
reference manual

ARM Evaluation System

Acorn OEM Products

FORTRAN 77

Part No 0448,013
Issue No 1.0

15 August 1986

0 Copyright Acorn Computers Limited 1986

Neither the whole nor any part of the information contained in, or the product
described in, this manual may be adapted or reproduced in any material form except
with the prior written permission of the copyright holder. The only exceptions are as
provided for by the Copyright (photocopying) Act, or for the purpose of review, or
in order for the software herein to be entered into a computer for the sole use of the
owner of this book.

Within this publication the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

• The manual is provided on an 'as is' basis except for warranties described in
the software licence agreement if provided.

• The software and this manual are protected by Trade secret and Copyright
laws.

The product described in this manual is subject to continuous developments and
improvements. All particulars of the product and its use (including the information in
this manual) are given by Acorn Computers in good faith.

There are no warranties implied or expressed including but not limited to implied
warranties or merchantability or fitness for purpose and all such warranties are
expressly and specifically disclaimed.

In case of difficulty please contact your supplier. Every step is taken to ensure that
the quality of software and documentation is as high as possible. However, it should
be noted that software cannot be written to be completely free of errors. To help
Acorn rectify future versions, suspected deficiencies in software and documentation,
unless notified otherwise, should be notified in writing to the following address:

Customer Services Department,
Acorn Computers Limited,
645 Newmarket Road,
Cambridge
CB5 8PD

ii 	 FORTRAN 77

All maintenance and service on the product must be carried out by Acorn Computers.
Acorn Computers can accept no liability whatsoever for any loss, indirect or
consequential damages, even if Acorn has been advised of the possibility of such
damage or even if caused by service or maintenance by unauthorised personnel. This
manual is intended only to assist the reader in the use of the product, and therefore
Acorn Computers shall not be liable for any loss or damage whatsoever arising from
the use of any information or particulars in, or any error or omission in, this manual,
or any incorrect use of the product.

Econet® and The Tube® are registered trademarks of Acorn Computers Limited.

ISBN 1 85250 008

Published by:
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CBI 4JN, UK

FORTRAN 77 	 iii

Contents

1. Introduction 	 1
1.1 Installation 	 1

2. The compiler 	 2
2.1 Compilation arguments 	 2

2.1.1 Example compiler commands 	 5
2.2 Compilation options 	 6
2.3 Compiling in separate stages 	 7

2.3.1 Front end 	 8
2.3.2 Code generator 	 10

2.4 Linking and execution 	 12
3. Extensions to the standard 	 13

3.1 Hexadecimal constants 	 13
3.2 FORTRAN 66 option 	 13
3.3 Naming 	 14
3.4 Loops 	 15

3.4.1 WHILE ... ENDWHILE 	 15
3.4.2 DO WHILE 	 15
3.4.3 Block DO 	 15

3.5 Random number generators 	 16
3.6 Include statement 	 16

4. Input/output 	 17
4.1 Unit numbers and files 	 17
4.2 Sequential files 	 18

4.2.1 Opens and closes 	 18
4.2.2 Formatted 10 	 19
4.2.3 Unformatted 10 	 21

4.3 Direct access files 	 21
4.4 OPEN and CLOSE 	 23
4.5 INQUIRE 	 23

4.5.1 INQUIRE by unit 	 23
4.5.2 INQUIRE by file 	 23

4.6 BACKSPACE 	 23
4.7 ENDFILE 	 23
4.8 REWIND 	 24
4.9 FORMAT decoding 	 24

4.9.1 Lower case letters 	 24

iv 	 FORTRAN 77

4.9.2 Extraneous repeat counts 	 24
4.9.3 Edit descriptor separators 	 24
4.9.4 Numeric edit descriptors 	 24
4.9.5 A editing 	 25
4.9.6 Abbreviations and synonyms 	 25
4.9.7 Transfer of numeric items 	 26

5. Errors and debugging 	 27
5.1 Front end error messages 	 27
5.2 Warning messages 	 28
5.3 Code-generator error messages 	 28
5.4 Code generator limits 	 29
5.5 Run-time errors 	 29

5.5.1 Code 1000 errors 	 30
5.6 Array and substring errors 	 31
5.7 Input/output errors 	 31
5.8 Tracing 	 31

6. Appendix A 	 34
6.1 Code-generator error messages 	 34

7. Appendix B 	 37
7.1 Input/output errors 	 40

FORTRAN 77

1. Introduction

FORTRAN has long been regarded as the programming language most
suited to scientific and numeric applications. FORTRAN 77 is the latest
standardised version of the language, and this has been used in the
production of Acorn FORTRAN 77. This manual describes the use of Acorn
FORTRAN 77 running under ARM Executive ; note that it is not a tutorial.

The Acorn FORTRAN 77 compiler has been fully validated in conformance
with the American National Standard Programming Language FORTRAN
X3.9 -1978 (ANS FORTRAN). Detailed language specifications are given in
the publication American National Standard Programming Language
FORTRAN, X3.9-1978, which is available from the British Standards
Institute. Less technical approaches are provided in A Structured Approach
to FORTRAN 77 Programming by T M R Ellis, published by Addison
Wesley, and A Pocket Guide to FORTRAN 77 by Clive Page, published by
Pitman.

From now on, unless otherwise stated, or made obvious from the context,
`FORTRAN 77' is taken to mean the implementation of FORTRAN 77 on
Acorn ARM computers.

If you want to use the floating point emulator, refer to the ARM UTILITIES
reference manual.

1.1 Installation
FORTRAN 77 for the ARM is distributed on ADFS format floppy discs.

FORTRAN 77 	 1

2. The compiler

The FORTRAN 77 compiler is made up of two parts: a front end which
checks that the source code conforms to the standard, and a code generator
which creates the equivalent machine code program. This program is in
Acorn object format (AOF) and is linked into an executable form using a
linker program. A single command file is normally used to run both parts of
the compiler and the linker. There are a number of arguments which can be
issued to the compiler to give extra control over the compilation, and allow
the compilation options to be used.

The command f77 executes a command file which runs the two parts of the
compiler and the linker in sequence, and so compiles the program without
the need for the user to give three separate commands. It also informs the
user how to find out help information from the front end and code generator,
and accepts the compiler arguments.

A help file called README on the Fortran distribution floppy disc, contains
details about the file structure needed for the f77 command to work as
described in this manual.

You can write your own command files (see ARM UTILITIES reference
guide) for running the Fortran compiler in a different way, using other file
structures. If you do this, it is advisable to use a different command name
and leave f77 consistent with the examples in this manual.

There is also a command f77q, which compiles more quickly because it does
not produce program listings and maps. The map gives the name, type and
location of local and common variables in each program unit.

To run the two parts of the compiler and the linker separately, the command
f77fe is used for the front end, f77cg is used to generate the machine code,
and link is used to link AOF files into relocatable image files (rif).

2.1 Compilation arguments
The behaviour of the compiler can be modified through the use of
compilation arguments. These can be used to specify input and output files,
listings, identification, and also the compilation options, which are a type of

2 	 FORTRAN 77

The compiler

argument specifying lower-level compiler activity.

The form of the command line is as follows:

f77 (-source) name I (-to name) (-list name)

(-error name) (-opt options) (-map name)

(-help) (-m) {-link name) (-library name)

(-image name) }

where name stands for a user-supplied filename, and options represents a list
of one or more compiler options. Braces enclose optional items. The
arguments can be given in any order. Explanations of each follow:

-source name
The source file is the only argument which is not optional (although
the keyword -source is). It specifies the name of the file which
contains the code to be compiled. The file must be in directory
$.f77_files.source.

-list (name]
Unless the quick version of the compiler command file, f77q, is
used, a listing of the compiled program along with line numbers of
the source is generated. This listing can be sent to a file or device
specified in the argument (for example, printer:). If no filename or
device is specified, then the compiler sends the listing to a file
whose name is based on the source filename, for example, a file
called Fprog in the source directory will have a listing file called

$.f77_files.list.Fprog.

-opt options
Several options are accepted by the compiler. These are given in the
opt argument. The options available are listed below under the
heading Compilation options.

-error name
Compiler error messages are sent to the vdu by default, but may be
re-directed using the error argument to a specified file or device.

-to name
The Acorn Object Format output file of the compiler is given a
name based upon the source filename by default that is, a file called

fort1' in the source directory will be given the AOF name
$.f77_files.AOF.fort1'. The -to argument can be used to specify an
alternative name.

FORTRAN 77 	 3

Chapter 2

-map name
Unless the quick version of the compiler command file, f77q, is
used, a storage map of the compilation is produced by the code
generator and sent to the filename specified. This will be put into
the directory $.f77_files.map.

-help
The help argument displays a reminder of all the other arguments
you can use with the f77 command. The reminder is a list of
keywords as used at the start of command files (see ARM
UTILITIES reference guide); /a indicates that an argument is
compulsory, /k that it is optional. For explanations of the use of the
arguments, refer to the manual (this section), as none is given in
response to use of the help argument.

-m n 	The module limit option is used to define the limit on the number
of program units (main program and subprograms) in a compilation.
A limit is necessary because of the chunk file structure of object
files. The default limit is 10. To set the limit to 15, use the option
-m 15.

-link name
If you use the -to argument to rename the AOF file, then the link
argument must be used to direct the linker to take its input from the
AOF file.

library name
This argument is used to change from the default run-time library,
and give the compiler the name of the file to use instead (see ARM
UTILITIES reference manual).

-image name
The image file contains the final executable output from the linker.
The image argument is used to send the output to a file with a
different name from the default one.

You cannot change the name of the file for the output from the front end of
the compiler. It always has the name of the source file and is in directory
$.f77files.fcode.

4 	 FORTRAN 77

The compiler

2.1.1 Example compiler commands

The minimal command

f77 Fprog

This command compiles the source program Fprog, with default directories.
The compiler expects the source code to be in file $.f77_files.source.Fprog'.
The output will be directed to the following files:

the fcode is in $. f 77_files. fcode.Fprog

the AOF code is in $.f77_files.AOF.Fprog
the program listing is in $.f77_files.list.Fprog
the map is in $.f 77_files.map.Fprog

the image code is in $ f77_files.image.Fprog

Error messages are directed to the VDU, and default compilation options are
used (see section 2.2).

If the quick compiling command:

f77q Fprog

is used, the result is the same except that no list or map file is produced.

Specifying the input and output files

177 -source Fprog -to $.Afiles.Fprog -list $•f77_files.list.proglist

-link $.Afiles.Fprog -error printer

The compiler front end expects the source code to be in
files. f 77_files.source.Fprog. The AOF code is in $.Af iles .Fprog,

so the linker has to be redirected to find its input in $.Afiles.Fprog. The
rest of the output is directed to the default files as in the minimal command,
except for the program listing, which is in $.f77_f iles list.proglist.

C. Using some options and specifying a map file:

f77 Fprog -opt +tW0 -map $.map.FProg

The program Fprog' is compiled, with tracing specified in the code, warning
messages inhibited, and a storage map sent to the file $.f77_files.map.Fprog'.

FORTRAN 77 	 5

Chapter 2

2.2 Compilation options
The -opt argument is followed by a list of compilation options (in upper or
lower case).

The options B, H, T, 6 and 7 are enabled or disabled by preceding them
with + or -. The options X, L, M and W must be followed by a number.
The default for the full set of options is:

L1W2X0 -BHT6

This means that code generator line numbering is set to level 1; level 2
warning messages are given; there is no cross-referencing output, no bound
checking, and Hollerith constants are not allowed; tracing and FORTRAN 66
are disabled.

B
Causes the compiler to generate bounds checking code. Array or
substring subscripts out of range will cause run-time errors to be
reported in programs compiled with this option.

H
When enabled, this option allows Hollerith constants to be used in
DATA statements to initialise non-character variables (for example,
INTEGER).

L n
This option is followed by a number which indicates the level of
line numbering included in the code for backtrace purposes (see
chapter 5). The levels available are:

0 no line numbering
1 numbers lines containing subprogram CALLS
2 statements which can cause a run-time exception
>2 numbers every line.

Higher levels cause more code to be generated. If a hardware
exception occurs in a module compiled with level 1, the backtrace
system will not be able to determine the exact line number; instead,
a range of numbers will be given (for example, 100/106). The error
will lie in this range.

6 	 FORTRAN 77

The compiler

Mn
This sets the module limit. (10)

T
This causes the compiler to plant tracing code in the output file (see
chapter 5).

Wn
This sets the warning message level. A following digit of 0-4 is
interpreted from the zero level, as suppress all warnings' to print all
warnings' (level 4). See chapter 5 for more details.

X n
This is followed by a cross-reference listing width (of 18 or more
for maximum legibility). A value of zero suppresses cross-
referencing. The upper limit depends upon the device to which the
listing is being sent (for example, printer). Cross-reference
information is given immediately after the END statement of a
program unit. For each name, the type is given, together with the
lines on which it is referenced. For each statement label, the type
(executable or non-executable) and line number of the statement is
given, as well as the lines on which the label is referenced.

6
This option allows FORTRAN 66 features to be used; if enabled, it
implies the H option.

7
This option is used to control warnings about the use of FORTRAN
77 language extensions. If unset, warnings are not produced;
otherwise messages are produced if the warning level (Wn) is 2 (the
default) or greater. The option is unset by default, so that the
extensions may be used without messages, whatever the warning
level.

2.3 Compiling in separate stages
As an alternative to using the f77 command to execute a command file that
runs both pans of the compiler, the two pans can be run separately. This
section gives details of how to run the front end and the code generator
separately.

FORTRAN 77 	 7

Chapter 2

23.1 Front end
The FORTRAN 77 front end accepts the full language as defined in the
ANSI standard, together with a number of extensions. Upper- and lower-case
letters are equivalent in all contexts, and are always converted to upper case
in the FCODE output (for example, ::x=abc(y):: and ::X=ABC(y):: would
both refer to the function ::ABC::). Identifiers may contain up to 255
characters.

Command format
The front end is a BCPL command with the following argument string:

"FROM/A,TO-FCODE/K,LIST/K,OPT/K,VER/K"

FROM 	FORTRAN 77 source program.

TO 	FCODE output file. If this argument is not quoted, no FCODE is
produced.

LIST 	Listing file. If LIST is quoted, a listing of the source program with
line numbers is sent to the file, together with any error messages.
Otherwise error messages are sent to the initial output stream, and
no listing is produced.

OPT 	Front end option string. The options available are described below.

VER 	Output file for compiler messages and errors; if omitted output is
to the terminal.

Options
turn following options on
turn following options off

T 	include tracing
Xn 	width of cross-reference output (no output if width is 0).
Wn 	Set warning level
7 	Strict FORTRAN 77 mode
6 	FORTRAN 66 mode

The default settings are X0W2-T67.

The +T switch causes the front end to embed calls to special trace routines
at various points in the program, such as program unit entry, DO statements,
labelled executable statements and subprogram calls. See the later section on
tracing for morc details.

8 	 FORTRAN 77

The compiler

The +w option controls the production of warning messages: level 0
suppresses them, level 1 permits the most significant, and 2, 3 and 4 allow
gradually less serious warnings to be produced.

The +x option controls the width in which cross-reference information is
written, with a width of zero causing the output to be supressed. Cross-
reference information is given immediately after the END statement of a
program unit. For each name, the type is given, together with the lines on
which it is referred to. For each statement label, the type (executable or non-
executable) and line number of the statement is given, as well as the lines
on which the label is referred to.

The FORTRAN 66 switch (+6) is intended to help in the compilation of
programs written in the previous version of FORTRAN. When set, most
constructs which have different meanings in the two versions are interpreted
according to the FORTRAN 66 definition. In particular:

(a) DO loops will always execute at least once

(b) Hollerith (nH) constants are allowed in DATA and CALL statements,
and quoted constants in calls are not of CHARACTER type.

(c) Non-CHARACTER array names are allowed as format. specifiers.

The strict FORTRAN 77 option (+7) is used to control warnings about
language extensions. If unset, warnings are not produced; otherwise
messages are produced if the warning level (Wn) is 2 (the default) or
greater. The +7 option is unset by default, so that the extensions may beused
without messages, whatever the warning level.

When the FORTRAN 66 switch is used, Hollerith and quoted constants are
treated in the same way when used as arguments in CALLs - they are not of
CHARACTER type. The option is provided for use with FORTRAN 66
programs which store character information in numeric data types.

For example, the following calls will have identical effects at run time if the
FORTRAN 66 switch is used:

call jim('abcd')

call jim(4habcd)

The +6 option must also be used with the code generator if it is wished
touse Hollerith constants in DATA statements.

FORTRAN 77 	 9

Chapter 2

If the FORTRAN 66 switch is set, run-time FORMATs specifiers may also
be non-CHARACTER array names.

For example:

double precision d(3),num

data d(1),d(3)/8h(1X,D20., 5h,I5/)/

data num /2h10/

d(2) 	num

write(6, d) 2.3d0, 10

This facility was introduced to assist in the implementation of FORTRAN
66 programs; it is strongly recommended that new programs use
CHARACT ER formats.

Examples
f77fe f77.prog -to tmp.fcode

Compile source program in f77.prog to FCODE in tmp.fcode.

f77fe f77.prog -ver x

Compile f77.prog, producing no FCODE output, with messages sent to the
file x.

f77fe f77.prog -to tmp.fcode -list list.proq

Compile as before, but also send source listing to the file prog in directory
list.

f77fe f77.prog -to tmp.fcode -opt t

Compile with tracing calls included.

2.3.2 Code generator
The code generator takes an FCODE file and produces an object file and/or
assembler output. It requires a BCPL system with at least 800 globals, and
access to the floating point instruction set for certain operations involving
REAL and DOUBLE PRECISION constants.

10 	 FORTRAN 77

The compiler

Command line
The code generator is a BCPL command with the following argument string:

"FCODE/A,OBJ=TO/K,ASM=A/K,VER/K,OPT/K,MAP/K"

FCODE 	FCODE input file.

TO 	Object output file. If this argument is not quoted, no object file is
produced. The object file is in an AOF file, and may be merged
with other AOF files using the linker Link to produce a large
compiled program (see section 2.4).

ASM 	Assembler output file. If this argument is quoted, a disassembled
version of the object code is sent to the file.

VER 	Output file for code generator messages and errors; if omitted
output is to the terminal.

OPT 	Option string. The options available are described below.

MAP 	The file used for the code generator map output. The MAP gives
the name, type and location of local and COMMON variables in
each program unit. The location is relative to the start of the static
area for a local variable and is the offset in the block for a
COMMON variable. The offset of each statement number from the
start of the code is also given.

Options
turn following options on
turn following options off -

B 	insert code for array and substring bound checking
6 or H allow Hollerith constants in DATA statements
Ln 	set line number level.
Mn 	set module limit (10).

The default options are L1-B6. The front end options T, 7, W and X are
ignored by the code generator, whilst the front end ignores B and L, so that
the same option string may be given to both programs, if required (except
for the M option — this should be specified separately).

The line number option (+L) is used to control the amount of line number
information included in the code. The possible levels are:

FORTRAN 77 	 11

Chapter 2

0 	No line numbers.
1 	Lines containing subprogram calls are recorded.
2 	Calls and lines which could cause an exception are recorded.

>=3 	Every line is recorded.

Higher levels cause more data to be generated in the code. If a hardware
exception occurs in a module compiled with level 1, the backtrace system
may not be able to determine the exact line number, instead a range of
numbers will be given (for example, 100/106); the error will line in this
range.

The module limit option (+M) is used to define the limit on the number of
program units (main program and subprograms) in a compilation. A limit is
necessary because of the chunk file structure of object files. The default limit
is 10.

Examples
f77cg tmp.fcode -to obj.prog

Code generate from FCODE in tmp.fcode to an object file in obj.prog.

Meg tmp.fcode -asm vdu:

Code generate tmp.fcode, sending assembler output to the terminal.

f77cg tmp.fcode -to o.proq -map map.prog

Code generate as before, but also send map output to map.prog.

f77cg tmp.fcode -to obj.prog -opt +1=30

Code generate with bound checking code inserted and the module limit
increased to 30.

2.4 Linking and execution
A compiled FORTRAN program is linked using the standard ARM linker.
The FORTRAN 77 library file should be quoted as one of the input files,
using the library qualifier /I. The resulting program is run in the normal way.
For details of how the linker works, see ARM UTILITIES reference manual.

An example of a link command is:

link obj.prog,obj.subl,$.xlib.f77/1 -image grog -adfs

12 	 FORTRAN 77

3. Extensions to the standard

Acorn FORTRAN 77 offers several enhancements to the standard which are
described in this chapter. Further extensions concerning input/output are
described in chapter 4. To get a warning that these extensions have been
used, use the 7 option when compiling (see chapter 2).

3.1 Hexadecimal constants
Acorn FORTRAN 77 allows hexadecimal constants to be used wherever an
ordinary constant is allowed. A hexadecimal constant is of the form:

?<type><digits>

<type> is a letter, specifying the type of the constant. It must be one of I, R,
D, C, L or H (for INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL and CHARACTER respectively).

The <type> letter is followed by hexadecimal <digits> (0-9, A-F). There
must always be an even number of digits (that is an exact number of bytes).

The bytes in a CHARACTER hexadecimal constant are given in the order in
which they are to appear in store; with other constants, the most significant
byte is given first. If the type of the constant is REAL, DOUBLE
PRECISION or COMPLEX, the number of bytes must match the size of the
item in store (4 or 8); for INTEGER and LOGICAL constants, there may be
fewer bytes. For example:

CHARACTER EXAMPLE•(•)

PARAMETER (EXAMPLE - ?H1C05141E0C)

J = 711234

Here, example' consists of the bytes 1C 05 14 1E 0C, and j' is set to the
decimal value 4660.

3.2 FORTRAN 66 option
Quoting the +6 option in the command line (see chapter 2) specifies that the
compiler will he in FORTRAN 66 mode. When this option is enabled, the
action of FOR FRAN changes as follows:

FORTRAN 77 	 13

Chapter 3

- DO loops will always execute at least once.
- Hollerith constants (nH) are allowed in DATA and CALL

statements, and quoted constants are not CHARACTER type.

When the FORTRAN 66 switch is used, both Hollerith and quoted constants
in CALLS and DATA are treated in the same way - they are not of
CHARACTER type. The option is provided for use with FORTRAN 66
programs which store character information in numeric data types. For
example, the following calls will have identical effects at run time if the
FORTRAN 66 switch is used:

CALL JIM('ABCD') AND

CALL J/M(4HABCD)

Run-time FORMATs may be non-CHARACTER array names if the +6

option is quoted. For example:

DOUBLE PRECISION D(3),NUM

DATA D(1),D(3)/8H(1X,D20.,5H,I5/)/

• •

DATA NUM /2H10/

• •

D(2)=NUM

WRITE (6,0) 2.300,10

•.

This facility was introduced for the compilation of FORTRAN 66 programs.
It is strongly recommended that new programs use CHARACTER formats.

3.3 Naming
In Acorn FORTRAN 77, all lower- case letters (except in FORMATs and
character constants) are converted into upper case upon reading the source.
Thus all statements, identifiers and so on may be in lower case. Names up
to 255 characters long may be used. It is worth noting, to save confusion,
that there is no limit on the length of CHARACTER values.

14 	 FORTRAN 77

Chapter 3

DO v = v1, v2, v3 	or 	DO WHILE (logical expr)

• • • 	 • • •

END DO 	 END DO

END DO may not be used as the terminal statement in a labelled DO loop.

This form of loop is compatible with VAX/VMS FORTRAN 77.

3.5 Random number generators
Acorn FORTRAN 77 has two routines for random number generation:

REAL FUNCTION RND01()

returns a pseudo-random number in the range 0.0 <= r < 1.0

SUBROUTINE SETRND (I)

selects a new random sequence; if I is zero the sequence is non-repeatable.
The generator is initialised with a call to SETRND(0) so that successive
runs will produce different sequences.

3.6 Include statement
An include statement allows a file containing source code to be read in by
the compiler at the point where the include statement occurs. The syntax for
the statement is:

INCLUDE filename'

Line numbers in the include file are not recorded on the object file and will
therefore not appear in a backtrace; correct line numbers are shown in the
program listing and error messages.

16 	 FORTRAN 77

4. Input/output

This chapter describes how Acorn FORTRAN 77 input and output
functions are implemented and how this affects programs.

4.1 Unit numbers and files
A FORTRAN unit number is a means of referring to a file. Unit numbers in
the range 1 to 60 may be used, as well as the two * units for the keyboard
and screen. Note that your filing system limits the number of files you can
open simultaneously. Consult your filing system manual.

A unit number may be connected to an external file either by means of an
OPEN statement or by assignments on the command line when the program
is run. If an OPEN statement with the FILE= specifier is used, then the unit
is connected to the given filename, otherwise, the command line parameters
are scanned.

The format of the command line is:

command (file*) (unit=file*)

that is an optional list of filenames followed by an optional list of
assignments of a particular unit to a named file. The initial series of unkeyed
filenames are connected to units 1, 2, 3... . Each keyed file is connected to
the given unit number. All unkeyed definitions must precede any keyed
definitions.

Examples are:

FROG ABC DEF

This associates the file ABC with unit 1 and DEF with unit 2.

FROG 10-FILE

This associates the file FILE with unit 10.

FROG DATA 32-DATA 3=X

This associates DATA with unit 1, data with unit 32, and x with unit 3.

The two * units always refer to the screen and the keyboard. Any units
which are not connected to a file in an OPEN statement or command line

FORTRAN 77 	 17

Extensions to the standard

3.4 Loops

3.4.1 WHILE ... ENDWHILE
This loop construct has the syntax:

WHILE (logical expr) DO

•• •

ENDWHILE

WHILE and ENDWHILE must be nested correctly, and neither statement
may be used as the terminal statement of a DO-loop, or in a logical IF.

The loop is equivalent to:

11IF (.NOT. logical expr) GOTO 12

•• •

GOTO 11
12

This form of loop is compatible with WATFIV and the Salford FTN77
compiler for PRIME computers.

3.4.2 DO WHILE
This loop construct has the syntax:

DO n[,1 WHILE (logical expr)

•• •

The rules regarding nesting and the terminal statement are exactly as for
normal DO loops.

This form of loop is compatible with the Fujitsu and VAX/VMS FORTRAN
77 compilers.

3.4.3 Block DO
The syntax of DO and DO WHILE loops has been extended so that the
terminal statement number may be omitted. The loop is then terminated by
an END DO statement.

FORTRAN 77 	 15

Chapter 4

assignment also refer to these streams.

A file accessed with STATUS=SCRATCH (OPEN) or STATUS=DELETE
(CLOSE) is deleted when the unit is closed.

All files are closed automatically when a program terminates.

When writing to a sequential formatted file, a distinction is made between
file which are to be printed and those which are not. In the former case, the
first character of each record is taken as a carriage control, and does not
form part of the data in the record. Since any file may eventually be printed,
some means is required in FORTRAN for specifying whether a given unit is
to be treated as a printer . This may be done in one of two ways:

The two * units, and all units in the range 50-60, assume printer output
by default.

Quoting FORM-' PRINTER' in an OPEN statement for the unit causes
printer output to be assumed for that unit (N.B. this is an extension to the
standard).

Note that printer output does not imply output to any physical printer which
may be connected to the machine.

The carriage control characters which are recognised, and their
representation in files, are described below.

4.2 Sequential files

4.2.1 Opens and closes
An OPEN statement for a sequential file does not specify the direction of
transfer that is required, so the actual system open operation cannot be done
until the first READ or WRITE statement following the OPEN. For this
reason, an OPEN statement which refers to a file which does not exist will
not fail - the error will occur when a READ or WRITE is attempted, but
may then be trapped by use of an ERR= specifier.

A sequential unit may be used without an explicit OPEN operation, in which
case the file is actually opened on the first READ or WRITE which refers to
the unit.

The following subroutine is an example of the use of OPEN and ERR=. The
routine copies a named file to the terminal, using unit 10.

18 	 FORTRAN 77

Input/output

SUBROUTINE COPY(FILE)

CHARACTER FILE*(*), LINE*72

OPEN (10, FILE=FILE, ERR=100)

1 READ(10, '(A)', END=100, ERR-100) LINE

PRINT '(1x, A)', LINE

GOTO 1

100 CLOSE (10)

END

4.2.2 Formatted 10
Formatted (and list-directed) reads and writes are permitted on all files.

A formatted READ statement causes one or more records to be read from
the file or terminal. All input records are assumed to be extended indefinitely
with spaces, so that an input format may refer to more characters than are
actually present in the record. Input from the terminal uses the normal line-
editing conventions (including cursor copying). (ESCAPE) is treated as end of
file, which may be trapped by an END= specifier in a READ statement.

For file input the characters carriage return (OD) and line feed (OA) are each
recognised as record terminators. Form feed (OC) characters are ignored. If
the record contains more than 512 data characters, the rest are ignored.

When writing a record to a file or terminal, the carriage control characters(s)
are output first, followed by the data in the record. Trailing spaces are
removed from all output records.

The following carriage control characters are recognised:

space 	performs a line feed (LF)
0 	performs LF/LF (extra blank line)
1 	performs CR/FF (newpage)

performs CR (overprint)
no action taken

The initial LF (space,/0) or CR (1/+) is not output before the first record in
the file.

When writing to a non-printer' file, the effect is the same as for a space
carriage control. An unrecognised control character is treated as space.

The * carriage control (an extension) may be of use when writing control
codes to the VDU driver.

When a file is closed, a line feed character is output if the final record

FORTRAN 77 	 19

Chapter 4

contained any data characters. This is done automatically for all open files
when a program terminates normally.

A write to a terminal file causes the record to be output to the screen
immediately, but the following carriage control characters will not be output
until the next WRITE or PRINT statement. Therefore, a statement like:

PRINT ', 'Type an integer:'

may be used to output a prompt to the terminal.

The following example program illustrates interaction with a terminal file:

1 PRINT ",

READ (', ", END=3) I

WRITE(', 2) I,

2 FORMAT('+', 2I10)

COTO 1

3 END

The + carriage control in the output format is used to prevent a blank line
occurring between the input line and the response. If a prompt string is not
used, it will be necessary to output an extra record after the response, to
move the cursor to the next line. This may be done by a / at the end of the
format:

2 FORMAT('+', 2110/)

The CHAR function may be used to construct bytes for output as VDU
control codes. For example, the following statements will switch the screen
to MODE 3 on your machine:

WRITE(52,3) CHAR(22), CHAR(3)

	

3 	FORMAT(1H*,2A)

During formatted input of numeric values, blanks are either ignored, or
treated as zeros, depending on the use of the BZ and BN format specifiers,
and the BLANK status of the unit. All preconnected units (that is those
opened without explicit use of OPEN) have BLANK=ZERO as the default
status. Any unit connected by an OPEN statement has BLANK=NULL as
the default. The difference in the defaults was introduced for compatibility
with FORTRAN 66 and the FORTRAN 77 subset language (in FORTRAN
66, blanks are always treated as zeros).

	

20 	 FORTRAN 77

Input/output

4.2.3 Unformatted I0
Unformatted reads and writes are permitted on disc files only. Unformatted
and formatted operations may not be mixed on any unit, unless the unit is
closed and reopened.

Each unformatted WRITE statement writes a single record to the file. The
record may be read back later by any READ which quotes the same
number, or fewer, variables. For example, in:

WRITE(1) 1, 2, 3, 4, 5

WRITE(1) 6, 7, 8

REWIND 1

READ(1) I

READ(1) J

i is to 1 and j to 6. The first record contains 20 bytes of data, and the
second 12 bytes.

The desired effect could be achieved by padding all unformatted records to
the same length, but this would lead to wasted file space in many cases. The
system includes a record length before every unformatted record when it is
output, and always reads the right amount when the record is read again.

The actual format of the length is: the characters OF followed by a four-byte
byte count giving the number of data characters following. The OF bytes are
used as a check that the file contains valid unformatted records. For
example, the two records written in the example above would contain the
following bytes:

55 46 14 00 00 00
01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00 05 00 00 00
55 46 0C 00 00 00
06 00 00 00 07 00 00 00 08 00 00 00

4.3 Direct access files
A direct access file consists of a number of records, all of the same length,
which may be read and written in any order. The records are either all
formatted or all unformatted.

An OPEN statement, quoting the record length, is always required when
using a direct access file. The record length is measured in bytes, and
formatted records are padded to this length with spaces.

FORTRAN 77 	 21

Chapter 4

A direct access file starts with six special bytes which identify it and give
the record length. These bytes are the characters DA' followed by the record
length as a four-byte value (LS byte first). It is permissible to OPEN a direct
access file quoting a smaller record length than was given when the file was
created.

The maximum permitted record length in a formatted direct access OPEN is
512 bytes; there is no limit for unformatted files.

If the file has been opened for updating or input, the first six bytes of the
file are read and checked. The OPEN will fail if these bytes are invalid, or
the specified record length is greater than the value used when the file was
created.

Since it is possible both to read and write to a direct access file, the system
open operation may be performed as part of the OPEN statement, rather than
being delayed to the next READ or WRITE , as is the case with sequential
OPENs. Therefore any errors which occur in the open may be trapped by an
ERR= specifier in the OPEN statement.

Note that a direct access OPEN may refer to an existing file only if it is of
the correct format; however, it would be simple to provide a utility program
to create a new direct access file of a given size and record length.

The following is an example program which uses direct access to write and
read a file on unit 42:

OPEN(42, ACCESS-'DIRECT', FILE.='DAFILE', RECL=16,

1 + 	ERR-100, IOSTAT=IERR)

DO 1 J - 20,1,-1

1 WRITE(42, REC-J) J, J+1, J*J, J-1

DO 2 J - 1,10

READ (42, REC-J) K, L,

2 WRITE(•, 3) K, L, M

3 FORMAT(1X, 3I5)

STOP

100 PRINT 	'OPEN FAIL: ', IERR

END

Note that unformatted records are the default for direct access files. The file
dafile' used in the above example need not exist already, but if it does, it
must be a valid direct access file with a record length not less than 16.

22 	 FORTRAN 77

Input/output

4.4 OPEN and CLOSE
The OPEN and CLOSE statements have been discussed above. The NEW
and OLD values for the STATUS specifier in the OPEN statement are
ignored.

4.5 INQUIRE

4.5.1 INQUIRE by unit
An INQUIRE by unit operation gives information on a particular unit. The
EXIST specifier variable is set to .TRUE. if the unit is in the valid range. It
is impossible to give accurate responses to the SEQUENTIAL, DIRECT,
FORMATTED and UNFORMATTED specifiers, so YES' is returned if the
unit is actually being used for the relevant access type, and UNKNOWN' is
returned otherwise. Note that a unit is NAMED only if a FILE specifier was
quoted in the OPEN statement for the unit; command line file assignments
are not available to INQUIRE.

4.5.2 INQUIRE by file
An INQUIRE by file operation gives information on a particular filename. If
the file has been quoted in an OPEN statement for a unit (and not
CLOSEd), information deduced from that connection is returned (for
example, DIRECT is set to YES' if the file is open for direct access), and
the file is assumed to exist. Otherwise, if the file exists, the EXIST reply is
.TRUE. and the responses to the SEQUENTIAL, DIRECT, FORMATTED
and UNFORMATTED specifiers are UNKNOWN'.

4.6 BACKSPACE
BACKSPACE is not implemented.

4.7 ENDFILE
The operation of ENDFILE is entirely internal to the run-time system; the
only effect is to set end of file' status and forbid further access to the file.

FORTRAN 77 	 23

Chapter 4

4.8 REWIND
REWIND is implemented as a CLOSE followed by an OPEN. After
executing a REWIND, the file is in a similar state to that arising after an
OPEN statement - the system open operation is awaiting the next READ or
WRITE statement.

4.9 FORMAT decoding
Format specifications are decoded in a rather more liberal manner than
implied by the FORTRAN standard.

4.9.1 Lower case letters
Lower case can be used instead of upper case everywhere; cases are
distinguished only in quoted strings and nH descriptors, and in the D, E and
G edit descriptors (see below).

4.9.2 Extraneous repeat counts
Unexpected repeat counts are ignored - that is„ before • , T, /, 	s and
a edit descriptors, before the sign of a P edit descriptor, or before a comma
or closing parenthesis.

4.9.3 Edit descriptor separators
A comma may be omitted except where the omission would cause ambiguity
or a change in meaning - thus it cannot be omitted between a repeatable edit
descriptor (such as 15) and an nH edit descriptor (such as
11Habcdefghijk).

4.9.4 Numeric edit descriptors
As well as the standard forms Iw, Iw.m, Fw.d, Ew.d, Ew.dEe, Dw.d,

Gw.d and Gw.dEe, additional forms are: Fw, Dw.dDe, Gw.dDe, Dw.dEe,

Ew.dDe Zw, and z

When the exponent field width is specified, the letter used to introduce it is
used in the output form (in the same case). If no exponent field width is
specified, then except for G edit descriptors the initial character of the
descriptor is used in the output form (again, in the same case).

If an exponent field width is given as zero, 2 is assumed; if on output the

24 	 FORTRAN 77

Input/output

given exponent field width is just too small for the exponent, the character
introducing the exponent field is suppressed.

The z edit descriptor provides input and output of numeric data in
hexadecimal form. On input, the field width must equal the number of
hexadecimal digits contained in the value being read (for example, 8 for an
INTEGER). On output, the width should not be less than this value; if
greater, the output is padded with leading spaces. A field width of zero
implies the right' width; Z' by itself is a shorthand for Z0'. Currently, the
bytes in a numeric value are transferred in store order (LS first) when using
z editing; this is inconsistent with the form of hexadecimal constants in
source programs, and may be changed in the future.

4.9.5 A editing
The A edit descriptor can also handle numeric list items; the effects are as
recommended in Appendix C (Hollerith) of the FORTRAN 77 standard. If
the field width is zero the system will automatically use the right value for
the data type being transferred (4 or 8).

It must be emphasised that this use of A editing was introduced solely to aid
in the transfer of FORTRAN 66 programs - it should not be used otherwise.

4.9.6 Abbreviations and synonyms
symbol 	 abbreviation

OP

1X 	 X

Ti

TL1 	 TL

TR1 	 TR

AO 	 A

FORTRAN 77 	 25

Chapter 4

4.9.7 Transfer of numeric items
The I edit descriptor can be used to transfer real and double precision
values; F, E, D and G can be used to output an integer value. Note that the
external form of a value that is to be transferred to an INTEGER list item
must not have a fractional part or a negative exponent.

26 	 FORTRAN 77

5. Errors and debugging

In most cases, mistakes in a program are trapped, and indication is given as
to the likely cause of the problem via error messages. Errors can be detected
by the compiler and by the run-time library. An example of a fault which is
not caught by the compiler, but by the FORTRAN run-time library, is
attempting to divide by zero. More usually, error messages are sent from the
compiler. This may also generate warning messages, which indicate to the
programmer that the program may not behave as anticipated, for example,
using but not declaring a variable.

5.1 Front end error messages
As mentioned earlier in chapter 2, the compiler is in two parts. Errors
trapped by the front end are of a different type from those reported by the
code generator. Front end error messages are short, obvious statements
indicating that the compiler has spotted an unacceptable syntactic mistake.
Since these messages are self-explanatory, they are not enunciated in great
detail here. These are divided into two classes.

Class 1 errors cause the front end to abandon compilation of the current
statement. The statement is printed as part of the error message, together
with the number of the line on which the fault appeared, an error number',
and a description of the error itself. Thus, if line 211 contained the faulty
FORTRAN statement :

100 	 ERRONEOUS

then the message produced might be:

211 	100 	ERRONEOUS

L 211 --2

Error (code 2311); Statement not recognised

Class 2 errors may be less obvious in their report of a fault, and do not
always refer to the line which contains the code which instigated the error.
Thus information about missing labels is given at the end of the program
unit, rather than where the non-existent label was called.

FORTRAN 77 	 27

Chapter 5

The reason that the distinction between these two types of error message has
been made is to reinforce the notion that errors do not necessarily occur at
the line where the message is given. Careful thought and a little imagination
are often needed in order to pinpoint the cause of some persistent error
messages.

5.2 Warning messages
The 'W' compilation option enables the compiler to give advice in the form
of warnings. See chapter 2 for more details on the use of this compilation
option. These warning messages are graded upon their severity from 1 (the
most serious) to 4. They are useful in detecting areas which may cause the
program to behave in unexpected ways.

Level 1 is the most serious, indicating faults such as having a statement that
cannot be reached because it is unlabelled and follows a jump. Level 2 flags
the use of extensions to standard FORTRAN 77 that are a potential source
of trouble (for example, when moving software to another machine). Levels
3 and 4 are used to indicate items that are legal but in poor style, and thus
possibly mistakes. The strict FORTRAN 77 option (4--F7++) is used to
control warnings about language extensions. If unset, warnings are not
produced; otherwise messages are produced if the warning level (Wn) is 2
(the default) or greater. The ++7++ option is unset by default, so that the
extensions may be used without messages, whatever the warning level.

5.3 Code-generator error messages
Certain compile-time errors cannot be detected by the front end, but are
reported by the code generator. As these are not always as explicit as front
end error messages, they are listed in Appendix A with a brief explanation
of their most likely meaning. The same caveat applies to the interpretation
of code generator error messages as applies to that of some front end error
messages. The error which is reported and its line number may not directly
correspond to an error in the program. For example, a real constant may be
given that is too large, resulting in an error message each time the constant
is used, despite the fact that the statements which are using the constant
appear to be legal. Quite often, one error may 'spark off' the detection of
many others later on in the program. See Appendix A for a list of code-
generator error messages.

28 	 FORTRAN 77

Errors and debugging

5.4 Code generator limits
The code generator has certain internal limits on the complexity of each
program unit. These are:

code size 	 128 Kbytes
number of labels 	 4096
number of local variables 	 8192
number of constants 	 8192
number of COMMON blocks 	 2048
number of external symbols 	 2048

These limits should never be exceeded in practice; it is likely that the code
generator will run out of store before this happens.

5.5 Run-time errors
Sometimes, a program compiles correctly, links without a problem, and yet
when an attempt is made to run the program, an error message is produced.
These error messages come from the FORTRAN run-time library and take
the following form:

+.1.+4 ERROR N: text

followed by a backtrace.

'N' is an error number and 'text' is a sentence describing the error. A
backtrace is, as the name implies, a re-tracing of the steps which the
FORTRAN run-time library has taken in attempting to run the program.
Each line of the backtrace output gives the name of a program unit, the
addresses of the corresponding static data area and the line number. The data
area address may be used in conjunction with the storage map produced by
the code generator to examine the values of local variables. The address of
the data area is given in hexadecimal. Note that a name in a backtrace refers
to the main entry point of the program unit, and so may not be the actual
name used in a call.

FORTRAN 77 	 29

Chapter 5

Example run-time error message and backtrace
++++ ERROR 1000: operands are zero in ATAN2

routine 	data area 	line

F77_ZSTP 	&00005744
F77_ATA2 	&00005720
DEF 	 &00005714 	22
ABC 	 &0000571C 	37
F77_MAIN 	&00005710 	4

In this example, the main program (with default name) has called ABC,
which has called DEF, which has called ATAN2 (the name shown is the
internal name for the intrinsic function ATAN2). The final routine is the
main error handler.

The call to ABC in the main program was on line 4; the call to DEF in
ABC was on line 37, and so on. The appearance of line numbers in the
backtrace is controlled by the compiler L option; level 1 is the default. See
chapter 2 for details about compilation options.

If a hardware trap occurs in a program compiled with line number level 1, it
may not be possible to determine the exact line number. This is illustrated
by the following trace:

++++ ERROR 3000: hardware trap

routine 	data area 	line

ABC 	 &00005514 	5/16
F77_MAIN 	&000054EC 	3

Here, the main program called ABC, which failed with a hardware trap
between the lines 5 and 16 inclusive. If the program is recompiled with line
level 2, the exact line number will be displayed.

5.5.1 Code 1000 errors
There are a number of simple run-time errors producing error messages
which have an error number of 1000. An example of a code 1000 message
was given in the previous section. See appendix B for a comprehensive list.

30 	 FORTRAN 77

Errors and debugging

5.6 Array and substring errors
There are two errors which may be produced from a program unit which has
been compiled with the bound checking option (see chapter 2):

444+ ERROR 1050: array bound error

An illegal array subscript has been used.

44-44 ERROR 1051: substring bound error

An illegal substring has been used

5.7 Input/output errors
Input/output errors are those which may be trapped by use of the END= and
ERR= specifiers in FORTRAN 77 statements. If these are not used, an error
message and code are produced as described below; otherwise execution
continues, with the error code available by use of the IOSTAT specifier.

All the messages have the general form:

++++ ERROR N: PREFIX UNIT - reason

N is the error code; PREFIX describes the I0 operation being attempted (it
may be OPEN , CLOSE , BACKSPACE , ENDFILE , REWIND , or
READ/WRITE), and UNIT is the unit number, with * given for one of the
asterisk units and 'internal' for an internal file. The rest of the message
gives more information about the error.

End of file on input may be trapped with the END= specifier. The IOSTAT
value in this case is -1. If END= is not used, then the message end of

file is produced, with code 1000. Other errors may be trapped with the
ERR= specifier. The IOSTAT value is the corresponding error code, as listed
in appendix B.

5.8 Tracing
Tracing a program's execution is a very useful debugging technique,
applicable when a program compiles and runs successfully, but produces
unexpected output. The user selects the T option when compiling (see
chapter 2) to specify that calls to special trace routines are to be included in
the code.

FORTRAN 77 	 31

Chapter 5

These routines will cause trace information to be output when:

(1) entering the program unit

(2) leaving the program unit

(3) a labelled statement is about to be executed

(4) the THEN clause of an IF...THEN or ELSEIF...THEN construct is
about to be executed

(5) the ELSE clause of an IF...THEN or ELSEIF...THEN construct is
about to be executed

(6) a DO statement is about to be executed

(7) another subprogram unit is about to be invoked

The trace routines will output a message which starts with ***T and
indicates the type of trace point encountered; for some of these it will also
indicate a count (modulo 32768) of the number of times this trace point has
been met. A special routine called ++TRACE++ can be called with a single
LOGICAL argument to turn this tracing information on and off. Note that
even if the trace output is off, the counting will still be done so the values
produced will be correct if tracing is turned on again.

If the main program is compiled with tracing on, the user will be asked if
trace output is to be produced or suppressed. If the main program is
compiled without tracing, then trace output is initially enabled.

In addition to the ++TRACE++ routine, two further subroutines are supplied
as part of the tracing package. The first of these is ++HISTOR++ (short for
IHISTORYI), which causes information to be output about the last few
traced subprogram calls. Each line of history information consists of a name,
which may be preceded by -> or by <-. A right arrow indicates a traced call
of a subprogram, a left arrow indicates a traced exit from a program unit,
and a line with neither type of arrow indicates a traced entry to a program
unit. Note that the name given when tracing entry and exit from a program
unit is the name of the program unit itself rather than the name of the entry
called by the user.

32 	 FORTRAN 77

Errors and debugging

The final routine provided is ++BACKTR++ (short for IBACKTRACEI)
which output information on the current nesting of program unit calls. The
routine should be given a single logical argument; if this is ++.TRUE.++
then the ++HISTOR++ subroutine is invoked after the backtrace information
has been produced.

In the ARM kernel system, all tracing output is sent to the terminal.

FORTRAN 77 	 33

6. Appendix A

6.1 Code-generator error messages
argument out of range for CHAR

The intrinsic function CHAR has been used with a constant
argument outside the range 0-255.

local data area too large

The size of the local storage area for the program unit exceeds
2,147,483,647 bytes.

array <name> has invalid size

The size of the given array is negative or exceeds 2,147,483,647
bytes.

attempt to extend common block <name> backwards

An attempt has been made to extend a COMMON block backwards
by means of EQUIVALENCE statements

bad length for CHARACTER value

A value which is not positive has been used for a CHARACTER
length.

<class> storage block containing <name> is too large
<class> is local or COMMON. The storage block containing the
named variable exceeds 2,147,483,647 bytes.

concatenation too long

The result of a CHARACTER concatenation may exceed
2,147,483,647 characters.

conversion to integer failed

A REAL or DOUBLE PRECISION value is too large for
conversion to an integer.

D to R real conversion failed

A DOUBLE PRECISION value is too large for conversion to a
REAL.

DATA statement too complicated

The variable list in a DATA statement is too complicated. It must
be simplified.

34 	 FORTRAN 77

Appendix A

division by zero attempted in constant expression

The divisor might be REAL, INTEGER, DOUBLE PRECISION or
COMPLEX.

real constant too large

A REAL constant exceeds the permitted range.

double constant too large

A DOUBLE PRECISION constant exceeds the permitted range.

inconsistent equivalencing involving <name>

The given variable is involved in inconsistent EQUIVALENCE
statements.

increment in DATA implied DO-loop is zero

A DATA statement implied DO loop has a zero increment.

insufficient store for code generation

The code generator has run out of workspace. The program unit
being compiled must be simplified.

insufficient values in DATA constant list

There are more variables than constants in a DATA statement.

integer invalid for length or size

A value which is not positive has been used for a CHARACTER
length or array size.

lower bound exceeds upper bound in substring

In a substring, a constant lower bound exceeds the constant upper
bound.

lower bound of substring is less than one

A constant substring lower bound is less than one.

upper bound exceeds length in substring

A constant substring upper bound exceeds the length of the
character variable.

stack overflow - program must be simplified

The internal expression stack has overflowed. The offending
statement must be simplified.

subscript below lower bound in dimension N

a constant array subscript is less than the lower bound in the given
dimension.

FORTRAN 77 	 35

Chapter 6

subscript exceeds upper bound in dimension N
A constant array subscript exceeds the upper bound in the given
dimension.

too many constants in DATA statement

There are more constants than variables in the DATA statement.

too many program units in compilation

The module limit must be increased.

type mismatch in DATA statement

The type of the constant is illegal for the corresponding variable.

variable initialised more than once in DATA
A variable has been initialised more than once by DATA statements
in this program unit.

wrong number of hex bytes for constant of TYPE type

A hex constant has been given with the wrong number of digits.

zero increment in DO-loop

A DO loop with a constant zero increment value has been used.

inconsistent use of <name>

The external subroutine or function <name> has been used with
inconsistent argument types.

The previous error message would occur with the following program:

call abc(1.0)

call abc(2)

end

36 	 FORTRAN 77

7. Appendix B

Run-time error messages

Code 1000 errors

bad operands for double precision **

dl**d2 where dl is negative

bad operands for real **

rl**r2 when r1 is negative

operand too large in DASIN

abs(arg) in DASIN or DACOS exceeds 1

operand too large in ASIN

abs(arg) in ASIN or ACOS exceeds 1

<ch> edit descriptor cannot handle logical list item

Format descriptor used with a LOGICAL list item is not L;

<ch> is the actual descriptor used.

invalid logical in input

Formatted input file D contains bad logical value.

<ch> edit descriptor cannot handle character list item

Format descriptor used with a CHARACTER list item is not A;
<ch> is the actual descriptor used.

<ch> edit descriptor cannot handle numeric list item

Invalid descriptor for numeric value. <ch> is the actual descriptor
used.

Z field width unsuitable

Wrong number of digits in hex (Z) input field for given type.

FORTRAN 77 	 37

Chapter 7

invalid number in input

Bad number (range or syntax) in formatted I, D, E, F or G input.

FORMAT - unexpected character <ch>

Invalid character <ch> in FORMAT.

FORMAT - bad numeric descriptor

Bad syntax for numeric FORMAT descriptor.

FORMAT - cannot use 'when reading

Quoted string used in input FORMAT.

FORMAT - unexpected format end

End of FORMAT inside quoted string

FORMAT - cannot use H when reading

nH used in input FORMAT.

FORMAT - bad scale factor

Bad +nP or -11P construct.

FORMAT - too many opening parentheses

More than 20 nested opening parentheses (including the first).

FORMAT - trouble with reversion

No value has been read or written by the repeated part of the
format (this would cause an infinite loop if not trapped).

The following program fragment illustrates the 'trouble with
reversion' format error.

write(1, 10) 1,

10 format(15, (lx))

FORMAT - width missing or zero

Bad width in numeric edit descriptor

Bad complex data

Bad COMPLEX constant in list directed input.

38 	 FORTRAN 77

Appendix B

LD repeat not integer

Repeat count (r*) in list directed input is not valid

LD input data not REAL

Syntax or range error in REAL list directed input value.

LD input data not INTEGER

Syntax or range error in INTEGER list directed input value.

LD input data not DP

Syntax or range error in DOUBLE PRECISION list directed input
value.

LD input data not LOGICAL

Syntax error in LOGICAL list directed input value.

LD input data not COMPLEX

Syntax or range error in COMPLEX list directed input value.

LD input data not CHARACTER

Syntax error in CHARACTER list directed input value

LD repeat split CHARACTER

Attempt to split a repeated character constant across a record
boundary. This is strictly legal, but almost impossible to implement
correctly.

Unformatted output too long

Unformatted record length exceeds maximum permitted. This can
occur with direct access output only.

Unformatted input record too short

Input record does not contain sufficient data

mismatched use of ACCESS, RECL in OPEN

ACCESS='DIRECT' has been quoted in an OPEN which does not
contain a RECL specifier, or vice versa.

FORTRAN 77 	 39

Chapter 7

7.1 Input/output errors

invalid unit number

Unit number not in range 1-60.

invalid attribute

Invalid attribute used in OPEN statement.

duplicate use of filename

The same filename has been used more than once in an OPEN
statement.

invalid unit for operation

BACKSPACE/REWIND/ENDFILE attempted on unit connected for
direct access.

error detected previously

An JO error has been detected previously on this unit, and trapped
with ERR=.

direct access without OPEN

A direct access READ or WRITE has been used without an OPEN
statement for the unit.

invalid use of unit

Inconsistent use of unit (formatted mixed with unformatted,
sequential mixed with direct access or ENDFILE done previously).

input and output mixed

Input and output mixed on a sequential unit (without intervening
REWIND or OPEN).

direct access not open for input

The direct access file could not be opened for input (for example,
file is write only).

direct access not open for output

The direct access file could not be opened for output (for example,
file is read only).

40 	 FORTRAN 77

Appendix B

end of file on output

An attempt has been made to write off the end of a sequential file
(in practice, this will occur with internal files only).

not available

BACKSPACE operation is not available.

bad unformatted record (message)

A record in an unformatted file does not have the required structure.

invalid access to terminal file (message)

Attempt to use terminal (or other output device) as an unformatted
or direct access file. More detail is given

sequential open failed (message)

The actual reason for the failure (for example, 'Bad name') is given
in the brackets.

direct access open failed (message)

The actual reason for the failure (for example, 'Bad name') is given
in the brackets.

direct access IO failed (message)

For example, attempt to read past end of file.

record length too large

The record length specified in a formatted direct access OPEN
exceeds the permitted maximum (512 bytes).

bad direct access file (message)

A file used for direct access has invalid initial data or insufficient
record length.

sequential write failed (message)

I/0 error on sequential output (for example, Can't extend)

FORTRAN 77 	 41

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

