

The Winchester Disc
Filing System
User Guide

Part no 427000
Issue no 1
Date July 1984

WARNING: THE WINCHESTER DISC UNIT MUST BE EARTHED

Important The wires in the mains lead for the Winchester disc unit are coloured in accordance with the
following code:

Green and yellow Earth
Blue Neutral
Brown Live

As the colours of the wires may not correspond with the coloured markings identifying the terminals in
your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which is
marked by the letter E, or by the safety earth symbol or coloured green, or green and yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the letter N, or
coloured black

The wire which is coloured brown must be connected to the terminal which is marked with the letter L, or
coloured red.

If the socket outlet available is not suitable for the plug supplied, the plug should be cut off and the
appropriate plug fitted and wired as previously noted. The moulded plug which was cut off should be
disposed of as it would be a potential shock hazard if it were to be plugged in with the cut off end of the
mains cord exposed. The moulded plug must be used with the fuse and fuse carrier firmly in place. The
fuse carrier is of the same basic colour* as the coloured insert in the base of the plug. Different
manufacturers' plugs and fuse carriers are not interchangeable. In the event of loss of the fuse carrier, the
moulded plug MUST NOT be used. Either replace the moulded plug with another conventional plug wired
as previously described, or obtain a replacement fuse carrier from an authorised BBC Microcomputer
dealer. In the event of the fuse blowing it should be replaced, after clearing any faults, with a 3 amp fuse
that is ASTA approved to BS1362.

*Not necessarily the same shade of that colour.

Exposure
Like all electronic equipment, the Winchester disc unit should not be exposed to direct sunlight or moisture for long
periods.

Note: Within this publication the term 'BBC' is used as an abbreviation for 'British Broadcasting Corporation'.

Copyright Acorn Computers Limited 1984
Neither the whole nor any part of the information contained in, or the product described in, this manual may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous development and improvement All information of a
technical nature and particulars of the product and its use (including the information and particulars in this manual) are given by Acorn
Computers in good faith However, it is acknowledged that there may be errors or omissions in this manuaL A list of details of any amendments
or revisions to this manual can be obtained upon request from Acorn Computers Technical Enquiries. Acorn Computers welcome comments
and suggestions relating to the product and this manual.

All correspondence should be addressed to:
Technical Enquiries
Acorn Computers Limited
Newmarket Road

Cambridge CB5 8PD
All maintenance and service on the product must be carried out by Acorn Computers' authorised dealers. Acorn Computers can accept no
liability whatsoever for any loss or damage whatsoever caused by service or maintenance by unauthorised personnel. This manual is intended
only to assist the reader in the use of the product, and therefore Acorn Computers shall not be liable for any loss or damage whatsoever arising
from the use of any information or particulars in, or any error or omission in, this manual, or any incorrect use of the product.

First published 1984
Published by Acorn Computers Limited Typeset by
Bateman Typesetters, Cambridge

Contents

Introduction 1
Equipment required 1
Text conventions used in this manual 1

1 What is a disc system? 2
Disc drives 2
The Winchester disc drive and what it does 3
The disc filing system 4
Controlling the filing system 5

2 Getting started 6
Plugging in the filing system ROM 6
Connecting the disc drive 6
Starting the filing system 7

3 The Winchester disc 9
Care of the disc unit 9
Storage capacity 9
Tracks, sectors and bytes 9
Formatting 9

4 The filing system 11
Pathnames and object specifications 13
Directories 13
The root directory and the currently selected directory 14
Object referencing 15
Special characters 16
The library directory 16
Wildcard facilities 17
Multi-object operations 18
Auto- start facilities 19
Resetting the system 19
Drive numbers, the MFM floppy disc system and future expansions 20

5 The filing system commands 22

6 File handling using BASIC 69
General principles 69
Creating an EXEC file 72
Notes 73

7 File handling using assembly language 75
General principles 75
0 SFIND 76
OSFILE 76
OSARGS 79
OSGBPB 80
OSBGET 82
OSBPUT 83
OSWORD 83

8 Changing filing systems 87

9 The filing system utilities 88
CATALL 89
EXALL 89
WEDITOR 90
COPYF 95
BACKUP 98
SUPERFORM 102

10 Error messages 106

11 Technical information 112
General 112
The free space map 112
Directory information 113

12 Filing system command summary 116

Appendix A 118
Fitting the ADFS ROM

Index 121

Introduction

Equipment required
Before you start to use the disc filing system, check that you have all of the following
items:

– A Winchester disc drive with a ribbon cable and a power cable.
– Two fixing screws (with washers) for the ribbon cable.
– A guarantee registration card.
– An Advanced Disc Filing System ROM and a BBC Model B Microcomputer.

If any of the necessary items are missing then contact your dealer, quoting the order
number given to you when you placed your order. (This number also appears on the
dispatch label on the outside of the packing case.)

Text conventions used in this manual
You will notice that the style of printing used to present the text in this manual varies.
This is to help you tell the difference between explanatory text, words which appear
on your monitor screen (including BASIC keywords) and certain keys on the
computer keyboard.

– Ordinary text appears like this, or like this for emphasis.
– Text displayed on the screen (including BASIC keywords) appears like this.
– Words like RETURN mean that you should press the key marked RETURN

rather than actually type the letters R E T U R N.

1 What is a disc system?

If you have never used a computer with a disc system before then there are one or two
new concepts you need to learn. A disc system consists of some hardware (the disc
drive) and some software (a special program called a disc filing system). A disc
system enables information to be stored, recovered and organised in a logical way.

Disc drives
As you probably know, your BBC Microcomputer has an internal memory called
Random Access Memory or RAM. When you type in a program it is stored in RAM.
However, when you switch off the computer everything stored in RAM is lost, so if
you need the program again you have to retype it To overcome this problem the
computer must be able to transfer the contents of RAM into some form of permanent
or 'non-volatile' storage before you switch it off. The User Guide which comes with
your BBC Microcomputer describes how to use a cassette recorder to do this.
Transferring a program (or text) from RAM to tape is called saving it; transferring
from tape back to RAM is called loading it Although using cassette tape as a storage
medium is much better than having to keep typing things in again, it does have some
disadvantages:

– The process of saving and loading is quite slow.
– You need to keep track of where on the tape each piece of information is, so that

you don't record over it by accident
– You have to wind the tape to the right place yourself.
– Winding from one end of the tape to the other is slow.
– It is very difficult to wind the tape to a particular point accurately.

A disc system has none of these disadvantages; saving and loading information is
much faster than using tape, and you don't need to keep a note of exactly where on
the disc each bit of information is stored. These 'housekeeping' jobs are done for you
by the 'Advanced Disc Filing System', a special program stored in non-volatile Read
Only Memory (ROM). The Advanced Disc Filing System is very versatile and is
discussed in greater detail later in this chapter.

A disc is a bit like a gramophone record (a disc even has tracks, although you can't
see them). A record stores information (usually in the form of music), which is picked
up by a stylus as the record rotates on a record player. A disc rotates inside the disc
drive, where the information on it is picked up by

What is a disc system? 3

something called a read/write head (a bit like the record/playback head on a cassette
recorder). Unlike a record, a disc doesn't have to be turned over to get at the
information on its other side, and unlike a record, the information on a disc can be
erased, changed, or added to.

There are two classes of disc drive, those which drive 'floppy' discs and those which
drive ' hard' discs. A floppy disc drive (which you may have heard of) is a small
rectangular box with a slot at the front into which the floppy disc is inserted when you
want to read information from it or write information to it The Winchester disc drive
contains hard discs which are fixed inside the drive itself. More details of the
Winchester disc drive are given in the next section.

A disc can hold any information that can be held in your microcomputer memory. The
information might be a program, text, or even a computer graphics picture. A piece of
information on a disc occupies its own particular area of the disc, called a' file'. Files
are not fixed in size, but vary according to the amount of information they contain. A
file has a name (decided by you) and an address (decided by the computer), which
means that it is easy to get at when you want it Of course, an address by itself may
not be much use; it would be no good knowing that someone lived in Acorn Avenue if
you didn't know where Acorn Avenue was. You would need a street map, which
would enable you to find Acorn Avenue once you had determined which grid square
it was in. The computer needs a 'grid' of the disc, which you can tell it to produce
through an action known as 'formatting'. Formatting divides a disc into equal
partitions known as 'sectors' (see figure 2), and must be carried out before information
can be stored on a new, blank disc (the Acorn Winchester disc is delivered already
formatted, but this User Guide includes instructions telling you how to reformat the
disc should this become necessary). Once a disc has been formatted it stays
formatted; you don't have to reformat a disc every time you use it Formatting is fully
described in chapter 3.

At this point it is worth noting that your files may be too large to fit into the fixed size
of one sector. This is no problem. A file always begins in one sector but may occupy a
number of sectors following the first Each sector can hold up to 256 characters or '
bytes'.

The Winchester disc drive and what it does
As we mentioned in the last section, the main difference between the Winchester disc
drive and a floppy disc drive is that the Winchester disc is sealed within the disc unit (
actually there is more than one disc inside the

4 What is a disc system?

Winchester unit). A Winchester disc can hold much more information than a floppy
disc of the same size, due to differences in the density of the disc coating and the way
in which the read/write head operates. Information can be read and stored much faster
with the Winchester because the Winchester disc spins faster, and also spins
constantly (until you switch the unit off) which means that it doesn't have to waste
time accelerating up to its drive speed before information can be accessed.

When you want to read some of the information on the disc, you give the computer
the name of the file containing that information. The computer will move the
read/write head to the sector on the disc where the start of the information in the
named file is recorded.

The disc filing system
As we have already noted, the main disadvantage of using a cassette recorder to store
information is that you need to control the cassette recorder and keep track of the
information on it

When using your disc drive all this is done for you by the Advanced Disc Filing
System (ADFS). The ADFS is a machine code program produced by Acorn
Computers, stored in ROM. Once installed, the program is always there; it is not lost
when you switch the computer off. When you SAVE one of your BASIC programs
the ADFS does the following:

— Finds a free space on the disc big enough for your program.
— Moves the read/write head accurately to the start of the first sector in the free

space.
— Transfers a copy of your program from the computer's RAM to the disc.
— Makes a note of where it put your program so as to be able to find it again.

All this is done without you having to think about it and is quite a bit quicker than
saving a program on to a cassette tape.

When you save a program you have to give it a name. This is true for the disc system
as well as the cassette system. However, the ADFS puts the name to special use.
When you type

SAVE "filename" RETURN

the ADFS writes the filename, together with the number of the sector on the disc
where the file starts, into a ' directory' (also held on the disc). A directory is

What is a disc system? 5

like a telephone directory, except that it contains a list of file names and addresses
rather than people's names and telephone numbers. When you want the file containing
your program back again you simply type

LOAD "filename" RETURN

The filing system checks the directory to find out where on the disc to find the file,
and then moves the read/write head to that exact place on the disc. The file is then
loaded into the computer's memory (RAM) automatically. A number of other
facilities are available besides loading and saving programs. These include the ability
to copy, delete, rename and restrict access to files. As well as accessing the start of a
file, any specific point within a file can be accessed. This `random access' facility is
detailed in chapter 6.

Controlling the filing system
The filing system controls the disc drive, and we must be able to give instructions to
the filing system. Such an instruction is known as a 'filing system command'. Filing
system commands are generally preceded by a * character. They can be typed in
directly from the keyboard, in which case they will have an immediate effect, or they
can be included in a program. There are also a number of BASIC keywords which
have special relevance to files created on a disc; these commands are detailed in
chapter 6.

2 Getting started

Before you can use the Winchester disc system you must fit the ADFS ROM to your
microcomputer and then connect the drive.

Plugging in the filing system ROM
The instructions for plugging the ADFS ROM into the computer are given in
Appendix A. If you have any doubts about fitting the ROM yourself, take your
microcomputer and the ROM to your dealer, who will fit it for you.

WARNING: IF YOU FIT THE ROM YOURSELF, REMEMBER THAT
ACCIDENTAL DAMAGE CAUSED TO THE ROM OR TO THE
MICROCOMPUTER WILL NOT BE COVERED BY GUARANTEE.

Connecting the disc drive
Before you do anything else, make sure that the computer and the drive unit are both
disconnected from the mains supply.

Using the broad ribbon cable, connect the 1MHz BUS socket on the drive unit to the
1MHz BUS plug on the underside of the microcomputer (see figure 1).

Note that it is possible (although only just!) to fit the ribbon cable into the computer
the wrong way up. The computer end of the ribbon cable will probably have a lug on
one surface which fits into a notch at the top of the plug under the computer. If the
lug is not there then the correct way to fit the cable socket is with the arrowhead at
one end of the socket aligned with the arrowhead next to the 1MHz BUS label on the
computer.

Push the plug at the other end of the ribbon cable on to the 1 MHz BUS socket at the
back of the Winchester unit. The plug can be secured using the fixing screws
provided. Finally, connect the power cable socket to the plug at the back of the
Winchester unit, and plug in to the mains supply.

When you have made the connections turn on the power (the disc drive's on/off
switch is at the back of the drive unit). The drive unit will start to make a noise a bit
like a hair dryer. This is perfectly normal; the sound you can hear is made by a
cooling fan and the disc motor.

Getting started 7

Starting the filing system
If you have not already done so, switch on the Winchester drive and the computer.
The following message (or one very similar) should appear on the screen:

BBC Computer 32K

Acorn ADFS

>_

If 'ADFS' does not appear anywhere in the message (indicating that a ROM other than
the ADFS ROM is in the rightmost ROM socket), press BREAK while holding down
CTRL and A together. The message will change to that shown above. In either case,
wait for about 90 seconds. After this time, the message:

BBC Computer 32K

Acorn ADFS

BASIC

>_

should appear, indicating that ADFS is now ready for use.
If the message

BBC Computer 32K

Acorn ADFS

Drive not ready_

appears, press BREAK while holding down CTRL and A together to restart the
initialisation sequence. If the Drive not ready message continues to appear, the
Winchester disc unit should be returned to your dealer.

If at any time the message

8 Getting started

Bad FS map_

appears at the top of the screen, press BREAK while holding down CTRL and A
together and continue the initialisation sequence. On rare occasions the error message

Disc error 1C_

may appear. This indicates that the disc is unformatted (or incorrectly formatted), or
some kind of hardware failure has occurred. Should this happen, the disc unit must be
returned to your dealer.

Figure 1 Connecting the disc drive

3 The Winchester disc

Care of the disc unit
The Winchester disc unit should give good service in normal use. However, you
shouldn't bang or vibrate the unit, and it should not be exposed to excessive heat,
moisture, direct sunlight or very dusty conditions. The disc unit should be operated
standing on its legs on a horizontal surface, and the ventilation slots at the front and
the back should be kept clear. The *BYE command (see chapter 5) must be used
before the unit is moved.

Storage capacity
Your Winchester disc unit can store about 10.3 megabytes (Mb), where 1 Mb = 1,000,
000 bytes or characters. A 10.3Mb Winchester disc unit can store about 5000 pages of
text (each page the same size as in this book), so as you can see it is quite a useful
storage device. Some of the storage space is reserved for use by the computer itself;
this is detailed in chapter 10.

Tracks, sectors and bytes
(see figure 2)

Information is written on to the disc in concentric circles called tracks. Each track is
divided into 33 sectors, each of which can contain 256 bytes of information. The 10.
3Mb unit has 306 tracks per disc surface, making (4 X 306) = 1224 tracks in total (the
unit contains two double-sided discs). The total storage capacity is therefore made up
of:

(4 X 306) tracks X 33 sectors X 256 bytes = 10,340,352 bytes
Because (in the above example) the disc unit has four surfaces to store information,
instead of having (4 X 306) tracks the unit is said to have 306 `cylinders' (a three-
dimensional projection of a circular track would make a cylinder). However, for our
purposes we only need to consider one disc surface at a time.

Formatting
As mentioned previously, before a Winchester disc can be used it must be

10 The Winchester disc

formatted. Your Winchester disc has already been formatted and so does not need to
be formatted again. Remember, however, that if the

Disc error 1C_

error message is encountered on system start-up (see chapter 2), the disc drive should
be returned to your dealer for reformatting. There may be occasions when you wish to
delete the entire contents of the disc, enabling you to store new information from
scratch. This can be conveniently achieved by reformatting the disc. See chapter 9 (the
'SUPERFORM' utility) for a description of how to do this.

4 The filing system

Probably the first thing you will want to do with the filing system is to store one of
your programs on a disc. You can do this simply by giving the program a name (eg
PROG1) and then use the SAVE command in BASIC, ie

SAVE "PROG1" RETURN

and the filing system does the rest by causing the program to be copied on to the disc.
To get the program back again use the LOAD command in BASIC, ie

LOAD "PROG1" RETURN

You may be quite happy to type in programs (or text files), give them names, save
them in the disc unit, and load them back into the computer when you want them. This
is fine so long as you haven't got many files, but as you build up a large collection it
will become easy to forget what the contents of each file are and whether they are
program files or text files. (It would be a bit like storing books in a library by laying
each book out on the library floor, what's more, the books wouldn't have full titles but
only abbreviated ones, since a filename can only be up to ten characters long.) Of
course, you could keep a separate record of what is in each file, but the filing system is
designed to make this unnecessary.

The main feature of the disc filing system is that it is hierarchical. The bottom of the
hierarchy is a file. The next step up in the hierarchy is a collection of files, known as a
' directory'. Directories can be very useful since they enable files to be collected
together into logical groups. The directory also has a name, so it is no longer so
inconvenient that the files in the directory only have names up to ten characters long.
Going back to the library example, putting files into directories would be equivalent to
putting books on to shelves, with each shelf or group of shelves having a name. If we
had books about bee keeping then we could probably get them all on one shelf. Books
about chemistry would probably need more than one shelf, one for industrial
chemistry, one for biochemistry, one for organic chemistry and so on (see figure 3).
We see that although the library is organised into different sections for different
subjects, some subjects need only one shelf whereas others need more than one.

12 The filing system

Figure 3 A typical hierarchical filing system

Now imagine that instead of storing information in books in a library we're storing the
same information in files on a disc; we might organise the information as shown in
figure 3. The files containing the information are collected together in directories, the
directory names (eg BIOCHEM) being shown in brackets. Notice that just as in the
library the books about chemistry are on different shelves in the 'master' chemistry
section, the information on the disc about chemistry has to be stored in different
directories within the 'master' chemistry directory. The directory CHEMISTRY
contains not the information itself, but the addresses of the other directories (
BIOCHEM, ORGANCHEM, INDUSTCHEM) which contain the information. This
illustrates a key feature of the hierarchical filing system provided by ADFS;
directories can contain not just files but other directories, which themselves can
contain other directories and so on. The structure can be made up to 127 levels deep',
although you will find more than five or six levels difficult to keep track of.

Because the system described above can result in directories containing files, other
directories, or both, files and directories are collectively known as `objects' – ie a
directory (assuming it is non-empty) always contains 'objects', where an object can be
a file or a directory. The directory which contains all the highest level objects is called
the 'root directory'. The root directory (see below) is created (initially empty) when the
disc is formatted.

The filing system 13

Pathnames and object specifications
If you wish to refer to a file called (say) Memol, it may not be enough to type, for
example,

LOAD "Memo1" RETURN

since Memol may be inside a directory, which may itself be inside another directory
and so on. The full specification for an object is called a 'pathname'. From the root
directory, the pathname for file Memol at the bottom right of figure 4 is

LE TTE RS.BIZLE TS. Memol

so to load Memol you would have to type

LOAD "LETTERS.BIZLETS.Memo1" RETURN

(note that each part of the pathname is separated by a dot). The above pathname is
also called 'object specification', since it specifies how to get to the object (a file in
this case) in question.

Directories
A directory is a collection of objects (up to 47). It can be part of another directory and
can itself contain other directories. A directory name can be up to ten characters long,
any characters can be used except

* . : $ & @ ^

(The above statement is also true of filenames.) The . character is reserved for use in
pathnames; the others have special uses which are explained later. Directories are used
to divide up other directories into mutually exclusive areas which may contain
identical filenames; although the filenames are the same, A.B.MYPROG is not the
same as A.B1.MYPROG because they are in different directories.

Note: Although it is safe to regard a directory as actually containing its constituent
objects, what it really contains is a list of disc addresses (plus other information)
relating to its objects; see chapter 11 for further information.

14 The filing system

Figure 4 The filing system structure

The root directory and the currently selected
directory
The root directory is the 'master' directory that contains all the other directories (it
may also contain files). The $ symbol (or the & symbol) is used to refer to the root
directory (you can't change this). It is created (empty) when the disc is first formatted,
and is accessed whenever the disc filing system is first entered. At this point the root
directory is said to be the 'currently selected' directory (the C SD). Refer to figure 4; if
you asked the computer for a list of all the objects in the CSD (ie $), the list would
consist of:

Program1
SPACEGAMES
LETTERS
personal

(SPACEGAMES and LETTERS are directories, Program1 and personal are
files.) If you made LETTERS the CSD, and asked for a list of all the objects in the
CSD, the list would consist of:

Personlet
BIZLETS

The filing system 15

(Here Personlet is a file, BIZLETS is a directory.)

If you wish to refer to an object in the root directory from another directory then the
object's pathname must begin with $; if you are already 'in' the root directory (ie if the
root directory is the CSD) then the $ can be omitted (see below for examples).

Object referencing
This section gives a few examples of how objects must be referred to within the
hierarchical disc filing system. Refer to figure 4, and assume for the moment that the
ADFS has just been entered, ie the root directory (directory $) is the currently selected
directory (CSD). Note that in figure 4, directory names are shown all upper case in
order to distinguish them from filenames; this convention is adopted here for the
purposes of illustration only, and will not be used in the rest of this manuaL File
Program1 would be loaded by typing

LOAD "Program1" RETURN

File StarTrack would be loaded by typing

LOAD "SPACEGAMES. StarTrack" RETURN

If you wanted some information about file Memo1 you would need to type

*INFO LETTERS.BIZLETS.Memo1 RETURN

(the *INFO command is detailed in chapter 5).

Now suppose directory LETTERS is selected as the CSD (this is done by using the
*DIR command — see chapter 5). Information about file Memo1 would now be
provided by

*INFO BIZLETS.Memo1 RETURN

and for information about file PersonIet, only

*INFO Personlet RETURN

would be necessary. However, if you now wished to load file StarTrack you would
need to type

16 The filing system

LOAD "$. SPACEGAMES. StarTrack" RETURN

since StarTrack is not in the CSD. Typing
LOAD "SPACEGAMES. StarTrack" RETURN
would result in

Not found

being displayed as an error message; the computer would be looking for a directory
called SPACEGAMES within directory LETTERS, whereas of course directory
SPACEGAMES exists only in the root directory. The above instruction would be
correct if the root directory were to be reselected as the CSD.

Special characters
^ means 'parent directory', ie the directory of which the CSD is a member. For
example, if BIZLETS is the CSD then

*INFO ^. Personlet RETURN

could be typed instead of

*INFO $.LETTERS.Personlet RETURN

to provide information about file Persontet.

@ means' currently selected directory'. If BIZLETS were the CSD, then copying file
Program1 into BIZLETS could be achieved by typing

*COPY $.Program1 @ RETURN

The library directory
The disc filing system enables you to specify one directory as the 'library'. The
default library is set up as follows:

— If ADFS is entered with CTRL BREAK (or A CTRL BREAK) and there is
a directory in $ whose name begins with LIB, that directory is allocated as the
library.

The filing system 17

— If ADFS is entered as above, but there is not a directory whose name begins
$.LIB, $ (ie the root directory) is allocated as the library.

— If a drive is accessed by the *MOUNT command (see chapter 5), the library
is not allocated at all (it is said to be 'unset') and has to be set using the *LIB filing
system command (see chapter 5).

The library can be set to be another directory by using the *LIB command, where it
will stay until the computer is next switched off or reset by pressing CTRL BREAK
(or A CTRL BREAK), or reset by another *LIB command. Any machine code utility
programs you use should be located in the library. This is because when you type

* (utility name) RETURN

it is equivalent to typing

*RUN (utility name) RETURN

where the directory containing the utility is assumed to be the currently selected
directory or the library. The filing system will first search the CSD for the file and
then, if it cannot find it there, it searches the library. For example, if directory $.LIB1
contains a machine code program MC1 , then typing

*MC1 RETURN

will run the program whether or not the library is the CSD and whether or not (for
systems containing more then one drive) the library is on the currently selected drive.

Wildcard facilities
A means of abbreviating long object names or referring to many objects at once is
provided by the ' wildcard' facilities. The filing system commands which can operate
with wildcards are followed by the abbreviation <*obspec*> (meaning `wildcard
object specification') instead of <obspec> (object specification). *CAT is an example
of such a command. It provides information about the contents of a named directory.
For example, assuming the root directory is the currently selected directory,

*CAT LETTERS.BIZLETS RETURN

18 The filing system

will display information about the directory named BIZLETS in the directory named
LETTERS.

To save having to type out LETTERS.BIZLETS the wildcard characters * and # can
be used in the object specification. The * character can be a substitute for a string of
up to ten arbitrary characters whereas the # character is a substitute for just one
arbitrary character. The substitution applies to the first object found, sorted
alphabetically. Since LETTERS is the only directory in the root beginning with L
then,

CAT L.BIZLETS RETURN

would do instead of the command given above. In fact, since BIZLETS is the only
directory in LETTERS,

CAT L.* RETURN

would do. The # character as part of an <*obspec*> could be used as follows: if you
wanted catalogue information of the directory in LETTERS, but you'd forgotten
whether it was called BIZLETS or BIZLETZ then,

*CAT LETTERS.BIZLET# RETURN

would produce the information without you having to type in

*CAT LETTERS RETURN

first.

Multi-object operations

Some of the filing system commands can operate on a number of objects instead of
just one. These are all followed by the abbreviation <listspec> (short for list
specification). *INFO is an example of such a command. It provides information about
a named object. For example, if LETTERS is the C SD,

*INFO BIZLETS RETURN

will display information about the object named BIZLETS. A <listspec> uses the
same wildcard characters as <*obspec*> but with greater versatility. For example

The filing system 19

INFO BIZLETS. RETURN

would display information about all three files in BIZLETS. If you only wanted
information about Memo1 and Memo2 then you would only need to type

*INFO BIZLETS.Memo# RETURN

A slightly quicker way of doing this would be to type

*INFO BIZLETS.##### RETURN

since ##### in this context is a substitute for 'all names with five characters', or

INFO B.*0# RETURN

where * 0# means 'all names with 0 as the penultimate letter'. A quick way of
displaying information about file Memonew would be to type

*INFO BIZLETS.*w* RETURN

since * w* in this context is a substitute for 'all names with a w in them'.

Auto-start facilities
Sometimes it is useful to make a program or a file *LOAD, *RUN or *EXEC
automatically when you enter the filing system. This can be done using a file named !
BOOT. !BOOT is a special filename recognised by the filing system when you enter
it by pressing BREAK while holding SHIFT down. If there is a file of specification

$.!BOOT

the filing system will do one of four things according to the option set up by the *OPT
4, n command (see chapter 5).

Resetting the system
The BREAK key resets the BBC Microcomputer. However, the disc filing system can
preserve some of its status after BREAK There are two types of BREAK the first is
called a' hard break' (sometimes called a 'cold start'), and is

20 The filing system

achieved by holding down the CTRL key and pressing BREAK the second is called a
'soft break' (sometimes called a 'warm start'), and is done by just pressing the BREAK
key.

If a hard break does not give the ADFS start-up message on the screen (see chapter 2)
it means that some other filing system is the default filing system (ie the ADFS ROM
is not in the rightmost ROM socket). In this case, ADFS can be entered by pressing
BREAK while holding CTRL and A down together. (Alternatively, ADFS can be '
warm started' simply by pressing BREAK while holding A down.)

As far as the ADFS is concerned, hard break is the same as switching the computer off
and then on again. The currently selected directory is set to $, the library is set as
previously described, and any open files are forgotten about Data written to a file
which is still open may be lost

When you do a soft break, the ADFS preserves its status, ie the CSD and the library
remain the same, and open files remain open.

Important Following a soft break, or having typed *DISC (or *TAPE) then *ADFS to
restart the filing system, the filing system must assume that the contents of RAM
below the default value of PAGE (&1 D00 for ADFS) have not been corrupted. This
means that if you have been using proprietary software which uses all the RAM from
&E00 upwards, you must exit the program with a hard break to obtain normal ADFS
operation.

Drive numbers, the MFM floppy disc system and
future expansions
Your Winchester disc unit is by convention known as drive 0, although it is only
important to remember this if you also have one or more floppy disc drives operating
under the MFM (Modified Frequency Modulation) system. The Advanced Disc Filing
System handles both types of disc drive, although there are slight operating
differences. Full details of the MFM floppy disc system operating under ADFS are
given in the Advanced Disc Filing System User Guide. If you are operating your
Winchester drive in conjunction with MFM floppy drives, drive numbers are allocated
as follows:

Drive number Disc unit
0 or A Winchester drive 0
1 or B Reserved for possible future expansion
2 or C Reserved for possible future expansion

The filing system 21

3 or D Reserved for possible future expansion
4 or E MFM floppy drive 0
5 or F MFM floppy drive 1
6 or G Reserved for possible future expansion
7 or H Reserved for possible future expansion

The possible future expansions referred to above are (drives 1, 2 and 3) additional
Winchester drives and (drives 6 and 7) third and fourth MFM floppy drives. Another
possible future expansion that is allowed for by ADFS is interchangeable Winchester
storage media (see *DISMOUNT and *MOUNT in the next chapter).

If you wish to refer to an object on another drive then its pathname must start with the
appropriate drive number preceded by a colon. For example, if your disc storage
system consists of a Winchester and a dual floppy drive and the Winchester is the
currently selected drive, then typing in

LOAD " :5.MYPROG" RETURN

would load file MYPROG from the root directory of drive 5 (ie the bottom floppy
drive). Similarly, all filing system object specifications, wildcard object specifications
and list specifications can begin with a drive number. For example,

*COPY ":4.MYPROG :0" RETURN

would copy MYPROG in the root directory of drive 4 to the root directory of the
Winchester. (See chapter 5 for more details.) If you don't specify a drive number then
the computer assumes that you wish to refer to an object in the currently selected
drive. Remember that if you only have the Winchester drive then a drive number need
not be included; although

LOAD ":0.MYPROG" RETURN

would work, only

LOAD "MYPROG" RETURN

would be necessary (assuming $ is the CSD).

5 The filing system
commands
The ADFS is a 16K byte program. BASIC programs are stored on a disc or tape, but
the filing system is stored in Read Only Memory (ROM) inside the BBC
Microcomputer. The filing system controls the reading and writing of information to
and from the disc unit and provides a number of useful facilities for maintaining that
information. The following pages describe all the filing system commands. They are
words which the filing system program will recognise and act on. They can be typed
directly on to the keyboard or embedded within your BASIC program. They are all
prefixed with the * character which signals to the computer that a filing system
command (or an operating system command) follows, and should all be followed by a
RETURN. Each command is described under a number of sections; the syntax
abbreviations used are as follows:

< obspec> = object specification
<*obspec*> = wildcard object specification
<listspec> = list specification
< dry> = drive number

If a syntax abbreviation appears in brackets this indicates that its use is optional.

The filing system commands 23

*ACCESS<listspec> (E) (L) (W) (R)

Purpose
To prevent an object from being accidentally deleted or overwritten. An object is said
to have 'attributes' which control the ways in which it can be accessed. Possible
attributes are:

E— Execute only. The E attribute is used to protect files containing machine code
programs. If the E attribute is set, the file cannot be *LOADed, all OSFILE calls
except call 6 (delete) are prevented, and display of object information by the *EX and
*INFO commands is prevented. The only commands which affect a file with the E
attribute set are:

*RUN <filename>, *<filename>, *DELETE, *REMOVE, *DESTROY, *ACCESS
(*ACCESS can only be used to set or remove the L attribute— see below.) If the E
attribute is set, the R and W attributes (see below) cannot be (if R and W are already
set, setting E removes them).

L — Lock If the L attribute is set, the object cannot be deleted or overwritten (until it
is unlocked — see 'Notes' below). (Applies to files or directories.)

R— Read access. This must be set for reading (including loading) to be allowed. (
Applies to files only, but see 'Notes' below.)

w — Write access. This must be set for writing and updating to be allowed. (Applies
to files only.)

Examples

ACCESS $.MC1. E

Gives all files in directory MC1 in the root the 'execute only' attribute.

ACCESS C LWR

Sets all objects in the currently selected directory with names starting with C with
read and write access, and locked against deletion.

ACCESS D.*

24 The filing system commands

Sets all objects in the first directory found with name starting with D with no
read/write access, and not locked.

*A. :0.file R

Sets file in the root directory of drive 0 with read only access, not locked.

Description

Sets the attribute string of a list of objects to the attribute string given.

Notes

There is a further attribute— D (Directory). This is set if the object is a directory, and
cannot be changed. Attributes R and w have no meaning to a directory, and are
ignored when altering a directory.

It is not necessary to specify attributes when an object is first created— the disc filing
system does this for you. The attributes allocated (known as default' attributes) are:

For a file — WR
For a directory — DLR

If an object is locked it will be unaffected by the following commands:

*SAVE
*DELETE
*DESTROY
*RENAME

An attempt to use any of these on a locked file will result in the error message:

Locked

being produced.
Locking does not protect against erasure by reformatting the drive. The 'locked'
attribute can be overcome by using the *ACCESS command to 'unlock' a file by
giving it new attributes, not including 'locked'.

The filing system commands 25

If the R attribute is not set for a file it cannot be read, and an attempt to use the
commands:

*LOAD
*COPY

would give the

Access violation

error message, as would an attempt to use the OPENIN BASIC keyword (or the
OSFIND assembly language call to open a file for reading). Similarly, attempts to use
the OPENOUT keyword (or the OSFIND call to open a file for writing) on a file
without the W attribute set would produce the same result

26 The filing system commands

*ADFS
Purpose

To enter the ADFS from another filing system.

Example

If you had loaded program PROG from (say) the BBC Microcomputer disc filing
system, typing

*ADFS
SAVE " PROG" RETURN

would save the program on to the disc. (Note that the program could not necessarily
be made to run; see 'COPYF description in chapter 9 for notes on this subject)

The filing system commands 27

*BACK

Purpose
To go back to the previously selected directory (PSD). The directory selected before
the last *DIR or *BACK command becomes current, and the PSD is set to the old
CSD. Thus repeated *BACKs may be used to swap between two frequently used
directories.

Examples

*DIR A Select A as CSD
*DIR B Select B as CSD, A is PSD

*BACK A is CSD again, B is PSD
*BACK B is now CSD, A is PSD

Description
Makes the previously selected directory the currently selected directory.

Associated commands

*DIR
*CDIR

28 The filing system commands

*BYE

Purpose
This command must be used before moving the disc unit, and is also a useful command
to type in at the end of a session on the computer. It closes all open sequential access
files and 'ensures' them on to the disc (ie data held in a buffer in the computer RAM is
copied to the disc). The command has the same effect as * CLOSE, and also moves the
disc read/write heads to a 'shipping zone'.

Associated commands
*CLOSE

The filing system commands 29

*CAT (<*obspec*>)

Purpose
To display a 'catalogue' of the specified directory on the screen, consisting of directory
header' information (see below) and a list of the objects in the directory. If no
directory can be found to match the <*obspec*> an error occurs. If no <*obspec*> is
supplied, the currently selected directory is catalogued. The objects in the directory
are listed in alphabetical order, together with their attributes and sequence numbers (
the latter is a number indicating the 'age' of the object; the first object to be created has
sequence number 00, etc - see below for further details).

Examples
*CAT
Business Letters (13)
Drive: 0 Option 00 (Off)
Dir. BusLet Lib. Library1

File1 WR (08) File2 WR (09) Glenn WR (00) XDir DLR(05)
Z-test-4 WR (12) Z-test-5 LWR(13)

The title of the CSD is Business Letters (note a directory title is distinct from a
directory name - see *TITLE). The number in brackets following it is the master
sequence number (MSN) for this directory. When a new object is added to a directory
(or when an existing object is modified to make anew' one) the sequence number of
the new object is set equal to the MSN, unless an object with sequence number equal
to the MSN already exists, in which case the MSN is incremented and the new value
allocated to the new object. Z-test-5 above was the last file to be created (or
modified) since its sequence number is equal to the MSN of the directory. The MSN is
a decimal number, running from 00 to 99 and then back to 00 again. The sequence
number of File1 as shown above is 08, that of File2 is 09. File Glenn was the first to
be created. The CSD is on drive zero and the option set for this drive (see the *OPT 4
command) is 0. The directory name of the CSD is BusLet, and the current library (
which is in the root directory) is called Library1. XDir is a directory and is locked. Z-
test-4 is a file and is also locked. Object names are displayed in alphanumerical order
reading across the four columns.

30 The filing system commands

Description
Displays the catalogue of a directory.

Associated commands

*ACCESS
*DIR
*EX
*INFO
*OPT 4,n
*TITLE

The filing system commands 31

*CDIR < obspec>

Purpose
To create a new directory. A new, empty directory is created with the name given in
the < obspec>. The name is also allocated as the directory title, and the master
sequence number is initialised as 00.

Example

*CDIR NewDir

Creates a new directory called NewDir in the CSD.

*CAT NewDir
NewDir (00)
Drive:0 Option 03 (Exec)
Dir. :0 Lib. Library1

This shows that NewDir is an empty directory, and the CSD is the root of drive 0.

Description
Creates a new directory.

Associated commands

*CAT
*DIR
*EX
*TITLE

32 The filing system commands

*CLOSE

Purpose
To close all sequential access files, and ' ensure' them on to the disc (ie data held in a
buffer in the computer RAM is copied to the disc). *CLOSE is the same as the
CLOSE#0 BASIC keyword.

Example

*CLOSE

Description
Closes all sequential access files.

Associated commands

BASIC's CLOSE# 0

Notes
For more information on the use of this command, see chapter 6.

The filing system commands 33

*COMPACT (< SP> <LP>)

Purpose
To compact the information on the drive and gather the free space on the disc into
larger contiguous sections. This improves access speed, and the

Compaction required

or

Map full

error messages are avoided. The area in RAM used to temporarily hold disc
information while the compaction is taking place is the current screen memory unless
otherwise specified. <SP> and <LP> are both pairs of hexadecimal digits. <SP> is the
start page and <LP> is the length in pages of an area of memory to be used by the
command. There must be RAM in the specified area for the command to work
correctly. Note that this command will corrupt the RAM contents, so if there is a
program or some data in memory that you want to keep, SAVE it before you use this
command.

Examples

*COMPACT 30 50

Use MODE 0, 1 or 2 screen memory.

*COMPACT 40 3C

Use memory from &4000 up to &7C00, the start of the MODE 7 screen RAM.

Description
Compacts the drive, defragmenting the free space.

34 The filing system commands

Associated commands

*MAP
*FREE

Notes
The command examines each object on the disc, and if there is some free space just
before it, the object is copied, using the specified area of memory, into the free space.
(This does not necessarily mean that the free space has to be sufficiently large to
accommodate the object If, for example, sector 9 was a free space, and sectors 10 and
11 contained data, *COMPACT would move the data to sectors 9 and 10, with sector
11 becoming a new free space.) In this way, objects tend to migrate towards sector
zero on the disc and free space tends to migrate towards higher disc addresses, so free
space gathers together in larger sections.

If both < SP> and <LP> are absent, ie if just

*COMPACT
is typed in, the current screen memory (or the start of screen memory to &8000) will
be used. As a further example, consider the following sequence (*MAP is a command
which lists the free space on the disc). Suppose that typing

*MAP

gives

Address : Length
0002A5 : 000005
000486 : 000002
000689 : 000003
00078C : 000002
000A97 : 000001
000EFA : 008E4E

Typing

*COMPACT

The filing system commands 35

followed by

*MAP

would give

Address : Length
000689 : 000003
0007CF : 00000A
000EFA :
008E4E

(Information has been shifted to reduce the number of free spaces, and the first free
space in the list is at a higher disc address.)

36 The filing system commands

*COPY <listspec> <*obspec*>

Purpose
To copy a list of files into another directory. All the files referred to by the <listspec>
are copied into the directory specified in the <*obspec*>. Memory from the start of the
user's BASIC program area (ie the default value of PAGE) up to the start of screen
memory is used, so * COPY is more efficient in MODE 7. Any programs or data in
user workspace will be lost

Examples
*COPY $.WOOGIE $.BOOGIE

copies file $.WOOGIE into directory $.BOOGIE (ie $.BOOGIE will contain a new
file, $.BOOGIE.WOOGIE). Note that files can only be copied into a directory which
already exists.

COPY $.WORK.TEST S.WORKBACKUP

copies all files in directory $.WORK which start with TEST into directory $.
WORKBACKUP.

*COPY * Backup1

copies all files (not directories) in the CSD into a directory in the CSD called
Backup1.

*COPY :0.ROB1 :4.ROB

copies file ROB1 on the Winchester drive into directory ROB on floppy drive 4.

Description
Multiple file copy.

Notes
The contents of user memory will be lost when this command is used. Also the
command is much faster if MODE 7 is selected first

The filing system commands 37

To copy files into the currently selected directory the special character @ may be
used. For example,

COPY ROB. @

would copy all files in directory ROB into the CSD.

38 The filing system commands

*DELETE <obspec>

Purpose
To delete a single object from the disc. The space occupied by the object becomes free
and available for other information Once an object is deleted you cannot get it back
again.

Examples

*DELETE HUGO

Removes an object called HUGO from the CSD.

*DELETE $.A.File1

Removes File1 from directory A in the root directory.

Description
Single object deletion

Associated commands

*ACCESS
*DESTROY

Notes
If you attempt deletion of an object which is locked the error message

Locked

occurs. A directory can only be deleted by unlocking it and deleting all of its
constituent files first Also, a directory cannot be deleted if it is the CSD, eg if
$.ADDRESSES is the CSD then

*DELETE $.ADDRESSES

The filing system commands 39

would produce the error message

Can' t delete CSD

whereas

*DIR $
*DELETE $.ADDRESSES (or *DELETE ADDRESSES)

would be successful (assuming of course that ADDRESSES is unlocked and empty).
If in the above example ADDRESSES was the library, then the message

Can' t delete library

would be displayed (for further details, see the *LIB command). Also, open sequential
files cannot be deleted.

40 The filing system commands

*DESTROY <listspec>

Purpose
To remove a number of objects from the disc in a single operation. A list of the
objects which would be removed is displayed, followed by the message:

Destroy ?_

If you do want to remove all the objects listed you must type

YES RETURN

Anything else aborts the command with the message:

Aborted

Example

*DESTROY *

Remove all objects in the CSD.

DESTROY Work.Temp

Remove all objects in directory Work which start with Temp.

Description
Multiple object deletion.

Associated commands

*ACCESS
*DELETE

Notes
The restrictions on what may be *DELETEd also apply to all objects referenced by
*DESTROY. See *DELETE for further details.

The filing system commands 41

*DIR (<*obspec*>)

Purpose
To make a named directory the currently selected directory (CSD). The object
specified must be a directory, or if no <*obspec*> is supplied the root directory of the
current drive is selected. When the system is first started, or after a hard reset, the
CSD is the root directory of drive 0. The command is also used to change or reset the
currently selected drive.

Example
*DIR Dir1

Select Dir1 as the CSD.

*DIR

Select the root of the current drive as the CSD.

*DIR *

Select the first directory in the CSD as the new CSD.

*DIR :1

Change the currently selected directory to the root of drive 1.

*DIR :1.Work

Change the currently selected drive to drive 1 (with Work in the root directory of
drive 1 as the C SD).

*DIR A

Select the parent of the currently selected directory (ie the directory of which the
CSD is a member) as the new CSD.

42 The filing system commands

*DISMOUNT (<drv>)

Purpose
To 'ensure' data on to a disc. The command closes all sequential files, and takes
appropriate action if the currently selected directory or library is on the affected drive.
This command will mainly be used prior to changing an MFM floppy disc, but also
provides for the possible future availability of interchangeable Winchester storage
media.

Examples

*DISMOUNT

Ensure data on to the currently selected drive.

*DISMOUNT 0

Ensure data on to the Winchester drive.

Description
Ensures data on to the drive.

Associated commands

*MOUNT

Notes
*DISMOUNT only closes the files on the drive specified by < drv> (or the currently
selected drive if <drv> is absent).

If the CSD is on a *DISMOUNTed drive, the system is put into a state such that the
CSD and the library are 'unset'. The next access to that drive will either produce the

No directory
error message, or $ will be read from the drive and treated as the CSD,

The filing system commands 43

according to the nature of the access. If the Winchester is the currently selected drive,
typing

*DISMOUNT
*CAT

would produce (say)

$ (19)
Drive:0 Option 00 (Off)
Dir. "Unset" Lib. "Unset"
LIBPROG DLR (22) PROGX WR (08) PROGY WR (19)

The CSD is not set, but is treated as being $ since $ is the default directory in the
*CAT command. However, typing

*DISMOUNT
LOAD "PROGX"

would produce the

No directory

error message. The CSD and the library can be set using the *DIR and *LIB commands

44 The filing system commands

*EX (<*obspec*>)

Purpose
To display information about the directory named in the <*obspec*>. It includes
details not given by *CAT such as the length of a file and its location (both in
hexadecimal). The information is displayed in the following order across the screen:

(Directory header information)

Object Attributes Sequence Load Execution Length Start
name number address address in bytes sector

Example

*EX $

might give

$ (19)
Drive: 0 Option 03 (Exec)
Dir. : 0 Lib. :0

!BOOT WR (17) 00000000 00000000 00000029 00007B
FT DLR(01) 00000C
ROB DLR(00) 000007
X WR (19) 00000000 00000000 00000580
000167

(If no <*obspec*> is given, the currently selected directory is examined.) Note that if
the object is a directory, only the start sector number is displayed (the other quantities
have no meaning for a directory). For a file with the E attribute set, *EX will only
display the attribute string and the generation number. For example if file x above
was given the E attribute, *EX would only give

X E (1 9)

Description
Displays directory contents information.

The filing system commands 45

Associated commands
*ACCESS
*CAT
*DIR
*INFO
*OPT 4,n
*TITLE

46 The filing system commands

*EXEC (<*obspec*>)

Purpose
This command reads byte by byte all the information in the specified file as if it were
being typed in at the keyboard. Instead of typing in the same sequence of commands
repeatedly, an EXEC file (a text file) can be created containing these commands.
Typing *EXEC <*obspec*> will activate the sequence of commands whenever you
want them.

Example

*EXEC HELLO

Takes the contents of the file HELLO and reads it one character at a time as if it were
being typed in at the keyboard (and acts upon any commands that are generated).

Description
Execute commands in a file as if typed in at the keyboard.

Notes
One useful application of this command is in using *OPT 4 3 (see later in this
chapter) in concert with *EXEC !BOOT. If the file !BOOT contains the text CHAIN
"<*obspec*>" where the object is a BASIC program, pressing BREAK while holding
SHIFT down will automatically load and run the program. See chapter 6 for an
example of how to create a !BOOT file.

If a file's execution address is &FFFFFFFF, typing

* RUN <filename> (or just *<filename>)

will *EXEC the file rather than `load-and-run' it

*EXEC without a filename, when included in an EXEC file, will stop the file from
executing. For example an EXEC file could include a line such as:

IF <condition> THEN *EXEC

The filing system commands 47

*FADFS
Purpose
This command starts the ADFS without accessing the disc (ie no disc information is
loaded into RAM). The system is started with the CSD and the library 'unset', as with
*DISMOUNT.

Example
*FADF
S *CAT

$ (19)
Drive:0 Option 00 (Off)
Dir. "Unset" Lib. "Unset"
LIBPROG DLR(22) PROGX WR (08) PROGY WR (19)

Associated commands

*ADFS
*DISMOUNT

Notes
Pressing BREAK while holding CTRL and F down together has the same effect as
the *FADFS command.

48 The filing system commands

*FREE
Purpose
To display the amount of free space left on the disc in disc sectors (in hexadecimal)
and bytes (in decimal).

Example

*FREE

008E5B Sectors =9,329,408 Bytes Free
000EDD Sectors = 978,176 Bytes Used

Description
Displays free space left

Associated commands

*COMPACT
*MAP

The filing system commands 49

*HELP <keyword>

Purpose
Displays useful information. For the Advanced Disc Filing System the <keyword> is
ADFS and the information displayed consists of a list of the filing system commands.
If just *HELP is typed, the system produces a list of currently installed ROMs.

Examples

*HELP

Advanced DFS 1.00 ADFS

OS 1.20

*HELP ADFS

displays a list of the ADFS commands (see chapter 12).

Notes
*RUN, *SPOOL, *SAVE, *EXEC, *OPT, *CAT and*LOAD are not included in
these lists because they are machine operating system commands which operate outside
the ADFS. *HELP is a machine operating system command.

50 The filing system commands

*INFO <listspec>

Purpose
Displays information about a list of objects. The information is the object name,
attribute string and generation number, load address, execution address, length and
disc sector address, the same as displayed by *EX.

Example

INFO TEST

Displays information about all objects in the CSD with names beginning with TEST.

INFO ADD1.

Displays information about all objects in directory ADD1.

Description
Displays detailed information about a set of objects.

Associated commands

*CAT
*DIR
*EX

The filing system commands 51

*LCAT
Purpose
Catalogues the current library, as in *CAT.

Example
*LCAT
$ (96)
Drive:0 Option 03 (Exec)
Dir. WD1 Lib. $

!BOOT WR (29) CINEMAS WR (96) UTILS DR (00) WD1 DR (02)
WD2 DLR(03)

Here the current library is the root directory, and the currently selected directory is
WD1.

Associated commands

*CAT

52 The filing system commands

*LEX
Purpose
Examines the current library, as in *EX.

Example
*LEX
$ (96)
Drive:0 Option 03 (Exec)
Dir. S Lib. $

!BOOT WR (29) 00000000 00000000 00000029 000007
CINEMAS WR (96) 00000000 FFFFFFFF 0000001E 000008
UTILS DR (00) 000009
WD1 DR (02) 000062
WD2 DLR(03) 000067
Here the current library and the currently selected directory are both $.

Associated commands
*EX

The filing system commands 53

*LIB (<*obspec*>)

Purpose
Sets the library to the specified drive and directory.

Example

*LIB $.A

sets directory A in the root as the library. After this typing

*< filename>

will search directory A for the named file, and if it is found the file will be loaded and
executed just as if you had typed

*RUN A.<filename>

(note that the library does not have to be the C SD). In this example, directory A
would not be retained as the library following a hard break or a *MOUNT (see below
for more details).

Description
Defines the directory that is to contain the library.

Associated commands

*DIR
*LCAT
*LEX
*RUN

Notes
When ADFS is entered the library directory is set to $, unless there is a directory with
name beginning $.LIB, in which case this latter directory would be allocated as the
library. (If there were two or more such directories, they would be ordered
alphabetically, and the first one allocated as the library.) A directory will not be
retained as the library following a hard break from ADFS

54 The filing system commands

unless its name begins $.LIB. A *MOUNT operation defines the library to be 'unset'
even if there is a directory on the drive with a name starting with LIB.

The library directory can only be deleted by first of all reallocating another directory
as the library. For example, typing

*LIB

would set $ as the library directory. The 'old' library directory can then be deleted in
the usual way.

The library is usually used to contain files which contain machine code programs, eg
games or utility programs.

The filing system commands 55

*LOAD <*obspec*> (<address>)

Purpose
Reads a named file from the disc into memory in the computer starting at either a
specified start address or the file's own load address.

Examples

*LOAD "LINDA"

Reads the file LINDA into memory starting at the load address of the file when it was
saved.

*LOAD LINDA 3200
Reads the file LINDA into memory starting at location 3200 (hex).

Description
Loads a file into memory.

Associated commands

*SAVE
*RUN

Notes
Note that you should not *LOAD programs into memory starting at a location below
the default value of PAGE for ADFS (&1D00).

The quotation marks shown above are optional (they are not treated as part of the
filename, but if you do use them then a pair of marks must be present). If the named
file is not found, the message

Not found

is produced.

56 The filing system commands

*MAP
Purpose
To display a map of the free space available on the disc. The format is a list of pairs of
numbers of the form:

<Sector address> : <Length in sectors>
If there is a large number of entries in the list the free space on the disc is becoming
fragmented, and a creation operation (SAVE, *CDIR, *COPY etc) may cause the error
message

Compaction required

to be displayed. This can be irritating, so you are advised to *COMPACT the disc
whenever fragmentation occurs. The ADFS can handle up to 80 entries in the *MAP
list However, if the list gets to be more than 60 or so entries long, you are advised to
carry out a *COMPACT operation.

Example

*MAP
Address : Length
000689 : 000003
0007CF : 00000A
000EFA : 008E4E

Description
Displays the free space map.

Associated commands

*COMPACT
*FREE

The filing system commands 57

*MOUNT(<drv>)

Purpose
This command is mainly used with MFM floppy disc drives (see the Advanced Disc
Filing System User Guide for full details), but it also provides for the possible future
expansions detailed in chapter 4.

The command initialises a drive (by forcing the Winchester controller— a circuit
board inside the Winchester unit — to do a ' hard reset), reads the free space map, and
stores the appropriate addresses in RAM. It is good practice to *MOUNT a drive after
a disc error has occurred.

Example

*MOUNT 4

initialise floppy drive 4.

Description

Initialises a drive.

Associated commands

*DISMOUNT

Notes
Typing

*DIR :<drv>

produces almost the same effect as typing

*MOUNT <drv>

the only discernable difference being that *MOUNT defines the library to be 'unset',
even if there is a directory on the reselected drive with name beginning with LIB.

58 The filing system commands

*OPT 1 (n)

Purpose
This command enables or disables a message system which displays a file's
information (the same as *INFO). Every time a file on the disc is accessed the
information is displayed. (n) can be anything from 1 to 99 to enable the feature. (n) = 0
disables it

Examples
*OPT 1 1 or *OPT 1,1

enables the messages;

*OPT 1 0 or*OPT 1,0

disables the messages.

Description
Message system to display file information at every access.

Associated commands

*INFO

Notes
A space or a comma between * 0 P T 1 and its argument (n) is essential

*OPT 0

resets the *OPT 1 state to its default, ie * OPT 0 has the same effect as
*OPT 1,0.

The filing system commands 59

*OPT 4 (n)

Purpose
Changes the auto-start option. There are four options to choose from, 0, 1, 2 or 3.
Each option initiates a different action when you press SHIFT and BREAK The
computer will either ignore or automatically *LOAD,*RUN, or *EXEC a file called !
BOOT which must be in the root directory.

Example
*OPT 4 0 does nothing
*OPT 4 1 will *LOAD the file !BOOT
*OPT 4 2 will *RUN the file !BOOT
*OPT 4 3 will *EXEC the file !BOOT

Description
Changes the start-up option of a disc.

Notes
It is essential to include a space or a comma between the command and (n). *OPT
40 would produce the message:

Bad option

If option 0 is set the !BOOT file need not be there. With any other option the message

Not found
is produced if !BOOT is not found after a SHIFT BREAK

Important
Do not confuse *OPT 4 with *OPT 1 or the BASIC keyword OPT; they are
completely different

60 The filing system commands

*REMOVE < obspec>

Purpose
To delete a single object from the disc. *REMOVE is the same as *DELETE except
that if the object to be removed does not exist, the error message:

Not found

is not displayed. This command is especially useful as part of a program, since the
program will not be interrupted even if the named object does not exist

Example

*REMOVE FRED

Removes an object called FRED from the CSD. (Remember that if FRED is a
directory it must be empty.)

Description
Single object deletion without error reporting.

Associated commands

*ACCESS
*DELETE
*DESTROY

Notes
The command can be used before an OPENOUT command (see chapter 6) to ensure
that the default number of sectors is assigned to the file, eg:

*REMOVE FRED
F%=OPENOUT "FRED"

The filing system commands 61

*RENAME <obspec> <obspec>

Purpose
Changes the object name, moving it to another directory if required.

Example

*RENAME SUMS B.MATHS

Assuming the root directory is the CSD, the object $.SUMS becomes the object
MATHS in directory $.B (the original object name $.SUMS will no longer appear in
the CSD).

Description

Renames an object

Notes
When operating on a directory the root specification (ie 5) may not be used in the
directory name. A directory cannot be renamed so as to refer to itself, eg

*RENAME A A.B

would produce the

Bad rename

error message. If the object to be renamed does not exist the message

Not found

is displayed.

62 The filing system commands

The new object name must not contain wildcards, nor can an object be renamed on to
a different drive. If the object to be renamed is locked, the RENAME operation will
not take place and the

Locked

error message will be displayed.

The filing system commands 63

*RUN <*obspec*> (<optional parameters>)

Purpose
This command is used to run machine code programs. It loads a file into memory and
then jumps to its execution address, unless the execution address is &FFFFFFFF
when the file is *EXEC ed as a text file.

Example

*RUN PROG

will cause a machine code program in the file PROG to be loaded and executed
starting at the execution address of the file.

Description
Load and run a machine code file, or *EXEC a file if the execution address is
&FFFFFFFF.

Associated commands

*LIB
*LOAD
*SAVE

Notes
This command will not run a BASIC program.
Typing *<*obspec*> or */<*obspec*> is accepted as being *RUN< obspec> (clearly,
 the object in this case must be a file).

Typing *<filename> results in the file being loaded and executed if it is found in the
currently selected directory or the library.

The <optional parameters> referred to above are those which are optional to the
machine code program whose filename is in the command. If a file's load address is
&FFFFFFFF, * RUN <filename> will produce the error message

Won't

64 The filing system commands

*SAVE <obspec> <start address>

<finish address> (<execute address>) (<reload address>)

*SAVE <obspec> <start address> + <length> (
<execute address> (<reload address>))

Purpose
It is important not to confuse this with the BASIC keyword SAVE, they are quite
different This command takes a copy of a specified section of the computer's memory
and writes it on to the disc, putting it into a file of the given name. You will mostly use
this command to record your machine code programs.

Examples

*SAVE "PROG" SSSS FFFF EEEE RRRR
*SAVE "PROG" SSSS +LLLL EEEE

SSSS = Start address of memory to be saved
FFFF = Finish address of memory to be saved
EEEE = Execution address (see below)
RRRR = Reload address
LLLL = Length of information

Quotes are optional

Notes
RRRR and EEEE may be omitted in which case the reload address and the execution
address are assumed to be the same as the start address.

If there are already 47 objects in the specified directory the message

Dir full

is displayed. If the specified filename already exists and is locked the message

The filing system commands 65

Locked

is displayed. If the file already exists but is unlocked it is overwritten. If enough space
is available, the information is written on to the disc and the filename is entered on to
the catalogue in the current directory.

66 The filing system commands

*SPOOL(<obspec>)

Purpose
Opens a file of the specified name on the disc to receive all the information
subsequently displayed on the screen. This is a very useful command particularly for
producing a text file of one of your BASIC programs (see 'Notes' below).

Example
You can obtain a text file of one of your BASIC programs as follows:

LOAD "MYPROG"

Loads a program from disc into memory.

*SPOOL TEXT

Opens a file called TEXT ready to receive information from the screen.

LIST

Causes the BASIC program to be displayed on the screen and to be written into the
file called TEXT.

*SPOOL

Turns off the 'spooling' and closes the file called TEXT.

Description
Spools subsequent output to the screen to a named file opened for the purpose.
Closes the file when spooling is terminated.

Associated commands

*EXEC

The filing system commands 67

Notes
BASIC on the BBC Microcomputer is 'tokenised'. This means that program lines
which you type in are abbreviated inside the computer's memory and on the disc. A
program file will contain these abbreviated 'tokens' rather than your original program
text

68 The filing system commands

*TITLE <title>

Purpose
To change the title of the currently selected directory. The title may be up to 19
characters long. All characters to the right of the command (with leading spaces
removed) up to a RETURN or double quote are copied into the title field of the CSD.
Note that a directory title is distinct from a directory name. The title has no meaning
to the computer, it is only used to enable the user to give a directory a 'readable'
identity. The directory name will be allocated as the directory title until the *TITLE
command is used to change it.

Example
s
If typing

* CAT

gives

$ (48)
Drive:0 Option 03 (Exec)
Dir. $ Lib. $

!BOOT WR (17) DIR1 DLR(48)

then typing

*TITLE Root Directory
*CAT

would give

Root Directory (48)
Drive:0 Option 03 (Exec)
Dir. $ Lib. $

!BOOT WR (17) DIR1 DLR(48)

6 File handling
using BASIC
General principles
As we mentioned in chapter 1, one of the major advantages of a disc over a cassette
tape is that the read/write head can be moved to a specific place on the disc quickly and
accurately. Imagine you have a data file on cassette tape consisting of 'Names' and '
Telephone numbers'. To find a specific telephone number the file must be loaded and
read from the beginning until the required record is found. If the file is long this will
take some time. On the other hand, the disc filing system enables you to move to the
required record and just read that one. Clearly this is much quicker.

To make this possible the disc filing system provides a pointer which points to the next
character in the file to be read or written. Files accessed in this way are known as '
random access files'. In BASIC the pointer is controlled by the keyword PTR#. The
other BASIC keywords which are used in connection with disc files are EXT# and
EOF#. EXT# tells you how long a file is, EOF# returns a value of TRUE (-1) if the
end of the file has been reached and FALSE (0) if not All the BASIC keywords used to
manipulate disc files are explained in the BBC Microcomputer System User Guide.
They are:

OPENOUT
OPEN IN
OPENUP
PTR#
EXT#
INPUT#
PRINT#
BGET#
CLOSE#
BPUT#
EOF#

To prepare a file to receive data the OPENOUT keyword is used. In the User Guide
the following example is given:

330 X = OPENOUT("cinemas")

70 File handling using BASIC

The effect of this line in a BASIC program is as follows:

1. If a file called 'cinemas' exists it is deleted.

2. A file called 'cinemas' is entered into the currently selected directory.

3. The filing system reserves 256 sectors (or the length of the previous file called '
cinemas', if there was one) on the disc for the exclusive use of the file 'cinemas'. If
256 sectors are not available, the file is created using the largest space available. If
the disc is full the file is not created and an error message is displayed.

4. Evaluating PTR# and EXT# at this point will reveal that they are both set to zero.

5. The filing system will have loaded into the computer memory the first sector, 256
bytes, of the file. This area of memory is reserved by the filing system for this
purpose and is referred to as the 'buffer'.

Notice that the first action of the keyword OPENOUT is to delete any existing file
of the specified name.

If there were no files on the disc previously, the effect can be illustrated as follows:

We can now use the BASIC keyword PRINT# to write three cinema names into slots
of ten characters each, as follows:

330 X=OPENOUT ("cinemas")
340 A = PTR#X
350 PRINT# X, "VICTORIA"
360 PTR#X = A+10
370 PRINT# X, "REGAL"
380 PTR# X = A+20

File handling using BASIC 71

390 PRINT# X, "ODEON"
400 PTR# X = A+30

In practice you can do it much more elegantly than shown above; nevertheless the
result immediately after line 400 is:

Notice that the cinema names are in the file backwards. They are preceded by two
bytes, represented in the diagram by 't' and 'l'. t' specifies the type of data which
follows. In this case the type is 'string' so the first byte will contain &00 in hex, as
indicated below:

't' = &00 = String type, followed by '1', followed by the string.

't' = &40 = Integer type, followed by four bytes containing the integer.

't' = &FF = Real type, followed by five bytes containing the real number.

In our example the second byte, represented by l', gives the length of the string in
hex. The integer and real number types are of fixed length as indicated above so they
do not require the byte represented by '1' to give the length Real numbers are stored
in exponential format, integers are stored with the high order bytes first in the file.

In the example we have used only the first 26 bytes of the file, so everything written
to the file fits into the first sector which is in a 'buffer' in memory. If we had gone on
writing names, the filing system would eventually have put the information in the
memory buffer on to sector 07 of the disc and loaded sector 08 into the buffer to
continue. This is still assuming that there are no other files on the disc, otherwise
different sectors would be used. (Remember that sectors 00 to 06 inclusive are put to
special uses by the disc filing system— see chapter 10 for more details.) Clearly then,
at the end of a sequence of writing actions, we are left with a buffer in memory which
may be partly filled with information. We must make sure that this information is
written to the disc. This is done with the CLOSE# keyword in BASIC (or the
*CLOSE ADFS command), which empties the buffer and frees the channel on which
we opened the file (X in the example).

72 File handling using BASIC

We can now read the information back from the disc if we want to. OPENIN is the
BASIC keyword used to do this, eg.

5 DIM cine$(3)
10 X = OPENIN ("cinemas")
20 B = 1
30 FOR A = 0 TO 20 STEP 10
40 PTR#X = A
50 INPUT#X,cine$(B)
60 B = B+1
70 NEXT A

Line 10 of the example opens the file 'cinemas', loads the first sector into the buffer,
sets PTR# to zero and EXT# to the length of the file.

Lines 30 to 50 of the example read each cinema name into an element of the array
cine$, advancing the pointer to the start of the next name after reading each one. Now
you can see why we stored each name in its own '10 byte record'. This makes it much
easier to write a program to find the names again.

The important principle about using random access files is that you must keep track of
where each item of information is written. You can then set PTR# to point to it again
when you want to read or change it The examples illustrate the basis of a very simple
technique. There are a number of others which you can devise.

Creating an EXEC file
One useful application of the BASIC disc file handling commands used with ADFS is
creating EXEC files. The following program could be used to create a !BOOT file;
just type in $.!BOOT at the Filename? prompt (Press ESCAPE to exit the program;
don't forget to set up the auto- start option on the disc to *EXEC file !BOOT.)

10 INPUT "Filename",A$
20 F%=OPENOUT A$
30 IF F% ELSE PRINT "Couldn't open" A$: GOTO 10
40 ON ERROR GOTO 130

File handling using BASIC 73

50 REPEAT
60 INPUT A$
70 FOR I%=1 to LENA$
80 BPUT#F%,ASC MID$(A$,I%,1)
90 NEXT I%

100 BPUT#F%,&0D
110 UNTIL FALSE
120 :
130 IF ERR=17:CLOSE#F%:PRINT "File built":END
140 CLOSE#F%
150 REPORT:PRINT " at "ERL
160 END

Once the program has been run, the !BOOT file will be *EXEC ed by a SHIFT
BREAK (see *EXEC in chapter 5).

Notes
As mentioned earlier, OPENOUT reserves 256 sectors for a file. Other files opened
may reserve sectors which immediately follow, eg

X = OPENOUT ("cinemas")
Y = OPENOUT ("clubs")

The statements reserve 512 sectors consecutively (provided the disc was otherwise
empty).

It may be that you require more than 256 sectors for the first file 'cinemas'. This
presents no problem to ADFS, which, should it become necessary, will move the
entire file to a new start address on the disc from where the appropriate number of
sectors is available. If this number of sectors is not available anywhere on the disc, the

Compaction required
error message will be displayed.
If you want to create in advance an empty random access file larger than 256 sectors
long then for example

PTR# OPENOUT "DATA" = &20000
CLOSE#0

74 File handling using BASIC

will create a file 512 sectors (128K) long called DATA. You can then open the file
later in your program. This method causes the filing system to search the disc for a
free space large enough to hold the file. Existing files will be skipped over if they
would otherwise overlap with the new file.

Up to ten files may be open at any one time. This is because the space reserved for
each file in the computer's memory to hold the information about extent, pointer etc is
limited.

7 File handling using
assembly language
Chapter 43 of the BBC Microcomputer System User Guide is essential reading for
anyone wanting to write assembler programs for the BBC Microcomputer. Most of the
necessary information for using the filing system in assembly language is presented
there. In this chapter the main points are summarised and particular uses of OSWORD
are described in detail

General principles
There are a number of operating system routines available to handle disc input/ output
All the routines must be called with a JSR and the decimal flag clear. These routines
are called in address range &FF00 to &FFFF. Each routine, when called, calls an
internal (OS ROM resident) routine whose address is stored in RAM between &0200
and &02FF. (The OS routine is said to 'indirect' through one of these addresses.) The
internal routine addresses will vary according to the filing system in use. For example,
the routine OSFIND to open or close a file is entered at &FFCE, and is indirected via
&021C. &021C and &021D contain the address of (or the 'vector' to) the executable
routine in the filing system ROM. (Note that the foregoing is somewhat simplified; a
detailed description of the situation for sideways ROMs is beyond the scope of this
manual)

Using the available routines you can perform all necessary functions relating to disc
files. The relevant routines together with their entry points are summarised below (the
third column gives the names of the vectors to the internal routines):

OSFIND &FFCE FINDV &021 C Open or close a file for byte access
OSFILE &FFDD FILEV &0212 Load or save a complete file
OSARGS &FFDA ARGSV &0214 Load or save data about an open

file
OSGBPB &FFD1 GBPBV &02 A Load or save a number of bytes
OSBGET &FFD7 BGETV &0216 Read one byte from an open file
OSBPUT &FFD4 BPUTV &0218 Write one byte to an open file
OSWORD &FFF1 WORDV &020C Load or save a number of sectors

(and other functions)

76 File handling using assembly language

OSFIND
Call address &FFCE (indirects through &021 C).

OSFIND is used to open and close files. Opening a file declares a file requiring byte
access to the filing system. Closing a file declares that byte access is complete. To use
OSARGS, OSBGET, OSBPUT or OSGBPB with a file, it must first be opened.

A=0 Causes a file (or files) to be closed
A=&40 Causes a file to be opened for input only (reading)
A=&80 Causes a file to be opened for output only (writing)
A=&C0 Causes a file to be opened for input and output (random access)

If A=&40 or &C0, the file to be opened must already exist; a new file will not be
created.

If A=&80 and the file does not already exist, a new file &10000 bytes (64K) long will
be created. If BPUT# attempts an access beyond this extent, or if the pointer moves
beyond this extent, there may be a delay while new disc space is allocated.

If A=&80 and the file already exists, the disc space used already is allocated to the
file; the default 64K can thus be overridden. See OSFILE with A=7.

If A=&40, &80 or &C0, Y (high byte) and X (low byte) must contain the address in
memory of the filename, terminated by a carriage return (ASCII &0D). On exit, A will
contain the channel number allocated to the file for all future operations (the file '
handle'). If A=0 on exit, then the operating system was unable to open the file.

If A=0 then a file, or all files, will be closed depending on the value of Y. Y=0 will
close all files, otherwise the file whose channel number is given in Y will be closed.

On exit from OSFIND, X and Y are preserved, C, N, V and Z are undefined and D=0.
The interrupt state is preserved, but interrupts may be enabled during the operation

OSFILE
Call address &FFDD (indirects through &212).
This routine performs actions on whole files. These are loading a file into memory,
saving a file from memory, and loading and altering file 'catalogue information' (see
A=5 overleaf).

File handling using assembly language 77

On entry
A indicates the function to be performed. X (low byte) and Y (high byte) point to an
18-byte parameter block, structured as shown below (the left hand column shows
addresses relative to the base address given by X and Y).

00 Address of filename, which must end with LSB
01 a carriage return MSB

02 Load address of file LSB
03
04
05 MSB

06 Execution address of file LSB
07
08
09 MSB

0A Start address of data for save operations LSB
0B or length of file otherwise
0C
0D MSB

0E End address of data to be written (ie byte LSB
0F after last byte) for save operations, or
10 file attributes otherwise
11 MSB

The following functions are performed by OSFILE according to the value held in A:

A=0 Save a block of memory as a file using the information provided in the
parameter block The file's catalogue information (see A=5) will be
written into the parameter block.

A=1 Write the named files's catalogue information from the parameter block
to the file's entry in the directory.

A=2 Write the named file's load address from the parameter block to the file'
s entry in the directory.

78 File handling using assembly language

A=3 Write the named file's execution address from the parameter block
to the file's entry in the directory.

A=4 Write the named file's attributes (see below) from the parameter
block to the file's entry in the directory.

A=5 Read a named file's catalogue information (ie load address,
execution address, length, type) from the file's entry in the
directory. The object type (see below) is returned in A, the other
information being written to the parameter block (If the object is a
directory, default values are returned for the catalogue information.
)

A=6 Delete the named file (the file's catalogue information will be put
into the parameter block).

A=7 Create an object This is the same as 'Save' (A=0) except that no data
is transferred. This facility can be used to create very large objects
for opening for output only, overriding the default length allocation
of 64K and avoiding extension delays and possible Compaction
required errors.

A=&FF Load the named file. The address to which the file is loaded is
determined by the least significant byte of the execution address
given in the parameter block If this is zero, the address given in the
parameter block is used, otherwise the file's own load address is
used.

Object attributes are stored in the last four bytes of the parameter block The most
significant three bytes are undefined; the least significant eight bits, when set, have
the following meanings:

Bit Meaning
0 The file is readable by you
1 The file is writable by you
2 Undefined
3 The object is locked for you
4 The file is readable by others
5 The file is writable by others
6 Undefined
7 The object is locked for others

In ADFS, bits 4-7 are always identical to bits 0-3. In calls which write the attributes
of an object, all bits except 0, 1 and 3 are ignored. If the object is a

File handling using assembly language 79

directory, bits 0 and 1 are also ignored. Note that 'others' in the above context means
other users of, say, the Econet filing system.

Object types returned in the accumulator are:
0 Nothing found
1 File found
2 Directory found
FF Protected file (E)

On exit
X and Y are preserved, A contains the object type, C, N, V and Z are undefined.
Interrupt status is preserved, but may be enabled during a call.

OSARGS
Call address &FFDA (indirects through &0214).
This routine reads or writes an open file's arguments (as defined below), or returns
the type of filing system in use, according to the value held in Y on entry. In either
case, X (on entry) must point to four bytes in page zero.

If Y is non-zero, then A determines the function to be carried out on the file whose
handle is in Y.

A=0 Read file's sequential pointer (BASIC PTR#)
A=1 Write file's sequential pointer (BASIC PTR#)
A=2 Read file's length (BASIC EXT#)
A=3 Write file's length
A=&FF 'Ensure' the file on to the disc (ie save the latest copy of the file's

memory buffer)

(The file length and sequential pointer are sometimes collectively referred to as the
file 'arguments'.)

If Y is zero then the following operations are carried out according to the value in A:

A=0 Returns the type of filing system in A:

A=0 — No filing system currently selected
A=1 — 1200 baud cassette
A=2 — 300 baud cassette
A=3 — ROM pack filing system
A=4 — Floppy disc (FM format) filing system

80 File handling using assembly language

A=5 — Econet filing system
A=6 — Teletext/Prestel Telesoftware filing system
A=7 — IEEE filing system
A=8 — ADFS

A=1 Returns the address of the rest of the command line in the zero page
control block

A=&FF Ensures all open files on to the disc.

On exit
X and Y are preserved, C, N, V and Z are undefined, and D=0. The interrupt state is
preserved, but interrupts may be enabled during the operation.

OSGBPB
Call address &FFD1 (indirects through &021A).
This routine will transfer a number of bytes to or from an open file, and can also be
used to transfer filing system information. If single bytes are transferred using the
OSBPUT and OSBGET routines, the 'overhead' incurred for each transfer has a
marked effect on performance times. The greater the number of bytes that can be read
or written, the more efficient the transfer is; a single OSGBPB call can replace an
OSARGS call, and a large number of OSBGET or OSBPUT calls.

On entry
X (low byte) and Y (high byte) point to a control block in memory. A defines the
operation to be performed. The control block format is shown below (the left hand
column shows addresses relative to the base address given by X and Y).

00 File handle

01 Pointer to memory area used to transfer data LSB
02
03 from/to
04 MSB

05 LSB
06 Number of bytes to transfer
07
08

File handling using assembly language 81

09 Sequential pointer value to be used for LSB
0A transfer (if used)
0B
0C MSB

The sequential pointer value given replaces the old sequential pointer value.

The value held in A determines the type of operation:

A=1 Write bytes to disc, using new sequential pointer value

A=2 Write bytes to disc, using old sequential pointer value

A=3 Read bytes from disc, using new sequential pointer value

A=4 Read bytes from disc, using old sequential pointer value

A=5 Read currently selected directory title, boot up option, and drive number.
 The data returned is:
— Single byte giving the length of the title
— The title in ASCII character values
— Single byte giving the start option
— Single byte giving the drive number

A=6 Read currently selected directory name. The data returned is:
— 1 (length of drive number)
— ASCII-coded drive number
— Single byte giving the length of the name
— The name in ASCII character values

A=7 Read currently selected library name. The data returned is:
— 1 (length of drive number)
— ASCII-coded library drive number
— Single byte giving the length of the name
— The name in ASCII character values

A=8 Read filenames from the CSD. The control block is as follows:

00 CSD master sequence number returned here

01 Pointer to memory area used to transfer LSB
02 filenames to
03
04 MSB

82 File handling using assembly language

05 Number of filenames to read LSB
06
07
08 MSB

09 File counter (search begins with first file LSB
0A if this is zero)
0B
0C MSB

The data returned is:

— Length of filename 1
— Filename 1
— Length of filename 2
— Filename 2 .. .

On exit
A requested transfer cannot be completed if the end of the file has been reached, or if
there are no more bytes (or filenames) to be transferred. In this case C is set on exit If
a transfer has not been completed the number of bytes (or filenames) which have not
been transferred is written to the control block (bytes 05-08). The address field (bytes
01-04) is always adjusted to point to the next byte/filename to be transferred, and the
sequential pointer always points to the next entry in the file to be transferred.

X, Y and the accumulator are preserved, N, V and Z are undefined, C is set if the
transfer could not be completed. The interrupt state is preserved, but may be enabled
during the call.

OSBGET
Call address &FFD7 (indirects through &0216). This
routine reads a single byte from an open file.

On entry
Y contains the file handle, as set up by OSFIND. The byte is read from the point in
the file designated by the sequential pointer, as set up by OSARGS.

File handling using assembly language 83

On exit
X and Y are preserved, A contains the byte read, N, V and Z are undefined. C is set if
the end of the file has been reached, indicating that the byte obtained is invalid. The
interrupt state is preserved, but may be enabled during the calL The sequential pointer
is incremented.

OSBPUT
Call address &FFD4 (indirects through &0218). This
routine writes a single byte to an open file.

On entry
A contains the byte to be written. Y contains the file handle, as set up by OSFIND.
The byte is written to the point in the file designated by the sequential pointer, as set
up by OSARGS.

On exit
X, Y and A are preserved, C, N, V and Z are undefined. The interrupt state is
preserved, but may be enabled during the calL The sequential pointer is incremented,
and if this now points to the end of the file, EXT# is incremented, and more disc space
is reserved as necessary.

OSWORD
Call address &FFF1 (indirects through &020C).
There are four OSWORD calls recognised by the ADFS. They all require X (low byte)
and Y (high byte) to point to an area of memory used to contain a control block or for
results.

OSWORD with A=&70 – Read the master sequence number and the status byte.

The master sequence number of the currently selected directory is placed in the
location pointed to by YX. It is in binary coded decimal form in the range 0-99
inclusive. YX+1 contains a status byte, structured as shown below:

Bit number Meaning if set
0 File ensuring in progress (IRQ pending)
1 Bad free space map
2 *OPT 1,x flag – set if messages on

84 File handling using assembly language

3 (undefined)
4 (undefined)
5 Winchester controller present
6 The Tube is currently in use by ADFS
7 The Tube is present

OSWORD with A=&71 — Read the free space (see *FREE).

The number of bytes of free space on the current drive is written to the memory area
pointed to by X and Y. The value given is a 32-bit hexadecimal quantity.

OSWORD with A=&72 — Access the disc controller (reads or writes blocks of
bytes to or from the disc).

The control block is shown below.

00 0

01 Start address in memory of data source or LSB
02 destination
03
04 MSB

05 Command block to disc controller (see below)
06
07
08
09
0A

0B Data length in bytes LSB
0C
0D
0E MSB

If the value in byte 00 above is 0, the controller number defaults to 1. As well as the
control block shown above, various status bytes in the ADFS workspace are used (eg a
byte for the current drive number), and so this OSWORD call will only work if ADFS
is the currently selected filing system (the call should not be

File handling using assembly language 85

made otherwise). If an error of any kind occurs during the execution of the command,
the error number will be returned in byte 00 of the control block (0 will be returned
otherwise). Error codes are detailed later in this description

The command block is structured as shown below:

Bit

Byte 7 6 5 4 3 2 1 0

00 0 0 0 Function code

01 X X X Disc address (MSB)

02
03 Disc address (LSB)

04 Sector count

05 Unused (set to 0)

The three bits marked X X X in byte 01 are ORed with the current drive number to
give the drive number to use. For a single Winchester drive these bits should all be
zero. The function code field is structured as shown below:

Value Meaning
&00 Test drive ready
&01 Restore (ie move read/write head to track 0)
&08 Read
&0A Write
&0B Seek (ie move read/write head to a given disc address)
For functions 0 and 1, disc address (in the command block) should be set to zero.
Data length should be set to zero for all functions except 8 and A.

If byte 04 in the command block is non-zero it is used as a sector count, and the data
length parameter (bytes 0B—0E of the main control block) is ignored.

For example: to read &1234 bytes starting from sector number &002345 of the
current drive, loading into memory at location &FFFF3000 (high bytes FFFF
indicating the host machine), the control block would be set up as shown below.

86 File handling using assembly language

Byte Value Meaning
00 &00 Controller number
01 &00 Load address (LS byte)
02 &30
03 &FF
04 &FF Load address (MS byte)
05 &08 Read command
06 &00 Disc address (MS byte)
07 &23
08 &45 Disc address (LS byte)
09 &00
0A &00
0B &34 Data length (LS byte)
0C &12
0D &00
0E &00 Data length (MS byte)

OSWORD with A=&73 — Read last error information.

This call, if made immediately after a disc error of some kind (including a data error in
sequential filing) returns error information (in the control block) as follows:

Byte

00
01

Disc address where error occurred,
including drive number in three most significant bits

(LSB)

02 of byte 02 (MSB)

03
Disc error number, top bit set=valid address

04
Channel number of file where error occurred

Only one of bytes 03 and 04 will be valid, depending on the type of error.

8 Changing
filing systems
Your computer can have several filing systems available other than ADFS. The
following commands are all used to exit from the current filing system into the one
named:

*ADFS Enters ADFS from one of the others
*DISC The floppy disc (FM format) filing system
*DISK Alternative spelling for the above
*IEEE The IEEE 488 interface filing system
*TAPE3 300 baud cassette
*TAPE12 1200 baud cassette
*TAPE 1200 baud cassette
*NET The Econet filing system
*TELESOFT The Teletext filing system
*ROM The cartridge ROM system

9 The filing system
utilities

Your Winchester disc comes complete with a number of 'utility' programs (or just'
utilities' for short). The utilities are supplied in directory UTILS in the root (although
of course you could rename this if you wished). The disc formatter is stored in
directory FORMAT, also in the root The utilities are put on to the disc when it is
formatted prior to delivery. Should your disc prove to be incorrectly formatted, or
should you lose your utilities for any other reason, you should go to your dealer who
will be able to resupply them.

The utilities are described in detail in the rest of this chapter, and are summarised
below.

CATALL
Displays catalogue information (identical to that given by the *CAT command) for a
whole 'tree', ie the root, all directories in the root, all directories in each of those
directories, etc, etc.

EXALL
Similar to CATALL, but displays information similar to that given by the *EX
command.

WEDITOR
This is a very versatile editor, enabling data on any disc sector to be examined and
edited.

COPYF
For copying files between the Winchester, FM floppy disc, and Econet filing sytems.

BACKUP
For 'backing up' data from the Winchester to FM floppy discs, and vice versa

The filing system utilities 89

SUPERFORM
Reformats a Winchester disc.

CATALL

Purpose
Displays catalogue information (identical to that given by the *CAT command) for a
whole 'tree', ie the root, all directories in the root, all directories in each of those
directories, etc, etc.

How to use it
CATALL is a BASIC program, so to start it type

CHAIN "$.UTILS.CATALL" RETURN

Notes
The information is scrolled on to the screen, so it is a good idea to put the computer
into page mode (or into print mode if you have a printer) before using this utility. The
utility can be used from any currently selected directory, but the CSD is automatically
reset to the root.

EXALL

Purpose
Displays catalogue information (identical to that given by the *EX command) for a
whole 'tree', ie the root, all directories in the root, all directories in each of those
directories, etc, etc.

How to use it
EXALL is a BASIC program, so to start it type

CHAIN "$. UTILS. EXALL" RETURN

Notes
This command is similar to CATALL, but displays information similar to that given
by the *EX command.

90 The filing system utilities

WEDITOR

Purpose
WEDITOR enables the data in any sector of the disc to be displayed and, if necessary,
changed. Data is displayed in 256 byte (ie one sector) blocks, and the data in
individual bytes can be accessed, changed, and written back to the disc. WEDITOR is
not meant for use as a general purpose editor, you would not, for example, use it to
edit one of your BASIC programs. It is mainly intended for editing machine code,
editing sequential files, and 'repairing 'damaged' discs by changing data set up by the
disc filing system. WEDITOR is a very powerful and versatile tool, but if used
wrongly it can be a bit like a chain saw in the hands of a brain surgeon! In particular,
you should only attempt disc 'repairs' or modifications if you fully understand the
information given in chapter 11 of this User Guide. If you do change the data in a
sector, a useful tip is to obtain a printout of the sector contents first, since the original
data will otherwise be lost forever once you've changed it

How to use it
WEDITOR is a BASIC program, so to start it type

CHAIN "$.UTILS.WEDITOR" RETURN

A display appears on the screen which represents the contents of a disc sector. The
block of zeros on the left hand side of the screen represents a sector split into its 256
bytes (note that there are 16 rows and 16 columns of pairs of digits). This area (which
we'll call the ' data area') is used to display the contents of a sector, byte by byte, in
hexadecimal form. The block of dots on the right hand side of the screen is called the '
text area', and displays the text equivalent of any hexadecimal ASCII codes which
may appear in the data area (this is why you can't use WEDITOR to edit your BASIC
programs, as tokenised BASIC cannot be represented in terms of ASCII codes).

WEDITOR has operating instructions 'built in', which are obtained by typing H. Most
of the commands are self explanatory, but the use of each of them is illustrated by the
following example. Note that although the sector used for the example contains text (
the beginning of this chapter in fact), it is shown for illustrative purposes only, you
would not normally use WEDITOR to edit a text file. If you'd like to follow through
the example using one of your own files, begin by using the *INFO command to
obtain the file's start sector number (which you should make a note of). Type

The filing system utilities 91

R

then type in the sector number (preceded by a & character, since * I N F 0 gives the
sector number in hexadecimal), followed by a RETURN. The sector used for our
example is shown below.

Winchester Disc Editor H= Help

39 20 54 68 65 20 66 69 6C 69 6E 67 20 73 79 73 9 The filing sys
74 65 6D 20 75 74 69 6C 69 74 69 65 73 0D D 59 tem utilities..Y
6F 75 72 20 57 69 6E 63 68 65 73 74 65 72 20 64 our Winchester d
69 73 63 20 63 6F 6D 65 73 20 63 6F 6D 70 6C 65 isc comes comple
74 65 20 77 69 74 68 20 61 20 6E 75 6D 62 65 72 to with a number
20 6F 66 20 27 75 74 69 6C 69 74 79 27 20 70 72 of 'utility' pr
6F 67 72 61 6D 73 20 28 6F 72 20 6A 75 73 74 20 ograms (or just
27 75 74 69 6C 69 74 69 65 73 27 20 66 6F 72 20 'utilities' for
73 68 6F 72 74 29 2E 20 54 68 65 20 75 74 69 6C short). The util
69 74 69 65 73 20 61 72 65 20 73 75 70 70 6C 69 ities are suppli
65 64 20 69 6E 20 64 69 72 65 63 74 6F 72 79 20 ed in directory
55 54 49 4C 53 20 69 6E 20 74 68 65 20 72 6F 6F UTILS in the roo
74 20 28 61 6C 74 68 6F 75 67 68 20 6F 66 20 63 t (although of c
6F 75 72 73 65 20 79 6F 75 20 63 6F 75 6C 64 20 ourse you could
72 65 6E 61 6D 65 20 74 68 69 73 20 69 66 20 79 rename this if y
6F 75 20 77 69 73 68 65 64 29 2E 20 54 68 65 20 ou wished). The

Current Sector 8124 = 292

Note that the number of the sector being displayed is given, in hexadecimal and
decimal.

The cursor keys will move the cursor anywhere in the data area or the text area. All
keys will overwrite characters in the text area, and keys 0-9 and A—F will overwrite
characters in the data area (remember that the data area contains only hexadecimal
numbers).

As an example, suppose we wished to change Your Winchester disc (near the top
of the text area) to The Winchester drive. This would be done by positioning the
cursor under the Y in Your and typing in the new text The new text will overwrite
the old, and hexadecimal codes for the new text will appear simultaneously in the
data area The change could be made the other way round, ie the hex codes in the data
area could be overwritten with new ones, and the equivalent alphanumeric characters
would appear in the text area

92 The filing system utilities

The R command is used to read a sector and display its contents. Simply type in

R

followed by the number (in hex or decimal) of the sector you wish to examine,
followed by a RETURN. If you have supplied the correct sector number then type in

Y (or y)

in answer to the resulting question Anything other than Y or y will abort the
command. If no sector number is supplied then the sector which is currently being
displayed (if any) will be redisplayed.

The N and P commands cause the next and previous sectors (respectively) to be
displayed. For example, typing

N

for the example shown above would cause sector &125 (decimal 293) to be displayed.

The sector display is in fact only a copy (held in a buffei' in the computer's memory)
of the sector on the disc. Any changes to the sector will not be implemented until the
copy is written back to the disc using the W command. If no new address is supplied
the 'new' sector will simply overwrite the old one. New addresses should be supplied
with care; it is really only safe to write back to where the data came from.

The S command is used to set every byte in the buffer to a given value. For example,
a sector could be cleared by typing

S followed by 0 RETURN

The X command is used to exchange all bytes of a given value to a new given value.
The values can be given in hex or in decimal (both of the same form, or mixed). The
two values must be separated by a forward slash, and RETURN must be pressed after
the second value has been entered. For example, pressing X and typing in appropriate
values might give:

Exchange /&70/&71 RETURN

The filing system utilities 93

which would change all bytes with value &70 to &71 (of course, the buffer must be
written back to the disc if the change is to become permanent).

The L command is used to look for a given string. The string can be supplied as hex
numbers, decimal numbers (which will be automatically converted to hex),
alphanumeric characters, or a string of alphanumeric characters (alphanumeric
characters must be typed in in the correct case, but see the M command below). All
these forms except the last can be supplied as lists. For example, having typed

L

the word 'system' could be typed in as

's
'y
's
't
'e
'm

(pressing RETURN after each character) or just as

$system RETURN

Having specified the string, you are asked to specify the limits in the sector within
which you wish the search to take place. If you wish the whole sector to be searched,
type in

0 RETURN

for the lower limit, and

255 RETURN

for the upper limit

If the specified string is found, the number of the byte which it occupies (or where it
starts) is displayed, and an asterisk is displayed just to the left of the relevant byte in
the data area. If

Y (or y)

94 The filing system utilities

is typed in in answer to the Continue ? question, the specified string will be
searched for elsewhere in the sector, and, if it is not found, in successive sectors. (
Any answer other than Y or y will abort the command.) If you abort the Look for
command but then change your mind and decide that you'd like to go on looking for
the same string, type

G

and WEDITOR will carry on looking, starting at the last sector to be accessed.

The M command makes the L command more versatile by specifying the 'mask' to be
used by WEDITOR when searching for a character. The &DF mask will cause
WEDITOR to ignore the case of any character typed in since (for example):

The ASCII code for A is &41 hex = 01000001 binary The
ASCII code for a is &61 hex = 01100001 binary
The only difference in the binary codes is the third bit from the left, which is the only
bit not set in the mask (&DF = 11011111 binary).

Notes
Press ESCAPE to leave the current command; this also gives an option to leave
WEDITOR.

The * key enables any operating system or disc filing system command to be typed in
from within WEDITOR (the cursor key must first be positioned in the data area).

Bytes cannot be 'deleted' by WEDITOR, ie a sector cannot be edited down to 255
bytes instead of 256, although of course a byte can always be overwritten with &00 (
ie an alphanumeric 'null' character) or &20 (an alphanumeric space). Similarly, bytes
cannot be 'added'; a sector cannot be made to contain 257 bytes, nor can bytes be
made to 'spill over' into the next sector, although of course any empty bytes can be
overwritten with any desired value.

Any hexadecimal numbers which are typed in must be preceded by the '&' character (
except when changing values in the data area), and hex letters (ie A, B, C, D, E, F)
must always be in upper case.

The filing system utilities 95

COPYF

Purpose
Enables files to be transferred between the Winchester, FM format floppy disc, and
Econet filing systems. Files can be transferred singly or in predefined groups.

How to use it
COPYF is a BASIC program so to start it type

CHAIN "$.UTILS.COPYF" RETURN

COPYF begins by displaying:

Source filing system :_

This is asking you to specify the filing system from which data is to be transferred.
Type

A (for ADFS),

D (for DFS, ie the FM floppy disc filing system), or

N (for Econet)

(Just pressing RETURN will cause a list of the available options to be displayed.) The
source filing system does not have to be the currently selected filing system. For
example, if you are using ADFS and you wish to read some data from a floppy disc (
FM format) you don't have to select the floppy DFS first

Having specified the source filing system and pressed RETURN, a similar procedure
is followed for the destination filing system.

Copying mode :_

is then displayed. Again, a 'help menu' can be displayed by pressing
RETURN.

If S (for Single file mode) is typed in then

Source filename :_

96 The filing system utilities

is displayed. It is obvious what to do here, but don't forget to type in the full
pathname if the file is not in the currently selected directory. Not specifying a
filename but just pressing RETURN displays a 'help' page — press SHIFT to return
to the COPYF sequence. Having specified a filename and pressed
RETURN.

Destination filename :_

is displayed. Again, it is obvious what to do. If you don't supply a filename before
pressing RETURN, the destination file will be given the same name as the source
file. The named file is then copied across and the sequence is repeated. Press
ESCAPE when you don't want to transfer any more files.

Typing M (for Multiple file mode) following the Copying mode:_ prompt will
cause

Source list spec :_

to be displayed. Here a list specification is required. For example, to transfer all files
in the CSD with names beginning with FRED, simply type

FRED*

Having pressed RETURN, the files will be transferred one at a time. If you change
your mind about transferring a file, simply type in

N RETURN

in answer to the

Copy <filename> (Y/N)

question. Here, the destination filename cannot be specified — it will be the same as
the source filename.

Selecting the List of files copying mode by typing

L
will result in a sequence of events similar to the multiple file mode, but here the files
are transferred one after the other without a break — there is no option to cancel the
transfer of a file (apart from pressing ESCAPE, which stops the

The filing system utilities 97

entire transfer). This mode is especially useful when transferring entire directories —
simply type

* RETURN

as the list specification.

Notes

In the 'multiple file' or 'list of files' copying modes, the files to be transferred must be
in the CSD.

When copying from the Winchester to an FM floppy disc, th

Cat full
error message will be displayed if the disc catalogue is (or becomes) full —COPYF
will not select the other side of the disc and continue copying.

If at any stage you wish to abandon a transfer operation, simply press ESCAPE —
this gets you back to the beginning of the COPYF sequence. If you wish to escape
from COPYF completely, press ESCAPE, then type

Q

in answer to the

Source filing system :_

prompt

Filing system or operating system commands may be typed in instead of a filename at
a 'filename' prompt, but must begin with a space rather than the * character. Note that
only filing system commands relating to the 'destination' filing system will be
recognised (although of course you can type in a command to select the desired filing
system).

If ADFS is the destination filing system and you wish to return to it following a
COPYF operation, you must reselect it using the *ADFS command.

When using COPYF to transfer programs written under DFS (ie the FM floppy disc
system) to the Winchester, the following points should be borne in mind (similar
considerations apply when the transfer is the other way):

98 The filing system utilities

1. The value of PAGE for ADFS (&1D00) is higher than that for DFS and the tape
filing system. If a program assigns a value to PAGE, you should ensure that it is
&1D00 or above. Also, for large programs, the higher value of PAGE may mean that
the program cannot be loaded into memory.

2. If a program contains instructions which include directory names, an appropriate
directory structure must be created on the Winchester — or the appropriate
instructions must be changed. For example, suppose we have a program called A.
PROG1, whose sole instruction consists of

10 CHAIN "B. ROG1"

For A.PROG1 to run under ADFS then either.
— Directories $.A and $.A B must be created on the Winchester, or
- A.PROG1 could be renamed PROG1, B.PROG1 could be renamed PROG2,

and line 10 changed to read

10 CHAIN "PROG2"

3. Any DFS commands included in a program may need to be changed to their ADFS
equivalents (if these exist). For example, a *DRIVE command would have to be
changed to *DIR or *MOUNT.

4. Any OSWORD calls with A=&7F will not be recognised by ADFS (see chapter 7
for the OSWORD calls that can be used with ADFS).

BACKUP

Purpose
Enables data to be backed up from the Winchester to FM floppy discs (or vice versa).
BACKUP provides several facilities not provided by COPYF, including the ability to
back up very large files, ie files too large to be stored on a single floppy disc.

How to use it
BACKUP is a BASIC program, so to start it type

CHAIN "$.UTILS.BACKUP" RETURN

BACKUP begins by asking you to type in today's date. This is useful as it

The filing system utilities 99

enables BACKUP to record the date when a file was backed up, removing the need
for you to make a separate note.

Having typed in the date and pressed RETURN, a 'menu' is displayed. Before
backing up any data, you must type in the floppy drive number that you wish to back
up data to (or recover data from). BACKUP begins by assuming that you wish to use
floppy drive 0, so if you do there is no need to type 0 in You must now type

B RETURN

or

R RETURN

as appropriate. Note that BACKUP will only recover files from a floppy that have
been backed up from the Winchester by BACKUP, so when you use BACKUP for
the first time you must use it to back up Winchester files to a floppy. Having typed

R

and pressed RETURN the

Enter file spec :_
prompt appears. The name you now type in must be the full pathname for the file (or
files) concerned, ie you must type the name as if $ is the C SD, even if it isn't; also,
the pathname must always begin with $, even if $ is the C SD. You can specify a
single file or a list of files (using the * or # wildcard characters). Having entered the
file specification, BACKUP asks you to confirm that you wish to back up data to the
floppy drive number that you selected at the start of the sequence. This gives you a
chance to change your mind, and to check that there is a disc in the selected drive. If
you wish to change the drive number for any reason, type

N

followed by the new drive number. If the first drive number is OK, just type

Y

100 The filing system utilities

In either case a message will be displayed telling you what is going on and what to
do when the backup has finished.

If the extent of the information that you are backing up is sufficient to fill the disc
catalogue or even the disc space on one side, a message is displayed asking you to
insert a new disc and to specify a new drive number. You need only insert a new disc
if you know that there is no more room on the current disc; whether you insert a new
disc or not, typing in the new drive number will cause BACKUP to continue. Note
that although BACKUP will split a large file into smaller files on either side of a
floppy disc (or even on to other discs), when the large file is recovered on to the
Winchester it will be reassembled from the smaller files (see `Notes' below for
further details).

At this point you may wish to type

E
Or

C
(followed by RETURN in each case). C simply gives a list of the backed up files; E
gives a display similar to that given by the ADFS *EX command (except that
generation numbers and start sector numbers are not given). Both commands also
name the Winchester directory from which the files came. The information is
automatically displayed in page mode, so SHIFT needs to be pressed until all the
information has been displayed. You will notice that both commands display a digit
to the right of each filename; this will always be zero unless the file concerned is
sufficiently large not to be able to fit on to one side of a floppy disc. In this case the
digit will be 0 for the part of the file on the first side of the first disc, 1 for the part on
the second side, 2 for the part on the first side of the second disc, and so on. The
catalogue' function also displays Start to indicate part 0 of such a file and Fragment
to indicate subsequent parts.

Recovering files from a floppy disc back to the Winchester is done by first of all
typing

R

You are then asked whether you wish to recover files in Verbose mode or Terse
mode. Verbose mode is assumed unless you type

T

The filing system utilities 101

to switch to terse mode. Verbose mode would be used if you only wished to recover
certain files from the floppy; each filename is displayed along with with an option as
to whether to recover the file or not Type

Y

to recover the file, or

N

to go on to the next file. Terse mode recovers all files from the floppy disc without
any option to stop the recovery process (except by pressing ESCAPE, but see 'Notes'
below). Both modes display the date at which a particular file was backed up. Having
selected the recovery mode you want, type in the floppy drive number from which you
wish to recover files, followed by the name of the Winchester directory that you wish
the files to go to. The latter must be a directory that already exists, and its name need
not begin with $ provided $ is the Winchester's CSD. Having typed in the directory
name and pressed RETURN the recovery procedure starts as previously described.

As indicated on the starting menu, operating system or filing system commands (
relating to the 'destination' filing system) can be typed in at any Command/ Drive :
_ prompt in the usual way.

Notes

Pressing ESCAPE at any time will return you to the start menu. However, pressing
ESCAPE during the backing up or recovery (terse mode) of a list of files should be
avoided as this can result in the

Disc already full

message being displayed the next time you attempt to back up information to the
disc in question, whether the disc is full or not

You can back up a file which has the same name as one already on the floppy; the file
you back up will not overwrite the existing one. This can be useful if you wish to
back up data which varies from day to day, eg weather records; the files containing
the weather data could all be called Weather, but each would be distinguished by the
backup date 'attached' to it by BACKUP.

Discs which have information on them created solely through the use of BACKUP
should only be used in conjunction with BACKUP. BACKUP does

102 The filing system utilities

not store a file on a floppy disc with exactly the same name as it had on the
Winchester, and any file longer than 10K bytes will be split For example, a file 22K
bytes long on the Winchester will be split into two 10K files and one 2K file on the
floppy. You may wish, for example, to transfer a copy of a program file from the
Winchester to a floppy so that you can then take the floppy to another BBC
Microcomputer and run the program; in this case it would be advisable to use the
COPYF utility. Another point worth noting is that if you delete a backed up file, the
BACKUP E and C functions will show the file as being still on the disc; furthermore,
if the disc was full before you deleted the file, an attempt to back up another file to
the disc would still result in the

Disc already full

message being displayed. By definition, deleting backed up files is not something you
would need to do very often, but if you did want to delete a file the best way would
be to delete all the files on the disc (or on one side of the disc, as appropriate) and
then back them up again, less the file that you don't require.

SUPERFORM

Purpose
There may be occasions when you wish to clear the disc of all the information held
on it; this can be most easily achieved by reformatting the disc, using SUPERFORM.
(Remember to copy on to floppy disc any files that you want to keep, especially the
utilities!) SUPERFORM is contained in a directory called FORMAT in the root;
FORMAT also contains a special file called DEFECTS, whose use is explained
below.

How to use it
SUPERFORM is a BASIC program; to start it, carry out a hard break and type

CHAIN "$.FORMAT.SUPERFORM" RETURN

The message:

Defects list not found

The filing system utilities 103

may appear. In this case it is still possible to reformat the disc; the 'defects list' and its
use are detailed below. The prompt

Action:_

will appear. Pressing RETURN at this point causes a 'help menu' to be displayed. At
this point you can select the F option without further ado, but you may wish to add to
the ' defects list' first The defects list is held in file DEFECTS in the same directory as
SUPERFORM, and is (not unsurprisingly) a list of disc defects of the type which
may result in a

Disc error < nn> at : < drv> / < sector number>

error message. The list is compiled when the disc is first formatted prior to delivery,
and can be displayed by typing:

T

The defect list is nothing to worry about— ADFS will not let you save data on to a
bad area of the disc. The only occasion where you may wish to use the defect list is to
add to it when an error message of the type shown above is displayed. The defect list
exists as an aid to the formatting process; although reformatting can still take place if
the defect list is not updated (or even if the defect list is deleted), a complete defect
list will result in increased disc reliability. The defect list can be added to as defects
occur, or you can keep a separate list of bad sectors and add them all to the list just
before you reformat the disc. Typing

A

gives

Sector ? _

at which point you should type in the number of the bad sector (this can be in decimal
or — preceded by the & symbol — hexadecimal). Having entered the sector number
and pressed RETURN, the above question will be repeated. If there are no more
additions to the list, simply press RETURN. A list of the sector numbers you have just
entered will be displayed, followed by a question which asks you to confirm that the
list is correct Type

104 The filing system utilities

Y

if the list is correct, or

N

if it isn't (in the latter case you will have to re-enter the list). Pressing Y will add the
new defects to the list and a confirmation message will be displayed followed by the

Action:_

prompt At this point

S

should be typed to save the defects list to the disc. Typing

F

in answer to the

Action:_

prompt will result in

You really want to format drive 0 ? _

being displayed. This is to give you one last chance to change your mind. If you type
in anything other than

YES RETURN

the formatting sequence will be aborted (the contents of any files which may have
been on the disc are preserved). A correct reply will result in the message

Fill byte (RETURN for default) ? _

being displayed; simply press RETURN, which will result in

The filing system utilities 105

Formatting..

being displayed. This indicates that the computer is carrying out the formatting
process. About 40 seconds later, the message

Verifying..

is displayed, which indicates that the computer is checking the state of the disc. After
about two minutes the message

No defects found

will appear. However, if the disc has defects you will get a message (or several
messages) such as:

Defect 19 at 001BC3

In either case, as soon as the final prompt line, ie

>_

appears, the disc is ready for use. SUPERFORM will have reformatted the disc, and
will also have recreated a directory called FORMAT, saving itself and the defects file
into it. (The first thing you should do now is to save the utilities back on to the
Winchester!)

Note that the B and C options are only intended for use by Acorn Computers Limited
when the disc is formatted prior to delivery. In particular, the C option is only
intended for use with non-standard disc drives and should not be used.

10 Error messages

This chapter lists all the ADFS error messages, each preceded by the appropriate error
code. Error codes are not displayed, but are included here to enable you to include
error handling sections in any of your programs which include ADFS commands (the
main list is in alphabetical order of error names, but a list in numerical order of error
numbers is also given).

&92 Aborted

Something other than YES (or Yes, or yes, etc) has been typed in in response to the
question

Destroy?

following a *DESTROY command.

&BD Access violation
An attempt has been made to read (or load) a file with the R attribute not set, or to
write to a file with the W attribute not set.

&C2 Already open
An attempt has been made to delete (or save a new version of) a file which is open.
Also occurs if an attempt is made to open a file which is already open (unless both '
opens' are for input only). See *CLOSE.

&C4 Already exists
An attempt has been made to create a new object with the same name as an already
existing object This includes *CDIR and *RENAME but not *SAVE or BASIC's
SAVE.

&AA Bad checksum
RAM is corrupted, which prevents ADFS from being able to close a file or read or
write to it The system must be restarted by a hard break

&FE Bad command
The command given was not recognised by the ADFS, nor was it found as a utility in
the CSD or the current library.

Error messages 107

&A9 Bad FS map
Either RAM or disc sectors 0 or 1 are corrupted. The system must be restarted by a
hard break

&CC Bad name
An illegal filename was used, ie one including $ (dollar) or : (colon) outside the
context of a root specification, or with a zero length component of a pathname, or
other special characters in the wrong context, eg

*EX $$
*DIR FILE:ONE
*DIR DIR..XDIR1
*EX A@B
*EX A^B

&CB Bad opt
An invalid argument has been assigned to a *OPT command.

&94 Bad parms
Invalid parameters were given with a *COMPACT command to specify the RAM
area to be used.

&B0 Bad rename
An attempt has been made to rename a directory in such a way as to produce an
illegal directory structure, eg

*RENAME A A.B

so that directory A contains a reference to itself. This is illegaL

&A8 Broken directory
An attempt has been made to access a directory which is in some way corrupt and as
such should not be accessed. This error implies that the disc is in an inconsistent state
and should be reformatted if possible (return the drive to your dealer if reformatting
would mean the loss of the utility programs).

&96 Can't delete CSD
An attempt has been made to delete the currently selected directory.

108 Error messages

&97 Can't delete library
An attempt has been made to delete the current library.

&DE Channel on channel <nn>
A sequential file operation has been attempted with an illegal or unassigned file
handle. <nn> is decimal

&98 Compaction required
A creation operation (eg SAVE, *CDIR, *COPY) has been attempted on a disc
where the free space has become too fragmented.

&CA Data lost on channel <nn>
A disc error of some. description occurred during accessing a sector from the disc
during an attempt to read or write an open file. Caused by memory being illegally
overwritten (or hardware problems). <nn> is hexadecimaL

&B3 Dir full
An attempt has been made to create a new object in a directory already containing 47
entries.

&B4 Dir not empty
An attempt has been made to delete a directory which still contains objects.

&C7 Disc error <nn> at :<drv>/<sector number>
A fault on the disc was detected by the controller during the last operation. <nn> is
the error code, <dry> is the drive number, <sector number> is the sector number (in
hexadecimal) where the error was discovered (if appropriate). Some error codes are:

01 — No index. Is the drive formatted?
02 — Seek error
03 — Write fault
11 — Data checksum error
12 — Address mark not found
14, 15 — Seek error
18 — Data checksum error
1A — Format error
20 — Invalid command to controller

Error messages 109

21 — Illegal disc address
24 — Invalid parameter to controller
25 — Illegal drive number

(The error codes are hexadecimal values, the same as would be returned by an
OSWORD &72 call.)

&C6 Disc full
There is not enough free space on the drive to carry out the requested operation. This
includes *CDIR, *SAVE (and BASIC's SAVE), and opening new files or extending
existing files.

&CD Drive not ready
The drive is not yet up to speed (may occur if the drive has just been started). If this
continues to appear, the disc unit should be returned to your dealer.

&DF EOF on channel <nn>
End of file. This error occurs if two consecutive attempts have been made to read from
a file whose end has been reached. The failure of the first attempt will have been
flagged by the contents of the C flag following an OSBGET or OSGBPB command (
see chapter 7). <nn> is decimal

&C3 Locked
An attempt has been made to remove, rename or overwrite an object which is locked.

&99 Map full
The free space map is full. The disc should be *COMPACTed, otherwise it may not
be possible to save further information to it

&D6 Not found
The object referred to was not found.

&C1 Not open for update on channel <nn>
An attempt has been made to write to a random access file which is only open for
reading. <nn> is decimal

&B7 Outside file on channel <nn>
An attempt has been made to set the pointer of a file which is only open for reading to
a value beyond the end of the file. <nn> is decimal

110 Error messages

&95 Too many defects
Too many media defects were found during formatting (the disc unit should be
returned to your dealer).

&C0 Too many open files
An attempt has been made to open an eleventh file. Only ten files may be open at
once.

&FD Wild cards
A wildcard character (* or #) was found where a full object specification is required,
eg in *DELETE, *SAVE, *CDIR.

&93 Won't
An attempt has been made to *RUN a file whose load address is &FFFFFFFF.

Error messages 111

Error codes - numerically ordered list

Hex Decimal
&92 146 Aborted
&93 147 Won't
&94 148 Bad parms
&95 149 Too many defects
&96 150 Can't delete CSD
&97 151 Can't delete library
&98 152 Compaction required
&99 153 Map full
&A8 168 Broken directory
&A9 169 Bad FS map
&AA 170 Bad checksum
&B0 176 Bad rename
&B3 179 Dir full
&B4 180 Dir not empty
&B7 183 Outside file on channel <nn>
&BD 189 Access violation
&C0 192 Too many open files
&C1 193 Not open for update on channel <nn>
&C2 194 Already open
&C3 195 Locked
&C4 196 Already exists
&C6 198 Disc full
&C7 199 Disc error <nn> at <drv>/<sector number>
&CA 202 Data lost on channel <nn>
&CB 203 Bad opt
&CC 204 Bad name
&CD 205 Drive not ready
&D6 214 Not found
&DE 222 Channel on channel <nn>
&DF 223 EOF on channel <nn>
&FD 253 Wild cards
&FE 254 Bad command

11 Technical
information
General
Sectors 0 and 1 on a drive contain the total number of sectors on the drive, the boot
option number, and the free sector gap list Sectors 2 to 6 inclusive are the root
directory.

The free space map
The free space map (FSM) is stored in sectors 0 and 1 on each drive. The format is:

Sector 0
0 Disc address of first free space (LS byte)
1 Disc address of first free space
2 Disc address of first free space (MS byte)
3 Disc address of second free space (LS byte)
4 Disc address of second free space
5 Disc address of second free space (MS byte)
6 Disc address of third free space (LS byte)

:
:
:

etc for all other free space up to 82 entries
:
:

246 Reserved
247 Reserved
248 Reserved
249 Reserved
250 Reserved
251 Reserved
252 Total number of sectors on disc (LS byte)
253 Total number of sectors on disc
254 Total number of sectors on disc (MS byte)
255 Checksum on free space map, sector 0

Technical information 113

Sector 1
0 Length of first free space (LS byte)
1 Length of first free space
2 Length of first free space (MS byte)
3 Length of second free space (LS byte)
4 Length of second free space
5 Length of second free space (MS byte)
6 Length of third free space (LS byte)

:
:
:

etc for all other free space up to 82 entries
:
:

246 Reserved
247 Reserved
248 Reserved
249 Reserved
250 Reserved
251 Disc identifier
252 Disc identifier
253 Boot option number
254 Pointer to end of free space list
255 Checksum on free space map, sector 1

The disc addresses and lengths are in sectors. The free space map is stored in RAM
from &0E00 to &0FFF when ADFS is selected, so the first free space pair is held at
&0E00, the second at &0E03, and so on.

Directory information
A directory consists of five contiguous sectors on the disc drive. It contains a
maximum of 47 entries, each entry consisting of 26 bytes as follows:

Name and access string 10 bytes
Load address 4 bytes
Execution address 4 bytes
Length in bytes 4 bytes
Start sector on drive 3 bytes
Sequence number 1 byte

Total 26 bytes

114 Technical information

The remaining 58 bytes in the directory are one zero byte, one byte which is the
directory master sequence number, 19 bytes of directory title, three bytes for the
parent pointer (ie the disc address of A), a directory name string, and a directory
identity string. The master sequence number is incremented every time the directory is
rewritten. When an entry is made or changed in the directory the entry's sequence
number is set to the directory master sequence number.

The currently selected directory is stored in RAM from &1200 to &16FF when ADFS
is selected. The attributes are stored in the top bit of the first four characters of the
entry name, so the R attribute of the first entry is in bit 7 of &1205, W in bit 7 of
&1206, L in &1207 bit 7, D in &1208 bit 7. R of the second entry is in bit 7 of &121F
and so on. The end of the list of entries is denoted by a 0 in the first character position
of the first unused entry, hence the 0 before the directory name. A store map of
locations &1200 to &16FF is shown below.

1200 Master sequence number

1201 Text to identify the directory

1204

1205 First directory entry

121E

121F Second directory entry

|
|

End of last directory entry

0 | Last entry marker

(` garbage')
|

16CB 0 | Last entry marker (dummy)

Technical information 115

16CC

16D5

Directory name

16D6

16D8

Parent pointer
(LSB)

(MSB)

16D9

16F9

Directory title

16FA Master sequence number

16FB

16FE

Text to identify the directory

16FF Reserved

Location &1200 in the above example contains byte 0 of the first sector of the
directory (sector 2 for directory $). Location &16CB contains byte &CB of the fifth
sector of the directory (sector 6 for directory $).

12 Filing system
command summary

Minimum
Command abbreviation Purpose

*ADFS *A. Starts the ADFS from another filing system, without the
user having to press BREAK

*ACCESS *A. Allocates object attributes.

*BACK *BAC. Goes back to previously selected directory.

*BYE *BY. Closes all sequential access files, and moves read/write
heads to shipping zone.

*CAT *. Displays a catalogue of the CSD or a named directory.

*CDIR *CD. Creates a new directory.

*CLOSE *CL. Closes all sequential access files.

*COMPACT *CO. Compacts information on the disc.

*COPY *COP. Copies a list of files into another directory.

*DELETE *DE. Deletes a named object from the disc.

*DESTROY *DES. Deletes a number of objects from the disc in a single
operation

*DIR *DIR. Selects a new currently selected directory.

*DISMOUNT *DISM. Ensures data on to the drive.

*EX *EX Displays information about files in a named directory or
the currently selected directory.

*EXEX *E. Reads information in a specified file a byte at a time as if
it were being typed in at the keyboard.

*FADFS *FA. Starts ADFS from another filing system without there
having to be a disc in the drive.

Filing system command summary 117

*FREE *FR. Displays the amount of free space left on
the disc.

*HELP *H. Displays useful information. *HELP ADFS displays the
ADFS commands with syntax guidelines.

*INFO *I. Displays information about a list of objects.

*LCAT *LC. Displays the current library catalogue.

*LEX *LE. Displays information about the current
library.

*LIB *LIB Sets the library to the specified directory.

*LOAD *L. Reads a file from disc to memory.

*MAP *MA. Displays a map of the free space on the disc.

*MOUNT *MOU. Initialises a drive.

*OPT1 *O. 1 Switches screen messages which accompany disc
accesses on or off.

*OPT4 *O. 4 Sets the auto-start option of the currently selected drive.

*REMOVE *RE. Deletes a single named object from the disc, with no error
reporting if the object does not exist

*RENAME *REN. Changes a specified object name, moving it to another
directory if required.

*RUN *R. Runs a machine code program.

*SAVE *S. Saves a specified part of memory to the disc.

*SPOOL *SP. Transfers all text subsequently displayed on the screen
into a specified file.

*TITLE *TI. Sets the title of the currently selected directory.

Appendix A

Fitting the ADFS ROM
You will need to fit the ADFS ROM to your microcomputer before you can use the
Winchester disc drive. The instructions listed below should be read through before
you carry them out; if you don't feel confident that you can fit the ROM, you should
take it (together with your microcomputer) to your dealer, who will fit it for you.

The ADFS ROM should be fitted in a spare ROM socket The ROM sockets are
located on the front right hand side of the circuit board inside the BBC Microcomputer
casing (see diagram).

1. To get to the board, undo the four screws which hold the casing together— on some
computers these will be marked 'FIX'. Two of these screws are at the back of the
computer, and the other two are underneath near the front

2. Once the top is removed, undo the bolts holding down the keyboard assembly.
These are located on either side of the keyboard. Some machines have two bolts,
others may have three.

3. Refer to the diagram. Carefully lift the keyboard assembly until it is just clear of its
locating lugs, rotate it in a clockwise direction until the five ROM sockets on the main
circuit board are fully exposed, then rest it on the lower casing.

4. Examine the five ROM sockets. The one on the left contains the operating system.
The BBC BASIC ROM is identified by the sequence B01' or B05' at the end of the
second row of lettering printed on top of it, and should be found in the right hand
socket If it isn't then it should be removed from its present socket (see below) and
replaced in the correct position The ADFS ROM can be inserted in any one of the
middle three sockets, depending on the priority you wish to assign to it

If you wish ADFS to be entered when you switch your microcomputer on (or on a
hard reset) then the ADFS ROM should be inserted in the rightmost of the middle
three sockets (if you don't, then the ROM may be inserted in any of the middle three
sockets). If the socket where you wish to insert ADFS already contains a ROM it
should be removed and inserted in another free socket

Appendix A 119

Removing a ROM
To avoid bending any of its pins, the ROM should be removed very carefully. Take a
screwdriver or similar tool and gently prise up each end, a bit at a time.

Fitting a ROM
1. Locate the half-moon cut-out at one end of the ROM. This end should face away
from the keyboard when the ROM is inserted.

2. Holding the ends of the ROM between finger and thumb, line up all the pins over
the destination socket Now press the ROM gently but firmly into its socket Don't force
it! When it is all the way in it appears to be slightly raised. Check that all the pins have
entered the socket, and that none are bent out or underneath.

120 Appendix A

Inserting the ADFS ROM
The diagram shows a plan view of the BBC Microcomputer with the casing removed.
The ADFS ROM can be inserted in any of the highlighted ROM sockets.

Index

*ACCESS 23
*ADFS 26
Assembler 75
Auto-start 19

*BACK 27
BACKUP 98
BGET# 69
BPUT# 69
*BYE 28
Bytes 9

*CAT 29
CATALL 89
*CDIR 31
Changing filing systems 87
*CLOSE 32
CLOSE# 69
Cold start 19
Commands 22
Command abbreviations 116
Command summary 116
*COMPACT 33
Connecting the drive 6, 8
*COPY 36
COPYF 95

DEFECTS 102
Defect list 102
*DELETE 38
*DESTROY 40
*DIR 41
Directories 13
Disc drives 2
Disc filing system 4
Discs 2

*DISMOUNT 42
Drive numbers 20

E OF# 69
Error messages 106
*EX 44
EXALL 89
*EXEC 46
EXT# 69

*FADFS 47
Filename 4
Files 3
Filing system initialisation 7
File types 71
Formatting 9, 102
*FREE 48

Getting started 6

Hard break 19
*HELP 49

*INFO 50
INPUT# 69
Integer type 71

*LCAT 51
*LEX 52
*LIB 53
Library directory 16
List specification 18
*LOAD 55

*MAP 56
*MOUNT 57

122 Index

Multi-object operations 18

Object referencing 15
Object specification 13
Objects 12
OPENIN 69
OPENOUT 69
OPENUP 69
*OPT 1 58
*OPT 4 59
OSARGS 79
OSBGET 82
OSBPUT 83
OSFILE 76
OSFIND 76
OSGBPB 80
OSWORD 83

Pathname 13
PRINT# 69
PTR# 69

Random access 5, 69
Real type 71
*REMOVE 60

*RENAME 61
Resetting the system 19
Root directory 12, 14
*RUN 63

*SAVE 64
Sectors 3, 9
Sector editing 90
Soft break 20
*SPOOL 66
String type 71
SUPERFORM 102

Text conventions 1
*TITLE 68
Tracks 2, 9
Transferring data 95

Utilities 88

Warm start 20
WEDITOR 90
Wildcards 17
Winchester disc 3
Winchester drive 3

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132

