F 2 LDA #S7F printer output (7 bitsd plus. .
8331 FI1E A7 (%3 S5 STA KDORA—KVIA, X .. cassette input on ‘a’ side
a2 FILe A6 oD S LDA KIFR-KUIA, X cancel any .

222 F922 A? oD -1 STA KIFR-KVIA, ¥ ..interrupts present

8224 FS24 29 £ RTS

8223 - ‘

a226 * initialise crt controller on vdu card, r or s version
az3? *

828 F925 BE FFeD 2 CRTCI LDX #CRTCSY table for v version

8229 F928 CC BDAA 2 LDD #PAGHI +1%2T6+$AR test the page register.,
6240 F92B FD 0300 6 STD CRYC .. Clow byted for read/write. .
83241 F92E F1 @801 5 CMPB CRTC+1 .. ability

0242 F931 27 @2 2 BEG CRTCI1 if so, then v version. .

242 F932 20 eC E LEAX CRTCRU-CRTCSV, X .. else get r table instead

9244 F925 86 o8 2 CRTCI11 LDA 11 setup 12 registers

9243 F927 E6 86 S CRTCI2 LDB A X get data..

8246 F929 FD 2800 6 STD CRTC ..and store it in correct register
8247 FI3C 4A 2 DECA

0248 F920 2n F8 3 BPL CRTCI2 repeat until all 12 done

a49 *

o250 - reset display to a blank page with cursor
a351 * at top left of screen
azs2 -

8332 F92F oF ofF € CLRALL CLR CROW row @ -
854 F941 OF 90 3 CLR ccoL column @

@355 F942 OF 91 6 CLR CPAGE current page set..

8256 F945 OF 92 6 CLR CPAGE+1 .. to start of display memory
9357 F947 17 089C 9 LBSR SETTOP set page in crtc chip
58 F94n 17 20A1 9 LBSR SETCUR and set cursor in crtc chip
acs9 »

0260 * clear the display memory to all blanks

[-x131 *

V262 F94D CC 2020 2 CLRSCN LDD WSPACE»256+SPACE

862 F950 S8E 9400 3 LOX #PAGE start of display memory

8264 F9S2 ED 81 8 CLRS1 STD Raad store two blanks

8265 F953 BC 0880 4 CMPX #PNAGE+t024 and repeat. .

8266 FISS8 26 F9 3 BNE CLRS1 .. until done all page

0267 FISA 29 S RTS

o268 »

269 * this routine used to put a character to the vduy,
370 * handling cr, 15, backspace, and form feed.

az71 » all registers are saved
azr2 »*

8372 FISB 24 7F 15 DISPLA PSHS DP,CC,D, X, ¥V, U save registers
@274 F9S0 C6 @2 2 LD8 MMONDP

8375 F9SF IF S8 6 TFR B, DP
az76 F961 9E 6F S LDX FUNCTT get function table
@377 F962 1A 10 2 ORCC #IRO stop interrupts since not re-entrant
8278 F963 8D F ? PSR DISPCH Jump on function table
279 F967 35 FF 17 PULS DP,CC,D, X, ¥,U,PC then restore and return
o380 -
8281 » this routine puts a character on display and moves cursor,
a8 -

8282 F963 8D 9A 7 SINCHR BSR CCLOCN find location in memory .
8384 F96B A7 B84 4 sTA R ..and store character

82835 FS6D ocC 90 6 INC ccoL MOVE CUrsSOr Across. .

Q286 FI6F 96 90 4 LA ccoL «. then done if..

80

0287
a2es
a283
9390
291
a292
8293
394

F971

FI72 26

F9?5

F9E6
FIES
FSEA

F9EC

38388 BBPR2RY

78838

URET VRS

28
90

eF

04

%

40
69

89288

91
09

90

WNAWNSG NMWN

WNNNSN

UOARWUABNIR

L

WHrANUGNEGNEGUNRGAN- =AU

-
NUONAGADONIWWSU

woNG

* 8

@
-

R R R EEE RN EEERNEERERY]

2

LTI

0ISPCH
Dist

Dis2

DIs4

g}l**

365535

L

SCR1

SETTOP

gi}*
[l

BEQ
LEAX

TST
BECG

-

BM
LDO

:

sTD
PULS
PULS

UL

g2

355

LR

LS
Sint
ccoL

.. 1f all columns. .
. not yet Filled
do cr..

wove cursor down 1 line, scroll display if required

CROW
CRON

SRONS
SIim
CROW
SCRLL
SETCUR

down a row

last row yet..

.. if not then done..
.. else dack up. .
..and scroll instead
then set new cursor

moue cursor back erasing last character

BSONE
SSPACE
DISPLA

BSONE
SETCUR

back up cursor..

.. then blank las: character. .
.. amd dack up again
then set cursor wup

Pack cursor up allowing line and row underflow

[we: 8 left moue cursor

BS1 no underflow. .

*COLS-1 . else set to..

ccoL . right margin. .

CROM ..and up one row

es1 no row underflow. .

CROW

coou

dispatch routine looks up ¢ ~acter in a table,

character in a,

table addr X

table format is— first dyte, number of entries 1 to 235

repeat for each entry- charactear to match with,

flag byte-—

positive~
Zero-
negative—

X
2,8
0, %X, u
0, % U
L R
-1,%
0Is2
2, %

bIs1
-1, %
DI1s4
Di1s2
SR
2,8
4,8

0, %, PC
0, %, u,PC

2 byte offset from start of this
table of routine to jump to if
characters match.

control if no match found -

next word is offset of default routine
return to calling program
next word is address of another tadble to search

get address of new table .
. replace old on stack
and begin again

save registers’

get length and move to offset
compare characters

found it, else .

+ o move down. .

.. repeat until,,

..done

test flag byte

Zero means return

search new table, else. .
get offset and..

add start of table, thern. .
.. store in stack

restore and go to routine
return to caller

scroll the display up one line, leave cursor at same
position on screen, leave registers intact

CPAGE get start of page..
SROWSHCOLS .. then move off end
SPAGE actual memory address
BSPACE*236+SPACE double space
SCOLS/2 number to blank

*Z11 wrap around on 1k

, and put 2 blanks

2 move up and. .

-1,v .. repeat until..

SCR1 .. line done

SROWNS+COLS move to second line now
[749 wrap around and. .

CPAGE .. set as new page
SETCUR put cursor back in position

put page address into crt controller

CPAGE
SPAGHT
SETPAR

get page
point to page start register
then enter paraneters

do a carriage return by setting column to @

ccoL

81

BuB4
8485

0487
8488
0489
2450
8491
@492
8433
@434
8495
24936
28497
@498
2499
B5ee
eseal
a5e2
2502
a584
2585

=00
0969
8569
2570
€571
a7z
8572
374
2575
o576
es77
2578
@579
258

F9EE
F9F1
FOF3

F9FS
FOF?
FSF9
FO9FC
F9FD
FOFF
Fre2

FAB2
Fres
Fr@?
FAas
FABB
FA@D
FASF
FAie
Fa12
FAl4
FAl6
Fais
FAlA

FALC
FALE
FAIF

FA21

FA26
FA2A

FAZE
FAZe
FA2Z
FAZ4
FAZ?
FA29

3 FASC

FAZE
FA40
FA42

Fh44d

2 FA46

FA48
FAd4A
Fr4aC
FA4E
FASE
FASZ

FASZ
FASS
FASS

FASD

FASE
FAGD
FA6Z
FA64
FAE?
FAGA
FAREC
FABE

17

86

24
35
FO
4aC

Fh
29

06
2R
g1
27
8D
27
SD
2A
81
26
8D
86
9F

06
56
24

70
27

€E

SE
9C
27
8C
26

9F
96
26

FFes

@E

10
a4
2800
04
2508

LUK RN

WOHRANO AN

PNNEURNUGNENGRNW L

WS

WhAUNWBWOG

ANWEWN (L NN SR I]

N
ANWNOAOWD

*
-

»
SETCUR

ETPAR

E2E 2K IR O

HAUCHR

HAUZ

LR 2

CONOUT
CANOP1
»

BSP1

BSP2

* ¥ ¥ X%

PUTCHR

PUTL

LBSR
TFR
LoA

PSHS
PULS
STO
INCA
PULS
STD
RTS

LDB
BPL
CHMPA
BEQ
BSR
BEG
TSTB
BPL
CMPA
BNE

LoA
STR

LDB
LSLB
BPL

SETDP
TST
Bl

JSR
JMP

SETDP
LDX
CHMPX
BEG
CHPX

LEAX
LEAX
8TR
L0A
BRA

LD
BSR
CHPX
BEG
STh
STX
ANDCC
RTS

LEAX

LDX
RTS

SETDP
PSHS
BRi

CUAT
Lox
CHPX

BSR
LDA

set cursor register in crt cont-oller

CCOFST get cursor address, no wrap around
0. X inte x
#CURHI point to cursor register

put 2 byte value into crt controller, value in x,
high byte register nuaber in a

X

B get high byte

CRTC set register and data
move to low byte

B get low byte

CRTC set register ani data

this routine puts keydoard input into line buffer

if no room then ignores character, else echoes ta display
if eche is switched on handles rubout unless line buffer
is switched off.

ECHOF
HAUZ buffer off, so no rubout
#RUBCH
BSP1 go de rubout
PUTCHR put into buffer
PUTL no room, do not echo
if buffer off, then no.
HAV4 .. 1line feed on cr input
#CR
KBECHQ : not cr, so no. .
KBECHO echo of a line.
#LF .o feed
HEADST move static pointer up

put character in a to console ou-put if echo on

ECHOF see if acho on
need bit 6
PUT1 not on if zero

console output routine, sends to printer also
if switched on

-}

PFLAG if printer off then
CANOP1 : value is zero

[PRINTI] else call printer

£ COPADR] then console output
MONDF

HEADDY end of line, 1f at..
HEADST .. start of line .

PUTL .. then nothing to rubout
#BUFFER do cyclie

BSP2

BUFLEN, X ..decrement of pointer
-1, %

HEADDY set new end of line
BSECHO and echo a backspace .
KBECHO

put craracter into buffer 1f rocm, return z=6
else return z=1

HEADDY get pointer

BUMAU if no room, then
THIL .. pointers equal. .
PUTL .. s0 done

R store it ard. .
HEADL Y .. 5et new pointer
W255-2ERO

¢yclic increment of buffer pointars

1, %
WBUFFER+BUFLEN
ANRTS

#BUFFER

get character from buffer, if none then clears 1nterrupt
mask and waits. all registers saved, 1ncluding cc

]

CC, % save and. .,

GETCH1 coskip wait

#255-1RG wait for an 1nterr.pt
TAIL get tail pointer
HEADST if equals sta‘ic »ead
GETCH2 .. then no charazterz
BUMPU .. else move up

IR coand get 1t

'82

581 FA?@ BF azsp 3 STX TAIL set new tail

8582 FAVZ 25 91 19 PULS CC,X,PC

ane 2002 SETOF MONDP

a584 *

ases - output x register as 4 hex digits to console,
8586 »* all registers saved,

as8? *

@588 FA?S 24 (13 7 OPXREG PSHS o

US89 FA77 1IF 10 € TFR XD

8598 FA?S 8D 86 7 BSR OPAREG

@591 FA7B IF 28 3 TFR B, A

@592 -FA?D 8D 18 7 BSR OPARSP

6393 FATF 25 86 S PULS O,PC

3594 -

2395 * output ‘a’ register as 2 hex digits to console,
8596 L4 all registers saved except a.

0597 b

2598 FAB1 24 82 6 OPAREG PSHS A

9599 FABZ 44 2 LSRA

0600 FAB4 44 2 LSRA

0601 FASS 44 2 LSRA

0602 FABG 44 2 LSRA

9683 FAg? 8D a4 7 BSR HEXOUT left nibble

9604 FASY A6 EQ 6 L0A , S+ get byte back and. .
B€eS FA3B 84 oF 2 ANDA *1S ..do right nibble

-3 -

ocar? - output a as a single hex digit

2608 *

G609 FABD 8B 20 2 HEXOUT ADDA #'0

V618 FABF 81 29 2 CMPA #'9

9611 FA9L 23 ez 2 BLS HEX2

8612 FAIZ BB a7 2 #’A-’9-1

Q613 FRSS 20 8h 3 HEX2 BRA CONOUT output and return

@614 *

@615 »* output a hex digit followed by a space
@616 *

@617 FAS? 80 E8 7 OPARSP BSR OPAREG

9618 FASY 86 20 2 LOA #SPACE

B613 FASB 28 F8 3 BRA HEX2

9620 *

2621 * printer routine this interfaces to anadex or centronics
8622 * parallel interface printers.

2623] SETDP

8624 -

0625 FASD 24 46 9 PRINT PSHS D,U

@626 FASF CE 9980 3 Lou WKVIA point to via

Q@627 FAAZ Bl 8262 5 cMPA PNEW if spec’'d symbol then .
B€28 FAAS 27 @E 2 BEQ PEXIT do not send

8629 FARTY E6 4F S PWAIT1 LDB KORA2-KVIA, U check if busy

0620 FARS 2B FC 3 M1 PUAITL if so then wait

B631 FAAB A7 41] STA KORA-KVIA, U store data

0632 FARD C6 ED 2 LDB #IKPCR-PSTRE then low strobe. .

@632 FAAF E7 4C 5 sTB KPCR-KUIA, U

9€34 FABL C6 EF 2 LDB #IKPCR coand high .

8635 FABZ E? 4C S sTB KPCR-KUIA, U .« strobe

8636 FABS 25 Cé 11 PEXIT PULS O,U,PC

8627 eco3 SETDP MONDP

8628 hd

0633 * these tables are the decision tables for the
864a * mamory examine and change function.
0641 *

0642 FABY o8 MTABA FCB MTABAE-MTABA/2-1 number of entries
8642 FABS 56 FCB *

0644 FABS eezC FoB UADDR-MTABA modify break address and memory
2645 FABB 4?7 FCB ‘G

@646 FABC 00834 FOB GADDR-MTABA modify go address and memory
9647 FABE Se FCe P

0648 FABF 8e3C FOB PADDR-MTABA modify proceed address and wemory
8549 FACL 52 FCB ’

9658 FACZ @842 FDB RADOR-MTABA modify register locations
8651 FAC4 20 FCB SPACE

8652 FACS eas1 FDB SPACEA-MTABA

0652 FACT 2C FCB conma

€54 FACS BoOvA FDB COMMAN-MTABA

2655 FACA 2B FCB SEMIC

V656 FACB 808A FOB SEMICA-MTRABA

9657 FACD 20 FCB MINUS

86358 FACE @esE FDB MINUSA-MTABA

BESS FADO a1 FCB 1

9660 FAD1 2871 FDB NOTA-MTABA

8661 FAD2 MTABAE EQU *

as62 *

8662 FADZ a4 MTABB FCB MTABBE-MTABB/2~1

0664 FADY 20 FCB SPACE

¥665 FADS Q05E FOB SPACEB-MTABB

9666 FAD7 2c FCB COMMry

@667 FADB essn FD8 COMMAB-MTABE

2668 FADA 2B FCB SEMIC

3669 FADB 0869 FDB SEMICB-MTABB

BE78 FADD 20 FCB MINUS

8671 FADE 0072 FDOB MINUSB-MTABB

@672 FAEG -1} FCB 1

Bs72 FREL 297B FDB NOTB-MTABE

o674 FAES MTAEBE EGU *

7S *

76 * memory examine and change routing
26?7 *

83

e7e?

8718
@711
871z
712
8714
0715
ezie
8717
8718
8719
e’2e
0721

0724

FB12
FB14
FB16

FB18
FB1A
FEID
FBI1F
FB22

FBz6

FB6C

FB7@
FB?72
FB74
FB76
FB77?
FB78
FB79
FB7A
FB78
FB7D
FB?F
FB8e
FB82
FBs4
FB8é6

17

X

109€
28

CE
10ME
SF
1?7
27
8E
16

SD
zF

1F
17

17
cé

26
97
29

1F
SF

17
27

8R23BL2250R0BYUS

<8
ic

az93
Ca

FD74

FAB?
FES2

FB45

14
o4

WA WUANWORW WY

WERNOVBUYR VUWN NVVWUOUNAW

vawnu UGOHUGUN NVWQ N W&

WNUOVWWEDWNS

wyw

WWNUNNNIEINNRRNRNGNIRN N

VADDR
GADDR
ABOR1

PADDR

RADDR
RADDR1

CRA

NOTA

DAT1
CoMMAn
SPACEB
DATA

SEMICB

SEMICA

MINUSA
MINUSB

MIND2

NOTB

LBRA
TSTB
BLE
LEAY
TFR

LBSR

LDA
LBSR

STB
BRA

STA

RTS

e
LEAY

BRKOUT
WCBREAK
ADDR1
#GSAHYV

DATA
USRSTK
18,V
ADDR1
USRSTK
WTEMP
DATA

#MSAY
U

CONCHR
CRA

#MTABA
DISPCH

DISPCH

SEMICA
-1,
.4

take out any break
point to break address store

point to go address store
get initial value

point to user pc

get address off ‘cc’ register
dummy location for new value

point to memory address store
get intial value

set status zero

9et input

no address given

search address. .

«. table

if status
—1 or @ then no change
else up one

print out..

.. address

then .

.. data

set status +1
allow next line
and continue

save for re—use
get numberwith. .
«. error if none
is new address
set status @

get input .
no data, found cr

else search .

.. data table

test status,

if =1 then .

dec before

save new address
and exit

back down 1,
but if status..
o is =1 then .
«» back down 2
then continue

save for re—use
in number

should have number
store data then. .
.. cheek it

is ok,

else tell.,

e User

9o up 1

with status -1
then continue

get wrong symbol
and tell user

get hex number from input stream, allow leading spaces,
and stop on first non-hex character. return number in qa,

with v=0,
[-]

NUMB2

if no

number then d%@ and u=i,

put initial zero value
9et first non-dlank as hex value
wasn’t hex

move to.

.« high nibdle

rotate inte..

.. value

do 4 times

get a hex digit from console

was hex so use
else finish with v clear

v7S FBBR 35 86 9 NUMBI PULS B, PC

ar’ve -

az?? - gethxs - get a hex digit ignoring leading spaces
er7vs - gethex - get & hex digit

arzs - both return value in a, with umd, else set U=l if non~hex
arge T

2781 FBen 17 FCF2 9 GETHXS LBSR CONCHR get input

e7eg FBBD 27 22 3 BEQ GETHS on cr, ne number

ares FBBF B1 28 N (o) #SPACE if space. .

ares FBS1 27 F? 2 BEQ GETHXS .. then 1gnore

av8s FBSG 20 as 2 BRA GETH2 change to hex
arse -

8787 FBSS 17 FCE? 9 GETHEX LBSR CONCHR get input

@788 FB98 27V 17 2 BEQ GETHS on ¢r, no number

9789 FB9A 81 e 2 GETH2Z CMPA #’8

@79 FBSC 25 ec 2 BLO GETHI illegal hex

@751 FB9E 81 39 2 CMPA 9

8792 FBM@ 23 14 > BLS GETH2 number hex

Q792 FBAZ 81 41 2 CMPA W®’'A

8754 FBA4 2 24 2 BLO GETH1 illegal hex

Q795 FBAG 81 46 2 CMPA ®'F

8796 FBAS 22 BA 2 BLS GETH4 alpha hex

ara? FBAA 81 =2C 2 GETHI CMPA #COMMA

97938 FBAC 27 (- X3 > REQ GETHS absord comma

ar FBRE B? B2A2 S STA LASTC alse re-use
28v@ FBB1 1A /2 2 GETHS SEV bad hex

agei FBBZ 39 S RYS
232 -

a8z FBB4 8a a7 2 GETH4 SUBA 7 alpha offset
08064 FBBE 80 e 2 GETHZ SuBa L4 number offset
0805 FBB8 329 S RTS with v clear
8806 -
age7 203 SETDP MONDP
oses
=4 » resume usar program using stack as stands
esie -
. 08811 FBBY 32 62 S RESUME LEAS 2,5 strip return address
@812 FBBB 8D W ? BSR NUMB get number or zero
e8:3 FBBD DD AS S STD NBREAK and set break ignore count
8814 FBBF 80 6C 7 RES2 BSR BRKIN insert breakpoints
9815 FBC1 25 FF 17 PULS CC,A,B,DP, X ¥.U,PC and pull all user ragisters off stack
8816 »*

8817 * software interrupt handler, come here on breakpoint
8818 - either stops and displays registers or traces past
8819 - breakpoint and resumes.
082¢ -
Q821 FBCZ 86 02 2 SWIHAN LOA WMONDP setup. .
8322 FBCS IF 8B 6 TFR A, DP .. direct page
822 8003 SETOP MONOP tell assembler
8824 FBC? AE 6A 6 LDX 19, S back up. .
8825 FBCS 20 1F S LEAX -1, X .. user, .
9826 FBCB AF 6A 6 STX 10, S .. program counter

T FBCD 8D 77 7 BSR BRKOUT remove breakpoint

2828 FBCF 96 AS S LDX NBREAK get count
8829 FBD1 27 28 3 BEQ RES1 stop if zero, else .
?838 FBOZ 29 1F S5 LEAX -1, % .. decrement, ..
8831 FBDS SF AS S STX NEBREAK ..and restore
8822 FBD7 8D 76 ? BSR TUSER1 trace past break..
8833z FBOS 20 E4 3 BRA RES2 .. then resume again
V834 FBDB 10DF AR 6 RES1 STS USRSTK
@835 FBDE 17 FCD?7 9 LBSR EXREG display registers
eg36 FBEL 2@ 19 3 BRA BACK1L and stay in monitor

837 *
288 - change number in x if one given in input ctream,
8839 * destroys 4
@848 *
0841 FBEZ 80 87 ? NUMBX BSR NUMB
8842 FBES 29 @2 2 BUS NUMBX 1 no number
8842 FBE? IF Bl € TFR 0, %
0844 FBES 29 S NUMBX1 RTS
6845 *
8846 - user program returns here if rts done
2847 *
8848 FBEA 22 7E S BACK LEAS -2, 8 make room for new return address
@849 FBEC 24 FF 1?7 PSHS CC,A,B,DP, X, ¥, U,PC and save all user registers
08%5¢ FBE: BE FBEA 2 LDx #BACK set return address. .
8851 FBF1 AF 6C 6 STX 12,8 ., again
@852 FBF3 C6 83 2 LDB #MONDP
2852 FBFS IF 9B 6 TFR 8, bP
8854 FBF7 8D 40 ? BSR BRKOUT remove breakpoints
8855 FBF9 180F AR 6 sTS USRSTK save uyser glack pointer
2856 FBFC 1IC EF 2 BACK1I CLl
8857 FBFE 16 FC59 S LBRA PARSE and resume monitor functions
285¢& - *

28859 * 9o to user program, optional address specified
8860 - the stack pointer is reset, but the register contents
8861 - are maintained as listed by the & command,
8862 . *

2862 FCBL OF AS 6 GOUSER CLR NBREAK put zero inm.

8864 FCBZ 8F A6 6 CLR NEBREAK+1 . break count

9865 FL8S DE SB S Lou STACK get pointer

8866 FLO?7 BE FBEA 2 LO% #BACK return address. .

8867 FLRA AF 2] 3TX ,==U .. pushed first

@868 FLOC C6 eo 2 LoB #1142 12 registers plus return

2869 FCBE A6 ES S GOt LDA B.S get value and. .

2873 fClG A? cz 6 STA PRt .opush it

85

2871
2872
[21-recd
2874

aBve
eery

FC22
FC25
FCz28
FC2A
FC2C

FC2D
FC2F
FC21
FC32
FC35
FC37

FC28
FC2A
FC30
FC2F
FCat
FC43
FCd4

FC46
FCag
FCaf
FC4C
FC4E

FC4F
FCS1
FCS3
FCSS
FCS?7
FCS9
FCcsc
FCSF

FCé1
FCe6

FCé7
FCé9
FCEB
FCED
FC6F
FC71
FCv2Z
FC?S
FCT?

FC7h
FC?D
FC7F
FC81
FC82

FC86
Fcas

Sh
2h

9E
80
9F
AF

- B0

25

80
8E
et
9F
25

80

97
86
A7
29

JE
8C
27
AE
21
33
35

8D
26
96
A7
39

8

FFFF
-]
&4

2F

Fo
a4
A7
84

FFog

FB

AS

iF

FF6E1

FCcez

2

61

-
NOWHEBANU N Mepww VAaNSsWsW APEND WA Ad NN NNVNOANTDIN

[C RO RN

DaNB2WNW'D NEARVAAG W

NYBYVOLOWRO

-
-
»
BRKSET

BRIKIN

BRK1

*
BRKTST

BRK1G
-

e

”
BRKOUT

BRK2
*
-
*

TUSER1

*
*
™

TRACEN
TRACEL
-
*
-

-
TRACE

TRACE2

PCNTL

POFF
PON

gl'i

0CMOD

BAD1

DECB

LERS
LDX

sTX
STA

PULS

BSR
LOX
BSR
ST
RTS

BSR
BEQ

LDA
STA
RTS

Lox
CMP»
BEG
LoOA
CMPA
RTS
PULS

BSR
BNE
LOA
SThA
RTS

PULS
STX
1.0A
ANDA
STA
L0D
sTD
PULS

LBSR
STD
RTS

LDX
BEQ
LEAS
STX
BSR
LD
LEAX

L.BRA

LBSR

CMPA
BEQ
sTA
CLRA
STA
RTS

LOX
LBNE
LDX
LBSR
LBSR

RYS

GOt for all registars

2,V new stack, ignore return address
GSAY saved address

NUMBX change if given. .

GSAY ..and restore

18, S put as Juser pc

BRKIN insert breakpoint

CC,A,B,DP, X, %, U,PC and begin user program

change user breakpoint position

BRKOUT ensure old is out
#SFFFF value for no break
NUMBX change if given
CBREAK and save

put breakpoint in if one exists

BRKTST see if exists

BRK1 already a swi, so done
CINST else save it

#SWI

. R and insert a swi instead

check break required, if not does rts twice

CBREAK get address
#SFFFF $FFFF means none
BRK1@ not one
Rd get instryction
#SW1 see if swi

then exit
%, PC exit twice

remove a breakpoint i+ one present in code

BRKTST see if exists

BRK2 not swi, leave alone
CINST gat saved instruction
8 and restore in code

trace one instruction of user code

x get return address,

IRGRTS : and save it

#255-IRG clear irq mask. .

'S coin user. .

] .o condition codes

#INTDEL delay before interrupt

KT1CL set timer going. .

CC,A,B,DP, X, ¥, U,PC .. start user program running

set number of instructicons to trace on each command

NUMB get @ if no number
NTRACE save result

trace required number of instructions then display
register contents and halt user

NTRACE get number to trace

TRACE1 ighorae command if zero

2,8 strip return address

CTRACE save number left

TUSER1 trace one instruction

CTRACE get number left.

-1, .. and decrement

TRACEZ repeat if regquired

RES1 else show registers and halt user

turn printer echo of console output on or off

CONCHR get input

POFF if cr then off

*+ if plus..

PON .. then switch on

LASTC re-use if not +
switch off value

PFLAG set flag

if get bad command, query it and ignore rest of line

LINEPT if memory input. .

MENO «» then exit

HCURY output query. .

STRING . message

CONOUT and character

OPCRLF followed by cr, 1¢
CONCHR get input and. .

BAD1 if not cr then ignore it

then ca-ry on

-86

FCAL
FCA4
FCA?
FCA9
FCAC
FCAE
FCB®

“FCBR

FCB4
FCB6
FCB8
FCBA
FCBC
FCBE
FCCO
FCC2
FCCe
FCCe

FCC8
FCCA
FCCC
FCCE
FCDO
FCD2
FCD4
FCD6
FCD8
FCDA
FCDC

FCE@
FCE2
FCES
FCE?
FCES
FCEA
FCED
FCFQ

FCF2
FCF4
FCF6

¥ FCF8

FCFB

FCFE

FDB2
FDO3
FDe?

S FDO9

FDoOB
FDeo
FD1@
FD12

FD13
FO1S
FDB1?
FD19
FDiB
FD1D

FDLE
Foza
FD24

FD2S
FD27
FO2S
FD2B
FO20
FO2F
FO3e
FD31

34

81
26
86
:rg
16

24
B?

81
26

AL
29

8D
1F

1E
D3
29

AD

23

9

aeDt
FECS

az97

FBFC
84

29
o2

O9SE
FBEB

NUMANWUURNAVNENGNRNYAVY

MAWNIRNNANG QQURWRN GOWEONOOINWOHTGNINRANWNN

DAONNO

9F @268 12

17
oB

CF

2%}

-

WNNNANWE

$ £ F %

LOAD2
LOAD4
LOADS

LOAD1

LoAD?

LOADE

LR IR 3

CBIN2

CBINY

glli*i*

MCASOL

LBRA

sTA

RTS

BSR
TFR

EXG

RTS

JSR
EAU
RTS

cassatie file load routine, this searches for named file

followed by data.

NAME IN get file name

NUMB get offset

OFFSET and save

#NAME

e get name file. .
GETHDR .. header

LOAD4 ignore others

L[name length

TEMP save it

CBINL get input character
SR+ and name character
[Mg if wildcard. .

LOADY .. then matches

-1,% else compare

L0AD2 Wwrong name

TEMP count name length
LOAD2 repeat for all 6
CBIN1 ignore checksum byte

enter here fo- match withou‘t file name check

LB get data..

GETHDR . header

LOADS wrong header

CBIN2 get start address

D, % and save while. .

CBIN2 .. getting end address

D put end on stack

CBIN1 get data item. .

R ..and store it

.8 if not done. .

LOADS .. then repeat

CBIN1 get checksum byte

2 get old end address

OPXREG show address so far

upo chack summed in u
lower byte only

LOAD? if ok, then repeat

#LORY else message,

STRING .. output

KEYON

9 if not ’x9’ then..

LOAD? ..ignore

#CB1FLG+$80 turn on. .

KIER .+ keyboard

OPCRy.F then exit

get a header from the tape, if the expected one
then set a zero status, else return non-zero status
initialises the checksum in u to @

A save character

#CBIFLG turn off..

KIER .. keyboard

CBINL get from tape. .

*’ X+$80 .and if not ‘x’ then.,
GETHD1 cotry again

CBIN1 get next character..

L 2] setup checksum

, S+ and compare with required

then return

get 2 bytes and form a 16 bit value in d
add >ffset since is address

CBIN1 get 1 byte. .

A B ..anmd save while.,
CBIN1 .. get sacond

[:] wrong order, swap over
OFFSET move by offset

get 1 byte from tape, modifying checksum to suit

{CASINA] get byte then..
LAY .. add to checksum

software asynchronous transmitter, outputs value in a

as start bit, 8 data bits, 2 stop bits, at rate controlled

by count in delcnt
saves all registers

CC,0. %
keep timing

*11 total length

B save on stack

#IKPCR-COPBIT low start bit
want date inverted
get timing. .

*+2 .. constant

87

FU3Z
FD35
FO27?
Foza
FO3C
FOZE
FO3F
FD41
FD42

FD45 3

FO47

FD49
FD4B
FD4E
FDSe
FD32

FO?S
FD?8
FD7B
FD?0
FO?F
FD81
FD82
FO8S
FD87
FD89
FD8A

FOSF
FD91
FD93
FD9IS
FD9?7
FD99
FD9B
FDSD
FDSE
FDAR

3% FOM

FOA4

FORB
FOAA
FOAC

[
2B
F?
80
c4
44
25
A
20

IS

SRERE

35

27

g%

cé

8

ce

2YRBBY

23262
FC

0002

N [
E 3 P

ReBAASRESENRRENS

NAGRNWRONR NGO

-

DWW O N

GVNOUNRNOUNNGAN G AN

-

ABWREWOAGNANGNEUNGOERNONGNGN WO

ANANNBRNNNN AV ARD A

MCASOZ DEC
a8Ml
sTB
BSR
ANDB
LSRA
BCS
ORB
BRA

MCHSOZ LEAS
PULS

LI 2% 2

SETDP
CWAIT BSKR
HWALT LDX
HuWl LEAX
BNE
RTS
SETDP

* ¥ ¥

MCASIN PSHS

MCASIL LDB

MCASIZ BSR

*EEER

NAMEIN LOX

NAMS LoA
NAM4 STA

NAM1 RTS
NAME LBSR

WEEEEEF

AVE LDX

SAU6 PSHS

.S

MCASOZ
KPCR

CUAIT
#255-COPBIT
MCASOL
#COPBIT
MCASOZ

1,8
CC,0, X, PC

cwait waits fo~
huait waits 172

e
HWALT
DELCNT
-1, %
HWL

MONDP

software asynchronous receiver
saves all other registers,

B, X
#$80
KIRB
MCASTL
HWAIT
KIRE
MCASI1
CWAIT
KIRB
-]

.8

MCASI2
CUWAZT
B, X, PC

bits counter
all done

put out bit
wait 1 bit time
assume next is zero
get next bit

do want zero. .
.. alse set bit
and loop round
remove countar
and return

1 bit time, destroys x
bit time, also destroys x

do first half

get count required
decrement. .

. while noen—zero

rotating counter
wait for, .

.. start bit

wait 172 it time
recheck. .

.o start bit

wait whole bit time
and get input
waste time to. .

.. match loop delays
move bit to carry .
.. then into byte
repeat for 8 bits
get into stop bit
and done

routine gets name from input stream,

characters long.

WNANME+6
CONCHR

CONCHR
NAML
#COMMA
NAML
LASTC

save files on cassette,
as required in 256 byte blocks maximum,

no name leaves memory unaltered
any name is padded to 6 characters uith spacnes,

get a character
.. No name

if space. .

.. ignore

null name
minus name length
store a latter
and move up

done 6 chars, exit
get naxt letter
on cr, pad name
on space.
.. pad name

if not comma.
.. then use
padding

pad until..

. end of,
«. name duffaer

get next input
leave if cr
else

absorb comma
else re-use

can also inhidbit end of file block

CSSTRT
NUMBX

CSSTRT
CSENO

NUMBX

CSEND

NAME IN
#’0

XHEMD
L3
-6, X
BATOUT
CHKOUT
C8STRT
X
CSEND

88

modify start address. .
coif,

s required

modify end address.
A § 9

o required
and get nam
output name. .

.+ header

name length

point to name
output name.

«+ than checksum

gat start address
save start

and get end address

gets value into a
only gets 1 stop bit

dumps name dlock,
then end file block

1239
1240

1242
1243
1244
1245
1246

1247
1248
1249
1256
1251
1252
1252

FOCF
FOOL
FDOZ
FOD4

FODB
FOOD
FOOF
FOE1
FDE2
FOES
FDE?
FDE9
FDEA
FOEC
FOEE

FOFG
FDF2
FDFS
FOF?
FDF9
FOFB

FDFO
FE@1
FE@Z
FE®S
FE@7
FE@9
FEOB

FEBD
FE11
FE13

FE14
FE16

FEL?
FE19
FELE
FEILC

FE20

FE26

FE2S

FE40Q

fz El

25 1D

4D

27 ez

CC @OFF

2z 88

4 %6

c6 21

8D 1€

20 62

6 04

80 26

¥ 56

sC

8o 21

80 29

20 OB

17 FAsC

2z @6

21 20

27 10

97 A2

s 39

188E 200

3 F

26 FC

86 D8

80 13

iF 98

20 eoF

a6 oo

TR

80 @9

5A

26 F?

29

1F 20

tF 98

4z

6E 9F 9369
25840006
18ES
256410FF
FFFF
?Ma217C1
722268
6C00
699106
6cee
52026002
21
52020003

-

-
NEWNNY WNANN=SNVRUNN - DNWWNN VY

GaANRNDOO S

BN NU G

SAUS

ATOUT

ISCIT

* * ¥

E R X * * * % ¥ *

L

* ¥ %

* %%

Lo

LoV
LEAY

LDA
BSR
TFR
BRA

LOA
LEAY
BSR

DECB

BNE
RTS

TFR
TFR

FCB

Fce

FCB
FCB
FCB
FCB
FCcB

FCB

Fcs

, S++ form length nesded

SAU2 done all output

if <=256 then. .
SAUS .. leave alone. .
#2355 .. elsa set to 256
0, ¥ form end of block
D. %X, U put start’end on stack
[181 put a data..
XHEAD .. header
2,8 point to start/end
4 two words
DATOUT and put start/end out
D, X, U get all back

modify length
DATOUT and send data bytes
CHKOUT then checksum
SAVE and repeat
CONCHR get input
SAUZ on cr send aof block
L2 1f eof inhibit, .
RTS! .. then skip x9
LASTC re-use input
L 2] send eof..

routine to send header to block, header
also initialises checksum in y,

L L)

-1,v loop. .

XH1 .. delay

#’ X+$80 send an x to..
CASOP1 .. cassette
B.A get type..
CASOPI ..and send

data output routine, sends b data bytes

type in b.

starting from x

(b zero means 256 bytes), x moves up by b bytes

» RE get data

Y modify checksum

cAsoPl send data
repeat until..

DATOUT ..Zero count

send checksum to tape from y, lower byte only

Y.D cheacksum to 4

B, A then get low byte
want result $FF

LCASOPA] send check byte

drive commands to perform & boot operation

drive parameter specification

$35, 4,400, $14,305, SAA for Shugart drive

drive bad tracks

$35, 4, DRIVE/$80+8+$10, $FF, $FF, $FF

mode register sstup
$2A-DRIVE, 2, $17, $C1

load head onto disc, starts motor
$TA+DRIVE, 2, $232, $28+DRIVE
query drive ready
$2C+DRIVE, ©

seek to track @
$29+DRIVE, 1, $00

query drive ready
$2C+DRIVE. &

read sector 2

$12+0RIVE, 2, $80, $02, $21

read starting at sector 2

$12+DRIVE, 2, $08, s8C

this routine bootstraps from a mini—floppy disc
reads sector 2 tn find wheére to put program

89

1255 FE44 BE FF@4 % BOOT LOX HANRT I set dummy. .

1256 FE47 9F 83) STX INMI .. ipterrupt routine

1257 FE49 86 =121 2 LDA WFLOPY/256 set dirsct page .

1258 FE4B 1F 8B € TFR A, DP .. to floppy controller

1259 2086A SETDP FLOPY/256 and tell assembler

1260 FE4D BE FE20 2 Lox% #0ISIIT peint to %tables

1261 FESE 8D 4D 7 8SR CMDPAR drive parameters

1262 FES2 8D 4B ? BSR CMDPPR bad tracks

1262 FES4 8D 43 7 BSR CHOPAR mode register

1264 FES6 6D 47 I4 BSR CMDOPAR drive on

1265 FES8 &0 SC 7 BSR DRURDY chack ready

1266 FESA 8D 43 I4 BSR CMDPAR seek track @

1267 FESC 80 58 7 BSR DRURDY check ready

12686 FESE 80 3F 7 BSR CMOPAR read sector 2

1269 FEGO CE 00980 2 LOU o put at @

1270 FEEZ 1F 32 3 TFR u,v and point to it

1271 FEES 8D 62 7 BSKR TRNSFR woue disc to memory

1272 FE67 26 2R 2 BNE DERR non—zero means error

1272 FE69 CC FF42 2 LDD #SFFA2 error $FF in case

1274 FE6C 18A2 Al 10 cMPD sl if not S$FF42,.

1275 FE&F 26 22 3 BNE DERR .» then aerror, no bootl present
1276 FE71 8D 2C 7 BSR CMDPAR start read at sector 2

1277 FE7?73 EE Al 8 LDy P aad get address to put at

1278 FE7S RE Ao 6 LDA ol and number of sectors

1275 FE?7 10RAE A4 € Loy 4 start of program

1280 FE?AH 8B 20 4 ADDA 20 add sector length value

1281 FE7C D8] 4 BOOT1 LDB FDCS get fdc status and..

1282 FEVE CS 20 2 BITB #£28 .. if parameter register full,.
1283 FEg® 26 FA 2 BNE BOUT1 L then wait

1284 FEB2 97 a1 4 STA FOCP send number of sectors

1285 FEB4 8D 43 7 BSR TRNSFR move data to memory

1286 FEB6 26 8B 2 BNE DERR error if non-zero

1287 FEB8 17 FCEL k-l LBSKR NUMB try get number

1268 FESB 28 3B 2 BUC RYS2 got one, stay in monitor

1289 FESD 1OFE @358 7 L0sS STACK reset stack and..

1299 FES1 6E A4 3 JMP .Y .. go to program

1291 FESZ SE FFCE 2 DERR LO% #DGRY query usaer. .,

1292 FE96 17 FAS3 9 LBSR STRING .. on display

1292 FE99 17 FBES 9 LBSR OPAREG with error number

1294 FEIC 16 FAR4A 5 LERA OPCRLF newline and exit

1295 *

1296 »* this routine sends 1 command followed by a variable
1297 * number of parameters, possibly none

1298 * x points to command, next byte is number of parameters
1299 - x left pointing after last parameter, destroys 4
1200 *

1201 FESF EC 81 8 CMDPAR LDD » R+ get command and number

1382 FEA1l @0 -] 6 CPL TST FDCS test status and..

1202 FEAZ 2B FC 2 BMI CP1 owait if busy

1304 FERS 97 -] 4 STA FOCC send command

1205 FEA7 SA 2 CP2 DECB if no more parameters.,

1306 FERS 2B 1E z 8MI RYS2 .. then exit

1287 FEAR S€ =%} 4 CP4 LDA FDCS if parameter, .

1208 FEAC 85 0 2 BI1TA #$20 .. register full..

1369 FEAE 26 FA 3 BNE CP4 .. then wait

121e FEBO® AG 29 [3 LDA . R get parameter and..

1211 FEB2 97 01 4 STA FDCP L.osend it

1212 FEB4 20 F1 3 BRA CP2 then repeat

1212 - -

1314 * test if drive ready, on entry x points to read drive
1215 * status command sequence, on exit drive is ready and x points
1316 * to next command sequence

1317 *

1218 FEB6 1IF 13 6 DRURDY TFR %, u save pointer

1319 FEB8 1F 21 6 DR2 TFR (L7 restore pointer

1220 FEBA 8D E3 7 BSR CMDPAR ask for drive status

1221 FEBC 96 oe@ 4 DR1 LDA FOCs wait until..

1222 FEBE 85 18 2 BITA #%10 .. result,.

1322 FEC® 27 Fa 2 BEQ DR! .. ready

1324 FEC2 96 @1 4 LOA FDCR get result

1325 FEC4 85 @4 2 BITA #DRIVE/128%60+4 ready dit mask

1226 FECE 27 F@ 2 BEQ DR2 not ready, wait

1227 FEC8 39 S RTS2 RTS

1228 *

1229 * this routine transfers data from disc to memory
1220 - sta-~ting at address in u returns completion code in
1321 » ‘a’ when transfer finished or error occurs
1332 *

1232 -

1324 FEC9 24 @) 6 TRNSFR PSHS CC save CC while. .

1335 FECB 1A 30 2 SEIF .. set masks, disc is on NMI
1226 FECD C6 e4 2 LDB #$04 data available mask

12337 FECF 2 04 2 BRA TRNZ

1228 FED1 96 04 4 TRN1 LDA FDCD get data. .

1239 FEDZ A7 CO [STA U ..and store it

1240 FEDS 3C FF 20 TRN2 CWAL #$FF wait for interrupt

1241 FED? DS @8 4 8I1TB FDCS check data..

1242 FEDS 26 Fé 2 BNE TRN1 .. available

1242 FEDB 35 o1 6 PULS cc get interrupt masks back

1344 FEDD 96 81 4 LoA FOCR then get result

1345 FEDF 25 S RTS and retuyrn 2 bit accordingly
1246 »*

1347 * interrupt request handler, comes here on irq active
1348 * checks for timer 1 or keyboard interrupt, if neither
1243 LS then complains to user.

90

1250 -

1.51 FEE® 86 (x4 2 IRQHAN LDA #MONDP set up. .

1252 FEE2 IF 8B € TFR A, OP d:rect page

1252 o8 SETDP MONDP tell assembler

1254 FEE4 BE @980 2 LDX #KUIA point to via address

1255 FEE? A6 en 5 L0A KIFR-KVIA, X get flag register

1356 FEE9 2A 1A 2 BPL 2D not the via!

1257 FEEB 84 48 2 ANDA #TLIFLG try timer 1

1358 FEED 27 o6 3 BEQ 1ROH1 not timer 1

1359 FEEF A7 0 S STA KIFR-KUIA, X clear the interrupt

1260 FEF1 6E 9F 8372 8 IMP ‘T IRGRTS]

1361 »

1262 FEFS 6 eo S5 IRGH1 LDA KIFR-KVIR, X get flags again

1362 FEF7 84 19 2 ANDA #CRIFLG try for keyboard

1264 FEF9 27 oA 2 BER UNUSED query user if not

1265 FEFB A? @0 S5 STA KIFR-KVIA, X clear the interrupt

1366 FEFD rn6 =] 5 LDA KIRB-KV1A, X and get a character..
1367 FEFF 84 F 2 ANDA #E$7F .. stripping spare bit
1268 FFOl 17 FAFF 9 LBSR HAUCHR put into buffer. .,

1269 FFO4 B 15 ANRTI RTI .. then leave irq level
1370 -

1371 *

1372 L come here 1 unused i1nterrupts are active, so
1373 - complain to user and stop processor

1374 Ld since cannot clear an unknown interrupt
1375 -

1276 FFO5 8E FFCC 2 UNUSED LDX #1ERR query user,,

L1377 FFe8 17 F9EL 9 LBSR STRING .. on display

1273 FFGB 20 FE 2 BRA * and stop dead’!

1279 *

1280 *

1381 FFOD 3F282444 CRTCSV FCB $2F, $28, $24. $44 set up table for s version €845 <rt controller
1282 FF11 1E02191B FCB $1E, $92, $15, $18

1383 FF1S 82127912 FC8 $93, $12, $70, §12

1284 ‘ -

1385 FF13 2F283404 CRTCRU FCB S2F, $28, $24, $04 set up table for r versicn crt controller
1286 FF1D 1EQ21318 FCB $1E, $82, $19, $1B

1387 FF21 09096809 FCB $00, $89, $68, $u2

1308 -

1289 - set up table 1, copied directly to ram at rtabl
1290 *

1251 FF25 azss FPTABI FDB ISTACK initial stack pointer
1392 FF27 0000 FDB -] trace initialy off

1393 FF29 7F FCB BSPACE character echoel on rubout
1394 FF2A FF FCE $FF echo on, line buffer on
1395 FF2B [} FCcB =) printer off

1396 FF2C on FCB LF do not send line feeds, usze cr only to printer
1257 FF20 eetD . FOB 205 1n1tial baud rate for cassetre is @@
1298 * 118 baud use 564 ($8234>
1299 * 288 baud use 205 ($86CO05
1400 * 1200 baud use 48 ($9632)
1401 *

1482 FF2F F95B FDB DISPLA console cutput

1402 FF21 FASE FDB GETCHR console input

1404 FF22 FD2S FDB MCASGF cassette ocutput

1405 FF3S FDS3 FDB MCASIN cassette input

1406 FF37 FASD FOB PRINT printer routine

1407 FF29 FF?F FOB FUNCTS display function table
1408 FF3B FFS1 FOB cMNDS monitor command table
14@3 FF3D FFa5 FDB UNUSED 1nitial timer 1 routine
1410 FF3F 0000 FDB 1} no memory interpret

1411 FF4l FF@S FOB UNUSED reserved vector

1412 FF42 FFBS FD8 UNUSED swil

1413 FF45 FFesS FO&2 UNUSED swi2

1414 FF47 FF@5 FDB UNUSED firg

1415 FF49 FEE@ Fo8 IRQHAN irg

141€ FF4B FBC2 FOB ShiIHAN swl

1417 FF4D FF@S FDB UNUSED nmi

1418 FF4F 6000 Foe 2 ini1tial load offset

1419 *

142@ FFS1 PTABZ EQU - erd of table

1421 *

1422 *

1423 * this table contains the standard set of commands
1424 * provided by the monitor.

1425 *

1426 FF51 eE CHMNDS FCB CMNDZ~CMNDS/2-1 number of entries

1427 FFS2 47 FCB ‘G

1428 FFS2 FCBO FOB GOUSER-CMNCS ge to program

1429 FFSS 40 FCe ‘M

1428 FFS6& fBBo FOB MEM-CMNDE mefaory examine

1431 FFS8 S5 FcB "

1422 FF59 Fo6? FDE EXKEG-CMNDS examine registers

1432 FFSB S50 FCB ‘P

1424 FFSC FCeEs FDB RESUME-CMNDS proceed after break

1435 FFSE S4 FCB *T

1436 FFSF FD1© FOE TRACEN-CMROS set trace number

1437 FF61 53 FCB]

14328 FFe2 FESC FDB SAUE-CHNDS save on cassette

14329 FF64 4C FCB s

1440 FFES FDSe FD§ LOAD-CMHDS load from cassette

1441 FF6? S6 FCB cy

1442 FF68 FCD2 FoB BRKSET-CMNDS set break address

1442 FFéA 44 Fce ‘0

1444 FF68 FEF2Z Foe 0T -CmmiLs d12c bootstrap

1445 FF6D 43 FCe -

91

1446 FFEE FO23 FOB PCNTL—-CMNDS copy to printer

1447 FF7O 20 FCB SPACE
1448 FF71 FeoC FDB ANRTS-CMNDS ignore spaces
1449 FF72 eC FCB coMMA
1450 FF74 FBaC Foe ANRTS-CMNOS ighore commas
1451 FF?6 £ FCB ‘)
1452 FF?77 FOie FDB TRACE-CMNDS do trace operation
1432 FF?79 46 FCB ‘F
1454 FF7A FOV? FDB LOAD?-CMNDS finish file load
1455 FF7C a1 ‘FCB 1
1456 FF7D Fpzg FOB BADCMD-CMNDS default is query user
1457 FFVF CMNDE EQU *
1452 *
1459 * this table contains the standard functions provided
1460 * by the vdu control programs,
1461 *
1462 FF7F 24 FUNCTS FCB FUNCTE-FUNCTS/2-1 number of entries
1463 FF82 ag FCE CR
1464 FFB1 FAel FOE DOCR-FUNCTS carriage return
1465 FF&3 oA FCOB LF
1466 FF&4 FaFg FOB DOLF-FUNCTS line feed
1467 FF86 7F FCB BSPACE
1468 FF87 FRBE FD& DORUB-FUNCTS rubout
1469 FFED acC FCB FFEED
1470 FFgA Fane FOB CRTCI-FUNCTZ form feed
1471 FF8C 81 FCB 1
1472 FF8D FIEA FOB SIMCHR-FUNCTS default is display 1t
14732 FFSF FUNCTE EQU *
1474 *
1475 * this 15 the list of strings used Iy the monitor
147¢ *
1477 FF8F S26F6D2F MARY FCC /Rom?/”
1478 FF33 onvunee SCRLF FCB CR,LF, B
1472 FF3e 4324352020 TITLES FLC ’CC A B DP X7
41202042
28445020
20202058
ze
1480 FFA7 20202059 FCC L4 u FC S
20202020
55202020
Se4z2020
202052
1481 FFBA apenaa FCB CR,LF, &
1482 FFBD oD PCMESS FCEB CR, LF
1482 FFEBF 584350 FCC JPCI7
1484 FFCZ [=-] FCE e
14€5 FFC3 57686174 CapY FCC shat 1300
20697337
1486 FFCE -4 FCB a
1487 FFCC 439 1ERR FCC 2%
1488 FFCD 20 LORY FCC =7
1489 FFCE 45727226 oaRY FCC JEre /
1458 FFD2 @0 FCe e
1491 *
1492 * this 15 the set of indirect jumps to redirect
14392 * the interrupt vector addresses.

RESUL JmP { IRESV]
SKISI JMP LISWIZ)
SWizl JMP (ISWIZ2}
(IFIRQ)
IRQI JMP L1IRQ)
SWIT JMP {I5WI]
NMIT JMP L INMI]

1495 FFDZ 6E 9F @277
1436 FFD? 6E SF @379
1497 FFDB 6E SF 037B
1498 FFDF 6E 9F ez70
1499 FFE2 6E 9F 837F
1500 FFE? 6€E SF @281
1561 FFEB 6 SF BI8Z

0RO ©m
Rl
-
2
4
L)
3

15ez *

15032 * the following hardware vectors reside in the top
1504 * 1€ bytes of memory when the jwonitor is in 1ts
1565 * standard position,

152€ *

1567 FFFo ORG $FFF@

1568 E7Fo PUT SEVFB

15e9 2

1519 FFFO FFD2 FOE RESUI

1511 FFF2 FFD7 FDB SW1z1

1512 FFF4 FFOB FOB SWIZI

1512 FFFe& FFDF FoEB FIRGQI

1514 FFF8 FFEZ FDEB IRGI

1315 FFFA FFE? FOB SWI1T

1516 FFFC FFEB FDB NMIL

1517 FFFE Fgoo FDE RESET

1518 *

1519 END

92

command 9, 13

+ in copy command 15
in indexed addressing 52

++ in indexed addressing 52

$ in hexadecimal value 49

; in modify command 11

- 1in indexed addressing 52
in modify command 11
in save command 14
-- in indexed addressing 52
— Err error message 10, 14

? in load command 14

A register 38

ABX instruction 42

Accumulator addressing 49
Accumulator-offset indexed
addressing 52

Accumulators 38

ACK signal 32

Adding to monitor commands 16

Address RESET 37 Addresses

interrupt vector 19 Addressing

modes 49

modes instruction set and 38
Addressing modes accumulator 49
accumulator-offset indexed 52
auto decrement indexed 52
auto increment indexed 52
constant offset indexed 51
direct 50
extended 49
extended indirect 50
immediate 49
indexed 51
indexed indirect 53
inherent 49 PC-
relative 54
program-counter relative 54
register 50
relative 53
ANDCC instruction 47
Audio cassette interface 28

Auto decrement indexed addressing 52
increment indexed addressing 52

B register 38

BA signal 26

Backplane connections 76
Baud rate ,selection 22

INDEX

Binary-to-decimal program 56
program re-entrant 58 Binomial

coefficient program 60 Bit half-

carry 41

BIT instruction 65

BLOCKO signal 23

BOOT routine 36

Branch instructions 45

Branches long 53
short 53

Breakpoint cancelling 9
command 8,

Breakpoints 7

Buffering bus 25

Bus available signal 26
buffering 25
BUSY signal 32

C command 15
flag 40
Calibration cassette 5
Cancelling breakpoint 8
Capacitor values 67 Carriage-
return character 35 Carry flag
40
CASIN signal 29
CASOUT signal 29
Cassette calibration 5
checksum 30
format 30
input 28
interface audio 28
interface card 74
interface circuit for 29
interface commands 13
interface connections 74
output 28
verify from 14
CBIN1 routine 36

CBIN2 routine 36

CC register 39, 40

CCLOCN routine 37

Character carriage-return 35
delete 35
form-feed 35
line-feed 35

Checksum 10

cassette 30

Circuit for cassette interface 29

Clock system 26

CMDPAR routine 36
Colour code resistor 70
Command passing 2, 20

passing program illustrating 21

Commands
9, 13
breakpoint 8, 13

Cc 15

cassette interface 13

copy 15

D 15

disk 15

disk interface 15

do trace 9, 13

F 10, 14

G 5, 12

go 5, 12

L 6, 14

load 6, 14

M 4, 11

MG 12

modify 4, 11

MP 12

MR 7, 12

MV 8, 12

P 7, 12 printer

interface 15

proceed 7, 12

R 7, 13

registers 7, 13

S 6, 13 save

13 store 6 T

9, 13 trace

9, 13

0 8, 13 Compatability
with 6502 65

with 6800 62
Component layout 6809 card 69
CONCHR routine 33
Condition code register 40
Condition-code flags
CONIN routine 33
CONOUT routine 35
Constant offset indexed addressing 51
Copy command 15
Crystal mounting 73

D command 15

register 38
Debugging program 13
Decoding memory 23
Delayed BA signal 27
Delete character 35
Direct addressing 50
Disk command 15

interface commands 15
routines 36
DISPCH routine 37
DISPLA routine 35
Display 2
DMA 26
Do trace command 9, 13
DP register 38
Driver routines 20

DRVRDY routine 36
Dump program 17
E flag 41

signal 29
Entering a program 4
Entire flag 41
Entry point reset 37
Err error message 10
Error messages 10
Error messages

-Err 10, 14
Err 10

I-Err 10, 19
Rom? 10

What is; 4, 10
Exchange registers 47
EXG instruction 47
Expansion monitor 16
Extended addressing 49

indirect addressing 50
Extra ROM 2732 as 25

ROM 16, 25
F command 10, 14
Finish command 10, 14
FIRQ mask 41

service routine program 19
Flag C 40

carry 40

E 41

entire 41

N 41

negative 41

ONLINE 33

overflow 40

040 z

41 zero
41
Form-feed character 35
Format cassette 30
VDU 34

G command 5, 12

GETCHR routine 34
GETHEX routine 34
GETHXS routine 34
Go command 5, 12

Half-carry bit 41 Hardware
description 23 Hexadecimal
value S in 49 HEXOUT
routine 35

I-Err error message 10, 19
I/0 driver routines 20
routine serial 28
Immediate addressing 49
Index register instructions 44
2)

registers 38 Listing of monitor program 77

Indexed addressing 51 Load command 6, 14
indirect addressing 53 effective address instruction 42
Jjumps 54 with offset 14

Input cassette 28 Long branches 53
routines 33 M command 4, 11

Instruction set 42 Map memory 24
set and addressing modes 38 Mask FIRQ 41

Instructions IRQ 41
ABX 42 MCASIN routine 36
ANDCC 47 MCASOP routine 36
BIT 65 Memory decoding 23
branch 45 map 24
EXG 47 organization 23
index register 44 MEMUSE routine 20, 37
LEA 42 MG command 12
load effective address 42 Miscellaneous instructions 45
miscellaneous 45 routines 37
MUL 40, 47 Modes addressing 49
multiply 47 Modify command 4, 11
ORCC 47 Monitor expansion 16
pull 46 operation 4
push 46 program 77
SEX 47 return to 12
sign extend 47 Monitor commands 1
stack pointer 44 adding to 16
SWI 7, 48 summary 11
SWI2 48 MP command 12
SWI3 48 MR command 7, 12
SYNC 48 MUL instruction 40, 47
synchronize with interrupt 48 Multiply instruction 47
TFR 47 MV command 8, 12
16-bit 44 N flag 41
8-bit 43 NAMEIN routine 34

Interface audio cassette 28 Negative flag 41
circuit for cassette 29 NUMB routine 34
keyboard 30 Offset load with 14
printer 32 ONCARD signal 23

Interrupt instruction synchronize ONLINE flag 33

with 48 OPAREG routine 35
keyboard 31 OPARSP routine 35
vector addresses 19 OPCRLF routine 35
vectoring 19 OPXREG routine 35

Interrupts 3 ORCC instruction 47
software 48 Output cassette 28

Introduction 1 device terminal as 21

TRO mask 41 routines 34

Jumps indexed 54 Overflow flag 40

Keyboard 1
connections 74 P command 7, 12
interface 30 Part; list 6809 card 68
interrupt 31 Passing command 20

Kit assembly instructions 67 PC register 40

L command 6, 14 PC—;e}atlye addressing 54

LEA instruction 42 Position-independent code 55

Line-feed character 35 Postbyte for EXG/TFR 47

(3)

Power supply 76 PRINT
routine 35 Printer
interface 32

interface commands 15
Program counter 40

debugging 13

entering a 4

Program-counter relative addressing

54
Programming model of 6809 39
re-entrant 56 recursive 60
techniques 55
Programs
binary-to-decimal 56
binomial coefficient 60
dump 17
FIRQ service routine 19
illustrating command passing 21
monitor 77
re-entrant binary-to-decimal 58
Pull instruction 46
order 46
Push instruction 46
order 46

R command 7, 13
Re-entrant binary-to-decimal
program 58

programming 56
Recursive programming 60
Register addressing 50
Registers

A 38

B 38 CC

39, 40

command 7, 13

condition code 40

D 38 DP 38

exchange 47

PC 40

S 38

transfer 47

U 38
user's 7
X 38
Y 38
Relative addressing 53
addressing program-counter 54
Relocatable code 55
RESET address 37
Reset entry point 37
signal 26
Resistor colour code 70
Return to monitor 12
ROM extra 16, 25
Rom? error message 10
Routines

BOOT 36

CBIN1 36
CBIN2 36
CCLOCN. 37
CMDPAR 36
CONCHR 33
CONIN 33
CONOUT 35
disk 36

DISPCH 37
DISPLA 35
driver 20
DRVRDY 36
GETCHR 34
GETHEX 34
GETHXS 34
HEXOUT 35
input 33
MCASIN 36
MCASOP 36
MEMUSE 20, 37

miscellaneous 37
NAMEIN 34

NUMB 34

OPAREG 35
OPARSP 35
OPCRLF 35
OPXREG 35
output 34

PRINT 35

serial I/0 28
STRING 35
tape 36
TRNSFR 36
using SYNC 438

S command 6, 13

register 38
Save command 13

non-contiguous blocks 18
Scrolling VDU 35 Serial I/O
routine 28

terminal 21
Service routine program FIRQ 19
SETDP directive 50 SEX instruction
47 Short branches 53 Sign extend
instruction 47 Signals

ACK 32

BA 26

BLOCKO 23

bus available 26
BUSY 32

CASIN 29

CASOUT 29
delayed BA 27

E 29

ONCARD 23

reset 26
VMA 26

Software description 33
interrupts 48

Stack depth 23
pointer instructions 44
pointers 38

Store command 6

STRING routine 35

SWI instruction 7, 48

SWI2 instruction 48

SWI3 instruction 48

SYNC instruction 48
routine using 48

Synchronize with interrupt

instruction 48
System clock 26

T command 9, 13

Tape routines 36

Techniques programming 55
Terminal as output device 21
serial 21

TFR instruction 47
Trace command 9, 13
facility 9
mode 31
Transfer registers 47
TRNSFR routine 36

U register 38 User
stack 60 User's
registers 7

V command 8, 13

flag 40
VDU card 74

format 34

scrolling 35
Vector addresses interrupt 19
Vectoring interrupt 19
Verify from cassette 14
VMA signal 26

What is; error message 4, 10
X register 38
Y register 38

Zz flag 41
Zero flag 41

16-bit instructions 44

2732 as extra ROM 25

6502 compatability with 65
6800 compatability with 62

equivalents to 6809 instructions

62

6809 card component layout 69
card parts list 68

instructions 6800 equivalents to 62

programming model of 39

8-bit instructions 43

'/ cAT

TE 0223-3/0702

[Pro-15 3x3 /
i 634 N Y
! 11 P :
b ose Al (efelleNeNelle- A8 A Nzl /|8 A4e PRE 24
e % £sy /4 F; Aeigld |2 =i ww o
ol S — —BYa es2 le 4 N2 <7 |34 s hosi
i meoge 5 D 0 53 2l & 7 7415 |54 na f4_4 i
MG 7 - Gfrse s/ 1 3| = 7 el 244 2/ /S _A ‘;r
/5] 4] — /3 /i 7 3 A
S /¢ e 8s JEa P f/_la T/ 7./ ” ” P
/4 dacr £ A Z_A 2o e A
00304 /5 cwwme Y 2N sosS] - “
O3 e - 3 oa3 - 15 A 43\ _tlag oy o P 2 “
lowns /3 Z4 Yy 33| x7ga 6 4 ”,_/i /03 1/ P
Y tlos, B 55 17/ o | r/0a 49}, g
// =) P9 s ov gz’ /8 A 5
R, I — av_” " 7. t_hl 36':,(74‘ L, &2 & 55 KE '441
€azmd + ‘/:/5/ 7 Sv 22]] Tre 1
Py 77 2] caz amiz 2L A o 2/7
~e 7 s dd } I k-1 P %/ AN o¢
~e 6 gpu [_‘hg; — asl23 ; o
rl P43 s oV ot , L » o
o 2| S Vg I N g toos,, | 5[k i | A) A B —
~y 2os, x2 A7 ECN B b 4 82084, T "
2] puy ©521 Z49 4|81 33 29 S470,4@ E1 P &4) a4 o2
pudia o i @ 28 4 o O 4 22 o
OV) w—— rae 217 co 28] [« 2648, o 45 &
I a2 73 6| sl 22 5 osal? KO A ot ! 25 Do
74L5 4 & /7 7 oS 2 o+ 26 A13
Z&ly3 244 A3 84 26 —~ r-Y 4 —H4s B8s L !
s |22 21v9 L4 A 122] odsf2 6N 46 fe + 25 AlZ
Eras.elZs &y Py IR 0114—\ D 4on 087 N8l & j;’ :’;
27810 &7 62 A5 L3y ob co_T/@ 28 49
It |23 /l 79 s e E) 7 p
oV
~ d > —TA
AWOS —32 ov
~NROS
é57
£
M 2£4D
b Slock P o
84 22 84
&5 23 gs
= 24 @A
e sz
Fzrs pe me
1%7 27 Hasr
T 8 /ca
APAT : & 9 AmI
f72a Be Fica
P dasdd
S 9 casw
t %0 caso
o —32 ov
2 \ 8
/7 <30 118 - o
s 5
/ a
r2 7
s
4 cr2 2
ALTERNATIVE RIBBON HEADER /13 (2] 6)-8
OIN NUMBERS 5 ;/ 7
20 CATAS 9 pATAG _l
/18 CaTA 4 17 STROBE L, .
e M3 /5 esT co& 770 ov | rsv | <cooe Tyl o | s5v . T
14 oam 2 /3 4S5V b o8 d I I 1. 1.1,
12 ce7ad 7 -1 ~©’ rC 6809 ’ 7 2744 SN 25470 o 20 'I -
10 Cee P s rag ez SYeS5224 / 20 /c?2 SH 744D 78 7 14 PLacES Foe scd (2732) *‘L_‘LV_
& £ 7 eas 3,9 | 7415244 | 0 | 20 /c13,14| snracsco | 7 | 14 O smue i~ 3 Pra (27
& <Az 5 Pad rca 276/32 | 2 | 2 crs Snvyacse6 | 7 14 @ cur 1 RACK FoR Ic4 (2732)
4 <A 3 a2 5,6 | 214 3 . 8O /S SURCLIED FoR 1C4 276
bl 2 s 1 m3 7,8 | 7ars248 | ©] 20 Boa 4/ 278)
/€0 NS 2208 - 20
‘) oo~ rirea
/3SVE e ©) cofrtusur 19%0)
swos 200,012 /C
‘ Acebn carbyrels rD ClecuIT DiacRAM For ’ /
OATE | 1-2-20 A mpRKEr et [
p) CARMIDIE, 4-2-80 | ©BOS FProcessce Caro |Acoen comeurees oo

ACORN
COMPUTER

Acorn Computers Ltd., 4a Market Hill, Cambridge.
Telephone 0223 312772

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105

