
reference manual

ARM Evaluation System

Acorn OEM Products

ARM utilities

Part No 0448,005
Issue No 1.0

1 August 1986

0 Copyright Acorn Computers Limited 1986

Neither the whole nor any part of the information contained in, or the product
described in, this manual may be adapted or reproduced in any material form except
with the prior written permission of the copyright holder. The only exceptions are as
provided for by the Copyright (photocopying) Act, or for the purpose of review, or
in order for the software herein to be entered into a computer for the sole use of the
owner of this book.

Within this publication the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

• The manual is provided on an 'as is' basis except for warranties described in
the software licence agreement if provided.

• The software and this manual are protected by Trade secret and Copyright
laws.

The product described in this manual is subject to continuous developments and
improvements. All particulars of the product and its use (including the information in
this manual) are given by Acorn Computers in good faith.

There are no warranties implied or expressed including but not limited to implied
warranties or merchantability or fitness for purpose and all such warranties are
expressly and specifically disclaimed.

In case of difficulty please contact your supplier. Every step is taken to ensure that
the quality of software and documentation is as high as possible. However, it should
be noted that software cannot be written to be completely free of errors. To help
Acorn rectify future versions, suspected deficiencies in software and documentation,
unless notified otherwise, should be notified in writing to the following address:

Customer Services Department,
Acorn Computers Limited,
645 Newmarket Road,
Cambridge
CB5 8PD

ii 	 ARM utilities

All maintenance and service on the product must be carried out by Acorn Computers.
Acorn Computers can accept no liability whatsoever for any loss, indirect or
consequential damages, even if Acorn has been advised of the possibility of such
damage or even if caused by service or maintenance by unauthorised personnel. This
manual is intended only to assist the reader in the use of the product, and therefore
Acorn Computers shall not be liable for any loss or damage whatsoever arising from
the use of any information or particulars in, or any error or omission in, this manual,
or any incorrect use of the product.

Econet® and The Tube® are registered trademarks of Acorn Computers Limited.

ISBN 1 85250 010

Published by:
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN, UK

ARM utilities 	 iii

Contents

1. Introduction 	 1
1.1 Conventions used in this manual 	 1

2. Operating system firmware 	 3
2.1 Introduction to the Executive ROM 	 3
2.2 The supervisor 	 4
2.3 ARM Second Processor memory map 	 7
2.4 Executive kernel 	 7

2.4.1 WriteC &00 (Acorn MOS OSWRCH) 	 8
2.4.2 WriteS &01 	 8
2.4.3 Write0 &02 	 8
2.4.4 NewLine &03 (Acorn MOS OSNEWL) 	 9
2.4.5 ReadC &04 (Acorn MOS OSRDCH) 	 9
2.4.6 CLI &05 (Acorn MOS OSCLI) 	 9
2.4.7 Byte &06 (Acorn MOS OSBYTE) 	 9
2.4.8 Word &07 (Acorn MOS OSWORD) 	 10
2.4.9 File &08 (Acorn MOS OSFILE) 	 10
2.4.10 Args &09 (Acorn MOS OSARGS) 	 11
2.4.11 BGet &0A (Acorn MOS OSBGET) 	 11
2.4.12 BPut &0B (Acorn MOS OSBPUT) 	 11
2.4.13 Multiple &0C (Acorn MOS OSGBPB) 	 12
2.4.14 Open &0D (Acorn MOS OSFIND) 	 12
2.4.15 ReadLine &0E 	 13
2.4.16 Control &OF 	 13
2.4.17 GetEnv &10 	 14
2.4.18 Exit &11 	 15
2.4.19 SetEnv &12 	 15
2.4.20 IntOn &13 	 16
2.4.21 IntOff &14 	 16
2.4.22 CallBack &15 	 16
2.4.23 EnterSVC &16 	 17
2.4.24 BreakPt &17 	 17
2.4.25 BreakCtrl &18 	 17
2.4.26 UnusedSWl &19 	 17
2.4.27 SetCallBack &1B 	 18
2.4.28 Writel &100 	 19

3. Acorn Object Format 	 20

iv 	 ARM utilities

3.1 Overall structure 	 20
3.2 Chunk file format 	 20
3.3 Object file format 	 22
3.4 The header chunk 	 22

3.4.1 Object file type 	 23
3.4.2 Version Id 	 23
3.4.3 Number of areas 	 23
3.4.4 Number of symbols 	 24
3.4.5 Entry Address Area/Entry Address Offset 	 24

3.5 Area declarations 	 24
3.5.1 Area name 	 24
3.5.2 AL (area alignment) 	 25
3.5.3 AT (area attributes) 	 25
3.5.4 Area size 	 26
3.5.5 Number of relocations 	 26
3.5.6 Base address 	 26

3.6 The areas chunk 	 26
3.6.1 Relocation 	 27

3.7 The symbol table chunk (OBJ_SYMT) 	 29
3.7.1 Name 	 29
3.7.2 AT 	 29
3.7.3 Value 	 30
3.7.4 Area name 	 30

3.8 The string table chunk (OBJ_STRT) 	 30
3.9 The identifiation chunk (OBJ _IDFN) 	 31
3.10 AOF-handling utilities 	 31

4. The linker 	 32
4.1 Link areas 	 32
4.2 Keywords 	 32
4.3 Examples 	 34
4.4 Diagnostics 	 35
4.5 Bugs 	 35

5. Machine code debugger 	 36
5.1 Starting the debugger 	 36
5.2 Debug input conventions 	 36
5.3 Debug commands 	 37

5.3.1 Named commands 	 37
6. Floating point emulation 	 41

6.1 Programmer's model 	 41
6.2 Floating register directives 	 42

ARM utilities

6.3 Floating point constants 	 43
6.4 Load and store instructions 	 44
6.5 Conversion instructions 	 45
6.6 Move instructions 	 45
6.7 Compare instructions 	 46
6.8 Arithmetic instructions 	 47
6.9 The FPE and the Executive 	 49
6.10 Notes for advanced users 	 50
6.11 Floating point performance on ARM 	 51

7. Miscellaneous utilities 	 52
7.1 Filing system utilities 	 52

7.1.1 List utility 	 52
7.12 Disc use utility 	 52
7.1.3 File/directory delete utility 	 53
7.1.4 Grope utility 	 54

7.2 Program development utilities 	 56
7.2.1 Comparing files 	 56

7.3 Software clock 	 56
7.4 Memory test 	 57
7.5 Column printing 	 57
7.6 The command command utility 	 59
7.7 AOF handling utilities 	 61

7.7.1 Chunk file decoder 	 61
7.7.2 Object file decoder 	 61
7.7.3 Merging two chunk files 	 62
7.7.4 m2run 	 63

8. Appendix A 	 64

vi 	 ARM utilities

1. Introduction

This document is a reference guide to the ARM firmware (the Executive
ROM) and to the various utility programs supplied on disc.

Chapter 2 deals with the Executive ROM, and includes sections on the
routines contained within the supervisor, the use of the SWI calls, and the
organisation of memory. Chapter 3 explains the structure of Acorn Object
Format files. The remaining chapters deal with the utility software: the linker
in chapter 4, the debug utility in chapter 5, the floating point emulator in
chapter 6 and a group of miscellaneous utilities in chapter 7.

1.1 Conventions used in this manual
Most ARM source code has its own interpretations of the punctuation
symbols and special symbols which are available from the keyboard. These
are:

This often makes it difficult for the user to determine precisely which
characters on the printed page are explanatory or descriptive, and which (if
any) are the ones which AAsm will accept as having the correct syntax. A
typewriter-style typeface has been used to indicate both text which appears
on the screen and text which can be typed on the keyboard (for example,
AAsm source code). This is so that the position of relevant spaces is clearly
indicated.

Both general and specific examples of syntax and screen output is given —
there are occasions where the full syntax of an instruction and its
accompanying screen appearance would obscure the specific points being
made. It follows therefore that not all the examples given in the text can be
used directly since they are incomplete.

ARM utilities 	 1

Chapter I

Curly brackets (} enclose optional items in the syntax. For example, AAsm
accepts a three field source line which may be expressed in the form:

Function keys (such as fl) and control keys (such as tab) often need to be
pressed by themselves or in combination with the shift and ctrl keys. To
indicate this these keys are printed in boxes. For example:

Press the RETURN key (RETURN)

Press the ESCAPE key (ESCAPE)

Press the DELETE key (DELETE)

Press the COPY key (COPY)

2 	 ARM utilities

2. Operating system firmware

2.1 Introduction to the Executive ROM

This chapter describes a set of supervisor calls linking ARM machine code
to the Acorn 6502 MOS as used in the BBC Microcomputer. For further
information on Acorn MOS refer to the User Guide for the BBC
Microcomputer, the DFS or ADFS manual and the Advanced User Guide.
Programs should assume the use of ADFS or ANFS if they wish to do
something of file system specific nature. Refer to the ARM CPU Software
Manual for details of the machine instruction set.

The ARM Second Processor consists of an ARM CPU, memory, timing
circuitry and Acorn's Tube interface to the BBC Microcomputer. The BBC
Microcomputer serves as an I0 processor; it handles all the input and output
devices (keyboard, rs423, text and graphics displays, printer, disc drives and
so on). The BBC Microcomputer requires additional software from the
DNFS ROM to deal with the Tube. The ARM Second Processor contains a
ROM called the Executive kernal which deals with the ARM end of the
Tube. The ROM also contains a set of useful utilities in the supervisor.

To start the system, switch on both the BBC Microcomputer and the ARM
Second Processor. For the BBC Microcomputer to recognise the Second
Processor it must be reset or switched on after the Second Processor has
been switched on. The following message, or something similar, should
appear on your screen:

Acorn ARM Second Processor 4096K

Acorn ADFS

A*

The `A*' will appear either as A* on a blue background in mode 7 or as a
large legend in any of the other modes: it is the prompt from the supervisor.

ARM utilities 	 3

Chapter 2

2.2 The supervisor
When nothing else is using the system, the supervisor gives its A* prompt
and its built-in commands can be used: anything it does not understand will
be passed to the Acorn MOS CLI. The built in commands are:

• BreakClr

Removes all breakpoints or just the one at the specified address. Puts
the original contents back into the location.

• BreakList

Lists the currently set breakpoints.

• BreakSet

Set a breakpoint at an address.

• Buff

Turn file buffering on

• Continue

Start execution from breakpoint saved state. If there is a breakpoint at
the continuation position, then a prompt will be given: reply Y if it is
permissible to execute the instruction at a different address (that is, it
does not refer to the pc).

• Help

Generates reassuring message from supervisor: gives version number
of the kernal (this manual refers to kernel version -.008). help

supervisor gives the list of commands that the supervisor accepts.

• InitStore

Fills all memory with &EE000000 or the specified data.

• Memory

Displays memory in ARM words from the address or register given to
the next address or register given, a + meaning added to the first
address. Default second address means 256 bytes displayed.

• MemoryA

Display and alter memory in bytes or words, signalled by an optional
B or b. Given just an address/register it enters an interactive mode:

(RETURN) to go to next location, - to go back one location, hex digits to
alter a location and proceed, anything else to exit. Alternatively give
the data required on the command line as well.

4 	 ARM utilities

Operating system firmware

• Memoryl

Disassemble ARM instructions. Syntax as for memory. Given a limit it
proceeds to the limit, otherwise it disassembles 24 instructions and
waits for a key.

• NoBuff

Turns file buffering off

• Quit

Leave the supervisor by performing an SWI Exit. Any other
supervisor will be returned to - or, of course, the supervisor itself.

• ShowRegs

Displays the registers caught on one of the four traps (unknown
instruction, address exception, data abort, address abort)

• Transfer

Copies files from one file area to another.The syntax is transfer
argument. Examples of arguments are:

disc adfs fred 	copy fred from disc to adfs
net adfs fred jim 	copy fred from net to adfs as jim
disc adfs * 	 all files in current disc directory
disc adfs 	 prompt for file names to be typed
dir@$.1 dir@$.2 * 	all files in $.1 to $.2
net'dir@&.1 adfs * 	all files in net directory &.1 to adfs

The first two fields of the argument are simply interpreted by the
command line interpreter or CLI, so they can cause quite a wide range
of effects. The character @ in the first two fields of the argument will
be replaced by a space character, the character in the first two fields
of the argument represents a newline (multiple CLI commands) thus
one can use transfer between net fileservers, t rans fer fs@1.254
fs@0.126 *. Transfer has special code in it, so that, although it
changes file systems, this does not cause the exec file to be lost.

• Go
Enter program at the address given. No address corresponds to 61 000;
R0 to R15 corresponds to the contents of the registers dumped on a
trap. After the address a ; should precede the environment string. GO
is, in fact, implemented at the Executive kernal level, so it still works
from inside other systems. GOS enters the supervisor: the caller can be
returned to if an Exit handler has been set using the Quit command.

ARM utilities 	 5

Chapter 2

Star commands, for example *CAT may be used by typing them directly to
the A* prompt. It is not necessary to type the *. Refer to the MOS, DFS,
ADFS documentation for details of a particular ROM facility.

Programs from the current filing system are executed simply by typing their
names. Refer to documentation on the particular program for the parameters
it may require. Usually programs will respond to the parameter -help.

The A* prompt is created by redefining character 255. Spooling is disabled
while this prompt is output using fx3 calls. The character 255 is left as a
solid block. With the ARM Second Processor connected the entire character
set has been exploded, see description of fx20 in the User Guide.

With the Second Processor connected addresses are used to distinguish
between the memories of the two machines. The ARM Second Processor
can use addresses up to Ramtop (see section 3). The BBC Microcomputer
uses addresses FFFxxxxx. The DFS filing system only has 18-bit addressing;
any address greater than 2FFFF is assumed to be in the BBC
Microcomputer: use of ADFS or the net filing systems avoids any problems
of restricted addressing.

6 	 ARM utilities

Operating system firmware

2.3 ARM Second Processor memory map

Programs should load in memory at & 1000 or higher. If a program is to be
run at an address outside available memory, the Executive will try wrapping
it around in available memory: the TWIN program is supplied to run at
&I D0000: in a 1/4 Mbyte machine it thinks it has been run at & 10000, in a
1Mbyte machine it thinks it has been run at &D0000. For a 4Mbyte
machine it could be moved to &3D0000, however, due to the hardware
design of the 2 and 4Mbyte machines this would cause it not to work on the
2Mbyte machine, although it would be fine with the full 4Mbytes. Programs
should only use memory up to the Ramtop limit returned by the GetEnv
call, on an otherwise empty machine the Excutive kernel uses the top 20K
for file buffers.

ARM utilities 	 7

Chapter 2

2.4 Executive kernel
All BBC Microcomputer I0 is accessed through SW' calls.

The following information documents all the Executive kernel calls that a
program can make using the SWI instruction. A, X, Y represent the 8 bit
6502 registers referred to in the Acorn MOS documentation, C the 6502
carry flag and the ARM carry flag. R0 and so on are ARM registers.
(string) is an indirect pointer to a string terminated by hex &00, &0A or
&0D. R0b means lsb of R0 (only bottom 8 bits used as an input parameter,
top 24 bits zeroed on result). R0 means all 32 bits of R0. All successful
sills will clear the ARM v flag.

2.4.1 WriteC &00 (Acorn MOS OSWRCH)
Write R0b to the terminal output. For example:

MOV R0,#"H"

SWI WriteC

In: R0b
Out:

2.4.2 WriteS &O1
Write the bytes following the call to the terminal output. Terminates at first
zero and starts execution at the next 32bit word. For example:

SWI WriteS

=

 "Hello World",10,13,0

ALIGN

SWI Writel+"K"

In:

Out:

8 	 ARM utilities

Operating system firmware

2.4.3 Write0 &02
Write the bytes pointed to by register 0 to the terminal output. Terminates at
first zero. R0 points to the byte after the zero on exit. For example:

ADD R0,PC,#data-.-8
SWI Write()

In: R0
Out: R0 updated

2.4.4 NewLine &03 (Acorn MOS OSNEWL)
Write a line feed (MIA) followed by a carriage return (&0D) to the terminal
output. For example:

SWI NewLine

In:
Out:

2.4.5 ReadC &04 (Acorn MOS OSRDCH)
Read a character and validity from the terminal input. c set if an unusual
character (for example Escape) is read. For example:

SWI ReadC
BCS Escape

In:
Out: R0 contains character; C contains validity

2.4.6 CLI &05 (Acorn MOS OSCLI)
Interpret a string as a command. The string is checked for HELP (or valid
abbreviations) and an appropriate message issued. An additional command
over those in the 10 processor MOS is the GO command, see the data about
the supervisor. For example:

SWI CLI

In: R0 pointing to string
Out: may not return if another

program has been executed

ARM utilities 	 9

Chapter 2

2.4.7 Byte &06 (Acorn MOS OSBYTE)
Do an Acorn MOS OSBYTE call with A.=R0b, X=R1b, Y-R2b, c=c. For
calls with R0b less than 128 the R2 register is not required or altered. For
example:

MOV R0,#5
MOV R1,#4

SWI Byte ;select network printer

In: R0, R1, R2

Out: R0, R1, R2, C

Note: because of the read only file buffering in the Executive the OSBYTE
&7F call checks R1 WORD for being greater than 256 (range of fast handles
is 257 to 511).

2.4.8 Word &07 (Acorn MOS OSWORD)

Do an Acorn MOS OSWORD call with A=R0b and a parameter block
pointed to by R1. Note that call with R0b=0 (Acorn MOS RDLN) does
nothing, the ReadLine call should be used instead. For example:

MOV R0,#1

SUB R1,SP,#5

SWI Word ;read time

In: R0, R1 pointing to parameter block

Out: parameter block updated.

10 	 ARM Utilites

Operating system firmware

2.4.9 File &08 (Acorn MOS OSFILE)
Do an Acorn MOS OSFILE call with A=R0b. Instead of a parameter block
R1 to R5 contain the data (string pointer, load address, exec address, start
address (length), end address (attributes)). For example:

MOV R0,#5
MOV R1,#ptr

SWI File ;file info

In: R0, R1 pointing to string, R2, R3, R4, R5

Out: R2, R3, R4, R5 updated.

2.4.10 Args &09 (Acorn MOS OSARGS)
Do an Acorn MOS OSARGS call with A=R0b, file handle in R1, data value
in R2. For example:

MOV R0,#0

LDR R1,handle

SWI Args ;read ptr to R2

In: R0, R1 (handle), R2

Out: R2 updated.

2.4.11 BGet &0A (Acorn MOS OSBGET)
Read the next byte from the file whose handle is in R1. Byte returned in R0,
validity in c (set if end of file). The Executive does local buffering for
Input Only and Output Only files by using handles in the range 256 to 511 -
see section 2.4.14. For example:

LDR R1,handle

SWI BGet

BCS EndOfFile

In: R1 (handle)

Out: R0, C.

ARM utilities 	 II

Chapter 2

2.4.12 BPut &0B (Acorn MOS OSBPUT)
Write R0b to the file whose handle is in Rl. The Executive does local
buffering for Input Only and Output Only files by using handles in the range
256 to 511 - see section 2.4.14. For example:

MOV R0,#data

LDR R1,handle

SWI BPut

In: Rob, R1 (handle)

Out:

2.4.13 Multiple &0C (Acorn MOS OSGBPB)
Read and write multiple bytes from file whose handle is in R1. Control in
R0b; addresses in R2 (data pointer), R3 (number of bytes), R4 (pointer in
file, if required). c is set if the transfer could not be completed. Executive
local buffering does not apply to the multiple call. For example:

MOV R0,#1
LDR R1,handle

MOV R2,#data

MOV R3,#56

MOV R4,#100

SWI Multiple ; put 56 bytes to

; file from 'data' at offset 100

In: R0b, R1 handle,

R2 points to data,

R3 number of bytes,

R4 position

Out: R2, R3, R4 updated.

C set if transfer past end of file.

12 	 ARM utilities

Operating system firmware

2.4.14 Open &0D (Acorn MOS OSFIND)
Open and close a file. If R0b=0 then the file whose handle is in R1 is to be
closed; if Rlb=0 then all files on the current filing system are closed. If R0
is not zero a file, whose name R1 is pointing at, is to be opened, (&40 for
Input only, &80 for Output, &CO for Update); the file handle being returned
in R0. The Executive does local buffering for BGet for Input Only and for
BPut for Output Only files by using handles in the range 256 to 511: this
feature can be ignored by masking out the extra bit in the handle, but you
must not mix use of the masked and unmasked handles. Alternatively the
command NOBUFF can be used at the supervisor prompt (NOT as a CLI
call). The buffering produces the following times for BGet-ing a 64K file:

ANFS 	ADFS 	Executive+ANFS Executive+ADFS
40sec 	32sec 	 10sec 	 4sec

For example:

MOV R0,#&40

MOV R1,NameAddress

SWI Open

In: R0, R1 (handle/ pointer to name)

Out: R0 (handle if opened)

ARM utilities 	 13

Chapter 2

2.4.15 ReadLine &0E
Read a line of text from the terminal. R0 points to the buffer where the text
will be placed; R1 contains the maximum possible length of the line; R2

contains the lowest character which will be placed in the buffer (excluding
carriage return); R3 contains the highest character which will be placed in
the buffer. c will be set if the buffer was terminated by Escape. The input
may have been terminated by &OD or &OA. For example:

SUB R0,SP,#256
MOV R1,#238
MOV R2,#" "
MOV R3,#255
SWI ReadLine
BCS Escape

In: R0, R1, R2, R3
Out: R1 length, C set if invalid.

2.4.16 Control &0F
Set the control programs for the exception handlers.

• R0 address of where to go when an error occurs (0 for no change)

• R1 address of a buffer for error status (0 for no change)

This will contain:

• (121, #0] PC when error occurred, for example, just after the SWI
which called Executive

• [111, #4] cardinal: error number provided with the error

• R1+8 error string, terminated with a 0.

Continuing after errors is simple: just have a handler that reloads the PC
with that in the block; it may like to set the V flag so that the retried code
knows what has happened (normal SWIs clear it). R0 may be incorrect

R2 address of escape routine handler (0 for no change)
Entered with R11 bit 6 as escape status
R12 contains 0/-1 if not in/in the kernal presently
R11 and R12 may be altered. Return with MOV PC,R14
If R12 contains 1 on return then the Callback will be used

14 	 ARM utilities

Operating system firmware

R3 address of event handler (0 for no change)
Entered with R0, R1 and R2 containing the A, X and Y parameters. R0,
R1, R2, R11 and R12 may be altered. Return with MOV PC, R14

R12 contains 0/-1 if not in/in the kernal presently
R13 contains the IRQ handling routine stack. When you return to the
system LDMFD R13!, (R0,R1,R2,R11,R12,PC}^ will be executed. If R12
contains 1 on return then the Callback will be used.

The handlers are initialised and do not normally need setting. Errors will
cause the error message and number to be written to the terminal. Escape
updates will be counted: the program will be terminated on the third. The
default event handler does nothing. Addresses of 0 do not update the
respective information field. All handlers are reset in the supervisor's (*
prompt) or when a program is run using CLI. For example:

MOV R0,errorh
SUB R1,SP,#256
MOV R2,#0
MOV R3,#0
SWI Control ;control errors

In: R0, R1, R2, R3
Out: previous values

ARM utilities 	 15

Chapter 2

2.4.17 GetEnv &10
Read the program environment.

R0 address of the command string (0 terminated) which ran the program
R1 address of the permitted RAM limit for example &10000 for 64K
machine
R2 address of 5 bytes - the time the program started running. For example:

SWI GetEnv
SWI Writes ;write environment

;string to terminal

In:
Out: R0, R1, R2

2.4.18 Exit &11
Leave the program and return to the supervisor * prompt. The supervisor
will print the time for which the program ran. For example:

SWI Exit

In: irrelevant
Out: never returns

16 	 ARM utilities

Operating system firmware

2.4.19 SetEnv &12
Set the program environment. This call should only be used to alter the
overall environment for subprograms.

R0 address of exit routine for Exit above to go to (or 0 if no change)
RI address of end of memory limit for GetEnv to read (or 0 if no change)
R2 address of the real end of memory (or 0 if no change)
R3 0 for no local buffering, 1 for local buffering (anything else no change)
R4 address of routine to handle undefined instructions (or 0 if no change)
R5 address of routine to handle prefetch abort (or 0 if no change)
R6 address of routine to handle data abort (or 0 if no change)
R7 address of routine to handle address exception (or 0 if no change).

Undefined, abort and exception handlers are initialised on using CLI to run a
program. For example:

ADR R0,EXITROUT
MOV R1,1&10000
MOV R2,10
MOV R3,14
MOV R4,10
MOV R5,10
MOV R6,10
MOV R7,10
SWI SetEnv ;make a small machine

In: R0, R1, R2, R3, R4, R5, R6, R7
Out: previous values in R0, R1, R2, R3, R4, R5, R6, R7

ARM utilities 	 17

Chapter 2

2.4.20 IntOn &13
Enable interrupts.

2.4.21 IntOff &14
Disable interrupts.

2.4.22 CallBack &15
On an Escape Update or Event routine the user may modify his own flags
but cannot call the system with an SWI call if it was in the kernal since the
Executive is using the Tube Hardware and would thus become deadlocked.
The solution is a CallBack on kernal Exit - as the thread of control leaves
the kernel, instead of returning to the original caller the registers are saved
in a save block and a different routine is entered; any necessary kernel calls
can be made and then control can be resumed by reloading from the register
save block.

R0 sets the address of the register save block
R1 sets the address of the callback routine

For example:

ADR R0,savblock

ADR R1,nullroutine

SWI CallBack

nullroutine:

ADDR R0,savblock

LDMIA R0,&FFFF^

In: R0, R1

Out: previous values in R0, R1

18 	 ARM utilities

Operating system firmware

2.4.23 EnterSVC &16
Gives the caller SVC privilege mode. One should not then use R13 or rely
on R14 being preserved across SWI calls. Exit back to user mode with
TEQP PC,#0.

2.4.24 BreakPt &17

Cause a break point trap. See 1.4.25

2.4.25 BreakCtrl & 18

When the BreakPt SWI is made all the user mode registers will be dumped
in a block and execution continued at the Break control routine. The user
can be continued with a LDMIA block, &FFFF^.

R0 sets the address of the register save block; 0 for no change
R1 sets the address of the control routine; 0 for no change

In: R0, R1

Out: previous values in R0, R1

2.4.26 UnusedSWl &19

SWIs of values 512 onwards can be used to add new SWI function calls.

R0 sets the address of the unused SWI handler; 0 for no change.

The following code has been executed before the handler is reached:

SPSVC * R13

TUBER * R12

SVCWK0 * R11

SVC STMFD SPSVC!,(TUBER,SVCWK0,SVCWK1}

BIC TUBER,R14,1CCMASK

LDR 	SVCWK0,[TUBER,#-4]

BIC 	SVCWK0,SVCWK0,#&FF000000

CMP SVCWK0,#512

LDRCS PC,HISERV

ARM utilities 	 19

Chapter 2

The old address should be used to return to the user so as to process any
outstanding CallBacks: Executive kernal does the following:

SLVK LDR SVCWK0,DOCALL
TEQ SVCWK0,#1
BEQ SKCL
LDMFD SPSVC!,(TUBER,SVCWK0,SVCWK1)
BICS PC,R14,#&10000000 ;clear V flag

DOCALL & 0
SKCL MOV TUBER,#0

TEQP PC,#&00000003
STR TUBER,DOCALL
LDR TUBER,CALLBF
STMIA TUBER!,{R0,R1,R2,R3,R4,R5,R6,R7,R8,R9}
LDMFD SPSVC!,(R0,R1,R2)

;get TUBER,SVCWK0,SVCWK1 (10,11,12)
STMIA TUBER!,{RO,R1,R2,R13,R14}^

;write those 3 and user's 13,14
BICS R14,R14,#&10000000 ;clear V flag
STMIA TUBER!,(R14} ;user's PC
LDR PC,CALLAD

In: R0
Out: previous value in R0

2.4.27 SetCallBack &1B

This kernel call sets the internal call back flag: when the kernel is next
exited a CallBack will occur (not when this call to the kernel exits).

In:
Out:

2.4.28 WriteI &100

Write the character contained in the bottom byte of the SWI call. For
example:

SWI Writel+" " ;write a space

In:

Out:

20 	 ARM utilities

3. Acorn Object Format

This chapter defines a file format known as ARM Object Format, which is
generated by language processors for the ARM system. The ARM linker
processes files in this format and also generates its output in the same
format. The term object file is used to denote a file in ARM Object Format.

3.1 Overall structure
An object file contains a number of separate but related pieces of data. In
order to simplify access to these separate pieces, and to provide for a degree
of extensibility, the object file format is itself layered on another format
called Chunk File Format, which provides a simple an efficient means of
accessing and updating distinct chunks of data within a single file. This is
fully described elsewhere, but adequate information is included below for
convenience.

Each piece of an object file is stored in a separate, identifiable, chunk. The
object file format defines five chunks: header, areas, identification, symbol
table and string table.

The minimum size of a piece of data in both formats is four bytes or one
word. It is easier to understand the format as a sequence of words than a
sequence of bytes. Each word is actually stored in the file in Litde-endian
format; that is, the least significant byte of the word is stored first.

3.2 Chunk file format
Access to the individual chunks is made through a header at the start of the
file. The header contains information on the number, size, location and
identity of the chunks within the file. The size of the header may vary
between different chunk files but is fixed for each file. However, not all
entries in the header may be in use, thus allowing for a limited expansion of
the number of chunks without a wholesale copy. A chunk file can be copied
without knowledge of the contents of the individual chunks.

ARM utilities 	 21

Chapter 3

Graphically, the layout of a chunk file looks as follows:

The ChunIcFileId is a single word field, which serves to identify the file as
being in chunk file format. Its value is C3CBC6C5 hex. The maxChunks
field defines the number of the entries in the header. This is fixed once the
file is created. The numChunks defines how many chunks there are currently
in the file, which can vary from 0 to maxChunks. The value of numChunks
is redundant in the sense that it can be found by scanning the entries.

Each entry in the header comprises four words in the following order
chunkld, a two-word field; fileOffset a one-word field and size, a one-word
field.

22 	 ARM utilities

Acorn Object Format

The chunkId field provides a conventional way of identifying what type of
data a chunk contains. It is split into two parts. The first four characters (in
the first word) contain a universally unique name allocated by a Acorn. The
remaining four characters (in the second word) can be used to identify
component chunks within this universal domain. In each part, the first
character of the name is stored first in the file, and so on.

The fileOffset field defines the byte position within the file at which the
chunk data begins, which must be at a byte position that is divisible by four.
A fileOffset of zero specifies that this chunk entry is not in use.

The size field defines the exact size in bytes of the chunk, which need not
be a multiple of four bytes.

3.3 Object file format
Each piece of the object file is stored in a separate, identifiable, chunk. The
object file format defines five chunks: header, areas, identification, symbol
table and string table, of which only header and areas must be present. The
universal name for object file chunks is OBJ_, with the component names as
follows:

Header 	OBJ_HEAD
Areas 	 OBJ_AREA
Identification OBJ_IDFN
Symbol Table OBJ_SYMT
String Table OBJ_STRT

A typical object file will contain all five of the above chunks. A feature of
the chunk file format is that they may appear in any order in the file.

A language translator or other system utility may add additional chunks to
an object file, for example a language specific symbol table. Thus it is
conventional to allow space in the chunk header for additional chunks; a
maximum of eight is conventional.

ARM utilities 	 23

Chapter 3

3.4 The header chunk
The header chunk is logically in two parts. The first part is of fixed size and
contains information on the contents and nature of the object file. The
second part is variable in length (specified in the fixed part) and is a
sequence of area declarations defining the code and data areas within the
OBJ_AREA chunk. The fixed part of the header has the following format:

All fields occupy one word.

3.4.1 Object file type
An object file is identified by a type field, which is a convenience for
system utilities which require a particular form of object file as input. The
types which are recognised at present are as follows:

Relocatable 	C5E2D080 hex

Image type 1 	C5E2D081 hex

Image type 2 	C5E2D083 hex

Image type 3 	C5E2D087 hex

Most language translators generate relocatable object files.

24 	 ARM utilities

Acorn Object Format

3.4.2 Version Id
This word defines the version of the object format that was used to generate
the object file. The current version number is 110 decimal.

3.4.3 Number of areas
The code and data of the object file is presented as a number of separate
areas, in the OBJ_AREA chunk, each with a name and some attributes (see
below). Each area is declared in the (variable-length) part of the header
which immediately follows the fixed part. The value of this field in the fixed
part defines the number of areas in the file and consequently the number of
area declarations which follow the fixed part of the header.

3.4.4 Number of symbols
If the object files contains a symbol file chunk OBJ_SYMT, then this field
defines the number of symbols in the symbol table.

3.4.5 Entry address area/entry address offset
One of the areas in the object file may be designated as containing the start
address for any program which is linked to include this file. If so, the entry
address is specified as ni offset pair, where n is in the range 1 to number of
areas, specifying the nu' area declared in the area declarations part of the
header. The entry address is then defined to be the base address of the area
plus the offset. A value of 0 for n is taken as specifying no entry address.

ARM utilities 	 25

Chapter 3

3.5 Area declarations
The area declarations follow the fixed part of the header. Each declaration
has the following form:

3.5.1 Area name
All names in an object file are encoded as offsets into the string table, which
is stored in the OBJ_STRT chunk. This allows the variable-length
characteristics of names to be factored out from primary data formats. Each
area within an object file must be given a name which is unique among all
the areas in that object file.

3.5.2 AL (area alignment)
When the area is included in a program image, it is aligned on the address
boundary specified in this field, which is one byte in size. The allowable
values for this field are between 2 and 12, which specify an alignment of
two raised to the power AL. That is, between 4 and 4096 in powers of two.
The standard value of AL is 2, specifying word alignment.

26 	 ARM utilities

Acorn Object Format

3.5.3 AT (area attributes)
As well as a name, an area can have a set of attributes. The linker groups
areas first by attributes and then by name. The AT field is one byte in size
and is interpreted as a sequence of bits, numbering the least significant bit as
zero.

• Bit 0

If this bit is set the area is absolute. The BaseAddress field of the area
declaration gives the absolute address of the base of area. Otherwise it
is relocatable.

• Bit 1

If this bit is set, the area contains code, otherwise it contains data.

• Bit 2

This bit specifies that the area is a common block definition. Common
areas with the same name are overlaid on each other by the linker.
The Size field of the declaration defines the size of the common block.
All other references to this common block must specify a size which is
smaller or equal to the definition size. In a link step there may be only
one area of the given name with this bit set. If none of the common
areas have this bit set, the actual size of the common area will be the
largest size of the contribution common areas.

• Bit 3

This bit defines the area as a common area. See the text on Bit 2 for
further details on common areas.

• Bit 4

This bit specifies that the area has no initialising data in this object
file. In other words the area contents are completely missing from the
OBJ_AREA chunk. This bit is typically used for large data areas
where the initial values are unimportant.

• Bit 5

This bit specifies that the area is read-only. The linker groups read
only areas together so that they may be write protected at run time,
hardware permitting. Code areas should ordinarily have this bit set.

ARM utilities 	 27

Chapter 3

• 	Bit 6

This bit specifies that the area is position independent, which means
that its base address may change at run time without any change being
required to its contents. Such an area may only contain internal
program-relative relocation and must make all external references
through registers.

3.5.4 Area size
This field specifies the size of the area in bytes, which must be a multiple of
four bytes. Unless the Not Initialised bit is set in the area attributes, there
must be this number of bytes for this area in the OBJ_AREA chunk.

3.5.5 Number of relocations
This specifies the number of relocation records which apply to this area.

3.5.6 Base address
This value is only meaningful if the area is absolute. It specifies the absolute
address of the base (first byte) of the area.

28 	 ARM utilities

Acorn Object Format

3.6 The areas chunk
The areas chunk (OBJ_AREA) contains the actual areas (code and data) plus
any associated relocation information. Its chunkId is OBJ_AREA.
Graphically, the layout is as follows:

Both the area contents and the area relocation data must be aligned on a
4-byte boundary.

An area is simply a sequence of byte values, the order following that of the
addressing rules of the ARM, that is the least significant byte of a word
first. An area is followed by its associated relocation table (if any). An area
is either completely initialised by the values from the file or not initialised at
all (specified by bit 4 of the area attributes).

3.6.1 Relocation
If no relocation is specified, then the value of a byte/half-word/word in the
preceding area is exaetly that value that will appear in memory when the file
is executed. Byte and half-word relocation is only possible by global
constants. A field may be subject to more than one relocation.

Relocation can take two basic forms: additive and program-relative. Additive
relocation specifies the modification of a byte/half-word/word, typically
containing a data value (that is, constant or address). Program-relative
relocation always specifies the modification of an instruction and involves
the generation of a program counter relative displacement for either a branch
instruction or a data transfer instruction using R15 as the base register.

ARM utilities 	 29

Acorn Object Format

• R (Relocation Type)
This 1-bit field (bit 18) specifies either additive (0) or

program-relative (1) relocation.

• A (Additive Type)
This 1-bit field (bit 19) is only interpreted if bit 18 is a zero. If the
field is zero, it specifies additive internal relocation, implying that the
base address of the area is added into the field to be relocated. If the
field has the value one it specifies additive symbol relocation, implying
that the value of the given symbol is added into the field to be
relocated.

Bits 20-32 of the second word in a relocation record are reserved.

3.7 The symbol table chunk (OBJ SYMT)
The number of symbols field in the header defines how many entries there
are in the symbol table. Each symbol table record has the following
structure.

3.7.1 Name
This value is an index into the string table (in chunk OBJ_STRT) and thus
locates the character string representing the symbol.

ARM utilities 	 31

Chapter 3

Additive relocation has two variants: internal and symbol. Internal relocation
involves adding in the allocated base address of the preceding area to the
field. Symbol relocation involves adding in the actual value of the symbol
quoted.

Program-relative relocation always references a symbol, the value of which
is used to compute the displacement to place within the instruction. The final
displacement is derived from the address of the instruction being relocated,
the value (address) of the symbol and any existing displacement in the
instruction as found in the area. The fact that the PC is actually 8 bytes
beyond the instruction is taken into account by the linker and should not be
included by the creator of the object file.

An entry in the relocation looks as follows:

• Offset
This field defines the byte offset within the preceding area of the field
to be relocated.

• SID
If a symbol is involved in the relocation, this field specifies the
symbol-Id, which is the index within the symbol table (see below) of
the symbol in question. The field is 16 bits in size.

• FT (Field Type)
This 2-bit field (bits 16-17) specifies the size of the field to be
relocated, as follows

00 	 byte

01 	 halfword

10 	 word

The value 11 is illegal.

30 	 ARM utilities

Chapter 3

3.7.2 AT
This is a 4-bit field specifying the attributes of the symbol as follows:

• Bit 0
If this bit is set, the symbol is defined in this object file. Otherwise,
the symbol is an external reference to another object file. In this case
bit 1 must be set as well.

• Bit 1
If the symbol is defined (bit 0 set), this bit specifies that the symbol
has global scope. That is, when attempting to resolve external
references, the linker will match on symbols from other object files
only if this bit is set. If the symbol is undefined (bit 0 unset) then this
specifies an external reference to the symbol.

Note that the combination, bit 0 set, bit 1 unset, specifies the definition
of a local symbol. The linker will only match such symbols from
references within the same object file.

• Bit 2
The following attribute is only meaningful if the symbol is a defining
occurrence (bit 0 set). If this bit is set it specifies that the symbol has
an absolute value, for example, a constant. Otherwise its value is
relative to the base address of the area defined by the area name field
of the symbol table entry.

• Bit 3
This bit is only meaningful if bit 1 is unset, that specifying an external
reference. It states that the reference is case-insensitive. When
attempting to resolve such an external reference, the linker will ignore
case when performing the match.

3.7.3 Value
If the symbol is absolute (bit 2 of AT set), this field contains the value of
the symbol. Otherwise, it is interpreted as an offset from the base address of
the area defined by area name, which must be an area defined in this object
file.

32 	 ARM utilities

Acorn Object Format

3.7.4 Area name 	
This field is only meaningful if bit 2 of AT is unset. It specifies an index
into the string table which locates the character string representation of the
area relative to which the symbol is defined.

3.8 The string table chunk (OBJ STRT)
The string table chunk contains all the print names referred to within the
areas and symbol table chunks. The separation is made principally to factor
out the variable length characteristic of print names. Print names are stored
in the string table and identified by an offset from the beginning of the
table. Print names are stored as a sequence of ASCII characters terminated
by a null (0) byte. The first character of each string must be aligned on a
4-byte boundary.

By convention, a value of 1 for an index into the string table is interpreted
as defining the null name.

3.9 The identifiation chunk (OBJ IDFN)
This chunk should contain an ASCII character string, terminated by a null
(0) byte, providing information on the name and version of the language
translator which generated the object file.

3.10 AOF-handling utilities
There are four utility programs which allow a programmer to investigate,
merge and run AOF files. They are:

(1) Chunk file decoder deccf

(2) Object file decoder decobj

(3) Merge two chunk files MergeCF

(4) Run an AOF file m2run

These utilities can be found in chapter six, miscellaneous utilities.

ARM utilities 	 33

4. The linker

Link processes files which are in Acorn object format (AOF) and also
generates output in the same format. Link combines one or more AOF files
into an absolute, executable image file, resolving external references and
searching libraries for object files if necessary.

When generating an image, link produces an object file consisting of two
areas, read only (data and code) and read-write (data).

4.1 Link areas
Areas with the same name and attributes are collected together and
concatenated according to the order specified in the input list. These
concatenated areas are then sorted alphabetically by name. See the ARM
Object Format document specification for more details on areas.

The following are reserved symbols;

Image$$CodeBase,

Image$$CodeLimit,

Image$$DataBase,

Image$$DataLimit

If these symbols are referred to, they are set to the first location in the
various areas as follows:

Images$$CodeBase : the read-only (code) area
Image$$CodeLimit : the first location beyond the read-only
area
Image$$DataBase : the first location in the read-write (data) area
Image$$DataLimit : the first location beyond the read-write data

It is erroneous to define these symbols.

34 	 ARM utilities

The linker

4.2 Keywords
The following describes the keywords, which control the operation of link.

• -image

The argument to this keyword is the filename of the resulting object
file.

• -files

This argument is a list of object files to include in the link.

• -via

This argument specifies a file from which a list of object files to link
should be acquired. There should be one name per line in the file. This
list is additional to and appended to that provided by the files
argument.

• -library

This argument specifies a list of object files libraries in which to
search for unresolved external symbols. Libraries are searched as many
times as necessary to resolve external symbols.

• -use

This option specifies incremental linking with respect to one or more
existing base images. For example, this can be used so that the
resulting object may be dynamically loaded into an already executing
program. The arguments are assumed to be previously linked image
files whose symbol tables are taken as a basis on which to define new
symbols. Only newly linked material will be entered into the new
object file, but the symbol file will reflect every symbol defined before
and after the incremental load. If any of the image files are marked as
shareable, (see -share), any read-write data areas in these images are
always duplicated in the new object file. This is typically used to allow
code to be shared between a number of simultaneously active
programs, each with a separate instance of the writeable data areas.

Object filenames given with the -files and -via arguments may be
postfixed by either /1 or /u. This has the same meaning as if these
files had been given as arguments with the -library or -use
keywords.

ARM utilities 	 35

Chapter 4

• -relocatable

This switch directs link to generate a relocatable object file as output.
The object file retains the basic form of the component input files in
that areas of the same name and attributes are coalesced into single
areas. The only relocation that is resolved is program-relative
relocation within the same area The resulting object file may become
part of the input files for another run of link.

• -share

This switch directs link to generate a shareable image, which is a
hybrid of an absolute image and a relocatable image. The code and
read-only data areas are linked as per an absolute image, but any read-
write areas are linked as per a relocatable image. This allows the read-
write areas to be linked into an image which uses the code in the
shared image, at a suitable address. This address may vary between
different programs linking to the shared image.

• -base

By default, link generates an absolute image with the read-only area
starting at byte address 384K. This can be changed with this keyword,
whose argument is interpreted as a decimal byte address, but can be
postfixed by k to scale by 1024 and prefixed by & to specfify a
hexadecimal value.

• -pagealign

By default, the read-write area immediately follows the read-only area
in the address space. That is ImageDataBase = ImageCodeLimit. If this
switch is specified, the read-write data area is page aligned.

• -keep

By default, non-external symbols are discarded from the symbol table
of the resulting object file. This option forces their inclusion.

• -adfs

This option specifies that the resulting file be suitable for direct
execution by the ARM Executive ROM. In this case, the default base
address is changed to 4K.

• -chain

This keyword takes as argument a command that will be passed to the
Executive ROM for execution, as the last action of link.

36 	 ARM utilities

The linker

4.3 Examples
link -image Test aof.Test,aof.a,aof.b,aof.c -library $.lib.c

The object files of Test,aof.a,aof.b and aof.c are linked to form an
absolute image in Test. The library $.lib.c is scanned to resolve any
external references.

link -image Test -via aof.filelist -reloc

A relocatable object files is produced in Test by linking the list of object
files in aof.filelist.

4.4 Diagnostics
Error messages are produced on the standard output.

4.5 Bugs
Shareable images are not implemented. Symbols that are multiply defined in
one of the input files and an image give with the -use switch are reported
as errors. This can be ignored.

ARM utilities 	 37

5. Machine code debugger

The debugger is for debugging AOF files not containing unresolved
references within the execution path. It works by loading itself where the
program would normally load, and loading the program further up in store.
The program can be run at this higher address without the control of the
debugger (in order to achieve the same placement if it should be important)
using the utility file m2run. The debugger takes control from the program by
means of breakpoints, which cause a trap into the debugger. Thus the
debugger cannot be used to stop a program which has gone wildly wrong
and find out where it has gone.

The debugger is only for use in user mode, as its entry method following a
breakpoint causes SVC mode to be entered temporarily, thus corrupting SVC
register 14.

5.1 Starting the debugger
The debugger is started by typing:

debug programname

where programname is a linked AOF file. The debugger will respond with
the prompt

debug:

whenever it is ready for input.

38 	 ARM utilities

Machine code debugger

5.2 Debug input conventions
The debugger deals with input of commands, numbers, register names and
other miscellaneous items. The following terms will be used later in this
manual, and so are defined now.

(1) A name is a sequence of letters, digits, dot and dollar beginning with a
letter.

(2) A decimal number is a non-empty sequence of decimal digits.

(3) A hexadecimal number is an ampersand followed by a possibly empty
sequence of hexadecimal digits.

(4) A register name is one of:-
RO, RI, R2, R3, R4, R5, R6, R7, R8, R9, RI0, R11, R12, R13, R14,
R15, PC (=R15), SL (=R13), SP (=R12), FP (=R11) and SB (=R 1 0).
All register names refer to the user bank of registers.

(5) Expressions are composed of numbers, names, register names, brackets
and '+', `-', .1,w, 'A' and `.'. The symbols '+', 4 -', l' and '*' have
their usual meanings, `.' refers to the last location examined or
deposited into, brackets may be used for clarity and forcing evaluation
order, and A is a postfixed unary operator meaning 'the contents of
and delivers a word from a word-aligned address. 1n certain
circumstances, a register name may be an expression on its own, such
as when examining a register range. Otherwise, any register name used
in an expression must be followed by A in order that the register
contents be used. There is no meaning if the A is left out.

ARM utilities 	 39

Chapter 5

5.3 Debug commands
The debugger takes commands of the following forms:

name arguments

$arguments=arguments

5.3.1 Named commands
For commands which are names, only the first character is significant, and
case is ignored, thus RUN, run and R are all equivalent.

(1) Run

syntax: R rest-of-line

The program is entered with rest-of-line as arguments which will be
available to the argument decoder as if the program had been run from
the supervisor command prompt. The debugger will not be entered
again unless either a breakpoint is reached or a machine level trap of
some sort is taken, such as an address exception.

(2) Single step

syntax: s

Execute the current instruction and re-enter the debugger after.

(3) Continue

syntax: c

Continue execution

The debugger re-enters the program. As with Run, the debugger can
only regain control by means of a breakpoint or a machine level trap.

(4) Quit

syntax: Q

Leave the debugger and return to the supervisor.

40 	 ARM utilities

Machine code debugger

(5) Breakpoint

syntax: B S location
B D location
B D

B L

Set or delete a breakpoint at the given location. The location may be
an expression evaluating to a store address. A maximum of twenty
breakpoints is permitted. Breakpoints work by replacing the existing
instruction by an instruction which will cause a trap and enter the
debugger. Breakpoints cannot be placed in ROM code. Deleting a
breakpoint simply replaces the original instruction over the trap, and
removes the breakpoint from the breakpoint table.

B D with no location specified will delete all breakpoints.

B L will list the addresses of all breakpoints.

(6) Unwind

syntax: U

Unwind the procedure call stack. This is only meaningful if the Acorn
procedure calling standard has been used for procedure calling within
the program being debugged. In this case it will give a list of
procedure calls made starting with the most recent and ending at the
mainline code.

(7) List

syntax: L name

List all symbols in the symbol table from the AOF which start with
the given name. The output is not sorted, and is therefore in the order
in which the symbols were encountered in the AOF.

ARM utilities 	 41

Chapter 5

(8) Examine

syntax:E
E al {$F}
E a1:a2 {$F}
E a1,a3{$F}

Examine locations, producing output in format $F, or in the default
format if $F is omitted. al is the first location examined; if omitted
then the location after the last location examined/deposited into will be
examined. Examination will continue until location a2 or for a3
locations, or if these are omitted only one location will be examined.
The output format is precisely specified below.

Address 	Value

Base 	Current base 	Current base

Style 	SY 	 Current style

Length 	4 	 Current length

(9) Deposit

syntax: D {al }value ($F)

Deposit value in location a1, or if al is omitted then in the next
location, that is the one after the last to be examined/deposited into.
$F specifies the amount of store to be updated (byte, half-word or
word).

(10) Convert

Syntax = al {.$F}

Convert (display) al in given format, or in the default format in none
has been given.

42 	 ARM utilities

Machine code debugger

(11) Format

Syntax: $F

Set default format for output.

The formats are:-
Base

SD decimal
$x hexadecimal
$0 octal
$number base that number, in the range 2 - 36

Style

$N numeric
$s string
Si instruction (see note 1)
$Y symbolic name (see note 1)
$P as a PC part of a number (see note 1)
SF as a flags part of a number (see note 1)
SR as a floating point number if length = 4 or 8

(this is not yet implemented)

Note 1: these default to $N if the length is not a word.

Length

$T two words
$W word
$H half-word
SR byte

ARM utilities 	 43

6. Floating point emulation

A general co-processor interface has been designed for ARM and future co-
processors may have an unspecified number of registers, and a co-processor
identity number in the range 1 - 15. Various new instructions will be added
to the ARM to control these co-processors, and these will be of three types:

• CPDT — CoProcessor Data Transfer,
transfer between a co-processor register and store

• CPRT — CoProcessor Register Transfer,
transfer between a co-processor register and an ARM
register

• CPDO — CoProcessor Data Operation,
an operation within the co-processor.

The first such co-processor will be one that does IEEE floating point
calculations but for ARM machines without this extra hardware, a floating
point emulator has been provided which provides the functionality of a
hardware processor with reduced performance. The emulator is entitled fpe

and it should be placed in $.library in the filing system.

This chapter describes the instruction set extensions provided by this
emulator for floating point calculations, and the syntax used by the
assembler to represent these operations.

6.1 Programmer's model
The FP CoProcessor has eight work registers f0..f7, and a 32-bit status
register. The work registers can each hold a single or double precision
floating point number, although their internal format is not specified.

Single and double precision operations are provided. However, if the
programmer were to load one size and then perform operations of another
without converting explicitly between them, the result would be undefined.

44 	 ARM utilities

Floating point emulation

There are separate instructions for loading and storing the condition code
registers. Condition codes format

NAN — not a number encountered in numeric application
INX — inexact result
ILL — illegal operation
DV0 — divide by zero
OFL — overflow
UFL — underflow

For each unusual circumstance that could occur, there are two bits. One gets
set if it ever occurs, the other indicates that its occurrence should cause an
interrupt. An interrupted operation can probably not be successfully retried,
because the execution of FPDO operations by the hardware FP unit may be
asynchronous.

Notes

• Extra bits may be added to this mask in future, but currently the non-
existent bits read as Os, and efforts to write to them will have no
effect.

• Exceptions are not guaranteed to occur directly after the operation that
caused them, for a number of reasons: the hardware FP unit could be
asynchronous; the FP numbers might not be represented in IEEE
format in the FP registers, but in some unpacked format in order to
improve performance. This format, for instance, might have greater
range and precision than IEEE. So, a store operation could cause an
overflow long after the construction of that value.

• References to registers 8-15 cause undefined values or traps (the result
has not yet been defined).

ARM utilities 	 45

Chapter 6

6.2 Floating register directives
Assembler syntax:

f0 	FN 	0 	 ; behaves like RN
fl 	FN 	1

f15 	FN 	15

Floating register numbers and ARM register numbers must be
distinguishable, since some of the MOV syntax below depends on this. A
name can be given to the floating point status register thus:

FPPSW FN 15

There is also a directive that prevents the assembler from recognising
floating point operations of any form:

NOFP

This may sometimes be useful for debugging.

6.3 Floating point constants
Assembler syntax:

DCF(DIS) 	number <, number>*
LDF(D|S) 	fn, -number

D -> double (64 bit), S-> single (32 bit).

In this syntax description, I means or, angle brackets mean optional round
brackets denote grouping, * means repeat.

The DCF directive causes 32-bit or 64-bit IEEE floating point constants to
be deposited in memory. An — constant generates a program counter relative
load, use LTORG to actually generate the constant.

46 	 ARM utilities

Floating point emulation

The syntax of numbers is:

number ::= <41 ->digits<exp>

<+1->digits.<exp>

<+I->digits.digits<exp>
<4-| ->.digits<exp>

exp ::= 	(eIE)<+I->digits

digits :: 	non-empty string of digits

6.4 Load and store instructions
Syntax:

(LD|ST)F<cond>(D|S) Fn, [Rn] <, off>

[Rn <, off>]

[Rn, off] !

These instructions load and store the floating registers. Addressing modes are
very similar to LDR and STR instructions, except that the only possible
offset form is an 8-bit word offset.

ARM utilities 	 47

Chapter 6

The 32-bit instruction takes the form:

P = 0, Wb = 0 -> post inc/dec, update Rn

0, Wb = 1 -> DO NOT USE

1, Wb = 0 -> pre inc/dec, do not update Rn

1, Wb = 1 -> pre inc/dec, update Rn.

Do not use when Rn=15.

U/D = 0 -> subtract offset from Rn

1 -> add offset to Rn

CLn = 0 -> S

1 -> D

L/S = 0 -> STF

1 -> LDF

6.5 Conversion instructions
Conversions between floating point and integer data take the form of a
transfer between a FPCP register and an ARM one. The (D| s) refers to the
floating point value, in all cases 32 bits are transferred between the
processors.

Syntax:

FLT<cond>(D|S) 	fn, rn 	; convert to FP

TRN<cond>(D|S) 	rn, fn 	; truncate towards zero

FIX<cond>(D|S) 	rn, fn 	; nearest integer

For the 32-bit layout, see the move instructions below.

48 	 ARM utilities

Floating point emulation

6.6 Move instructions
Syntax:

MVF<cond>(D|S) 	fn, n 	; see note 1
MVF<cond>(DIS) 	fn, fn 	; see note 2
MVF<cond> 	rn, FPPSW
MVF<cond> 	FPPSW, rn
MVF<cond> 	fn, rn 	; see note 3
MVF<cond> 	rn, fn

MVF<cond>D(1|2) rn, fn

MVF<cond>D(1|2) fn, rn

Notes

• n in the range [0..15]. CPRO form.

• CPRO form.

• transfer single precision number.

Some of these are CPRT and some CPDO operations: the ones that mention
an rn are CPRT. MVFD1 and MVFD2 allow the transfer of either the first or
second 32-bit half of a double-precision FP number, this is because CPRT is
only capable of accessing a single 32-bit ARM register in one instruction.
When transferring to an FP register, a MOVD2 should always follow a
MOVD1, both mentioning the same FP register.

ARM utilities 	 49

Chapter 6

The bits for CPRT operations are:

US= 	I -> the transfer is to an ARM register
0 -> the transfer is to an FP register

rn may not be 15 if L/S is 1 (that is, to ARM registers) opcode L/S

000 0 -> FLTS
000 1 -> FIXS
001 1 -> TRNS
010 0 -> FLTD
010 1 -> FIXD
011 1 -> TRND
100 0 -> MVF FPPSW, rn 	; fn 0
100 1 -> MVF rn, FPPSW 	; fn = 0

101 0 -> MVF fn, rn 	; transfer single precision

101 1 -> MVF rn, fn 	 number

110 0 -> MVFD1 fn, rn

110 1 -> MVFD1 rn, fn

111 0 -> MVFD2 fn, rn

111 1 -> MVFD2 rn, fn

For an FPPSW transfer the fn field should be 0.

The bits for CPRO operations are shown in the section on Arithmetic
operations.

50 	 ARM utilities

Floating point emulation

6.7 Compare instructions
Syntax:

(CMF|CNF)<cond>(D|S) fn, <fm| m>

These instructions are CPRT format. The bits are:

a := 	0 -> fm is a register
1 -> fm is a small constant, in the range [0.0 .. 15.0]

b := 	0 -> single
1 -> double

c := 	0 -> CMF (set N, Z, C, V from fn-fm)
1 -> CNF 	(set N, Z, C, V from fn+fm)

Following one of these instructions the conditions EQ NE LT GT LE GE
work as you would expect. The assembler will recognise a small negative
constant and invert the CMF/CNF as appropriate. Note that the unsigned
comparisons will not necessarily work after this instruction.

ARM utilities 	 51

Chapter 6

6.8 Arithmetic instructions
Syntax:

op<cond>(D|S) 	Fdst, Fs1, Fs
Fdst, Fs1, n 	 ; n in [0..15]

opl<cond>(D|S) 	Fdst, Fs2
Fdst, n

op ::= ADF SUF MUF DIF RSF RDF ASF POW RPW
op1 ::= SQT CVT ABS MVF MNF

SIN COS TAN ASN ACS ATN LGN LOG EXP

In one instruction all operands are the same size, except CVT (convert
single<->double), for which the (D | s) refers to the source.

52 	 ARM utilities

Floating point emulation

The 32 bits are:

a := 0 -> Fs2 is a register
1 -> Fs2 is a small constant [0.0 .. 15.01

b := 0 -> single operation
1 -> double operation

ecdfg := (note the slightly unusual order)
00000 -> ADF add
00001 -> SUF subtract
00010 -> RSF reverse subtract
00 011 -> ASF abs value of subtract
00100 -> MUF multiply
00101 -> DIF divide
00110 -> RDF reverse divide
00111 	spare
01000 -> CVT convert D->S (if (DIS)), or S->D
01001 -> ABS absolute value
01010 -> SQT square root
01011 -> MVF move
01100 -> MNF negate
01101 -> Loo log to base 10
01110 -> LGN log to base e
01111 -> ExP e to the power of
10000 -> POW arg1 to the power of arg2
10001 -> RPW arg2 to the power of arg1
10xxx spare
11000 -> SIN sine of number of radians
11001 -> cos cosine
11010 -> TAN tangent
11011 -> ASN arcsine, in radians
11100 -> ACS =COS
11101 -> ATN =tan

1111x 	spare
leave Fs1=0 in monadic operations.
c = 0 -> dyadic operation

1 -> monadic operation

ARM utilities 	 53

Chapter 6

Notes

• Even with hardware support, loading ARM registers will always be
slightly faster than loading FP registers. When simply moving floating
point information around rather than performing operations on it,
programmers and compiler writers are recommended to use the ARM
registers rather than the FP ones. The best strategy for argument
passing in compiled code is to pass pointer arguments in ARM
registers, and return a floating point result in f0.

• The layout of IEEE numbers in ARM store is not quite to IEEE
standard.
The most significant word is first:
that is, storing a double floating point number at x dumps:

at x-1-4: 32 bits, low part of mantissa
at x : 1 sign bit, 11 exp bits (subtract 1023), 20 mantissa

bits.

for example, the constant 1 in an assembler program is

& 	 &3ff00000, &00000000

• If the second argument to POW (or the first to RPW) is an integral
value in the range -50..50 then an integer power algorithm will be
used

54 	 ARM utilities

Floating point emulation

6.9 The FPE and the Executive
FPE takes the form of a shell that runs under the Executive ROM.
Typing fpe after the ARM* prompt causes various things to happen:

• A title and version number will appear.

• A few thousand bytes of store at the top of memory is taken over by
FPE, which has copied itself to its resident position.

• Also in high memory are some bytes which have the task of emulating
the floating point registers, and some general floating point workspace.
Floating point registers are initially zero, the status word is &002e0000
(that is, overflow, divide by zero, illegal operand and non-numbers will
all cause exceptions).

• The ARM prompt logo has been replaced with a similar one
containing an FP to denote that floating point instructions are now
available.

• The illegal instruction trap vector has been replaced.

6.10 Notes for advanced users
The processor must be in user mode when emulated instructions are called.

Debug traps illegal instructions, and uses the instruction &ee000000 to
implement single stepping and breakpoints. This works perfectly well with
FPEbecause FPE installs itself directly in the ARM illegal intruction vector
rather than through Executive's SetEnv. &ee000000 is still
instruction. Any bit pattern not recognised as a floating point instill. ion is
forwarded to the illegal instruction handler.

If a floating point exception happens ARM will print a message and then
proceeds to perform an address error.

ARM utilities 	 55

Chapter 6

At location &FF4 is a pointer to the emulated FP registers. They are held in
an unpacked format, each register takes 16 bytes:

x : 	high 32 bits of mantissa, left aligned, that is bit 31=1
there is an assumed decimal point between bits 30 and 31.

x+4 : low 32 bits of mantissa
x+8 : binary exponent as a 2's c number, that is no offset
x+12: = &80000000 (negative) or 0 (positive)

Zero is represented by a mantissa high word of 0, garbage sign and
exponent.

Following the eight registers in this form, at offset 8*16, is the flags in one
word.

The arithmetic takes place to the accuracy required by the IEEE
specification. The IEEE concepts of infinity, non-numbers and denormalised
numbers are not supported, and a request to load any of these into the
processor will cause an exception. Overflows are not checked after every
operation, and so a store can cause an overflow exception. Regardless of
this, one should program on the assumption that store/load has no effect. If
you use load/store floating to move arbitrary bit patterns around (as some
FORTRAN programs do) then some bit patterns will become corrupted.

56 	 ARM utilities

Floating point emulation

6.11 Floating point performance on ARM

Experimental Timings:

These times assume N=2S, S=.15 usecs.

A block of adjacent floating point instructions goes faster than the sum of
these times: subtract about 8 usecs for at each sucessive instruction.

ARM utilit ies 	 57

7. Miscellaneous utilities

7.1 Filing system utilities
These are a set of programs which allow the ARM to exploit the ADFS
filing system to the full.

7.1.1 List utility

The parameters are chosen from:

Syntax: 1s (-parameter) (-parameter)

This utility provides a sorted list of selected files or complete directories. 1t
can be used to produce well-ordered lists and is more versatile than the
*CAT of the standard disc filing system. The parameters are:

(1) filename/directoryname
Gives a catalogues of selected files or directories. Wildcard characters
? and * may be used in the filename or directory name. In the absence
of this parameter, the current directory is listed in a way which has
been specified by the full and bydate switches (see below).

(2) full (minimum syntax fu)
This switch provides a comprehensive listing giving the dates in full,
the length in decimal and the level of access permitted.

(3) bydate (minimum syntax b)
This switch allows the catalogue to be sorted into chronological order
using the dates provided by the files.

For example:

is util? -fu -b

will give a full date-ordered catalogue of the files util1 , ut n.2, ut n.3
and so on, from the current directory.

58 	 ARM utilities

Miscellaneous utilities

7.1.2 Disc use utility
Syntax: du (-parameter) (-parameter)

This utility gives information on the amount of space used on a section of
disc or in a specific directory. This is a useful program to apply to the
hierarchical filing system ADFS since it can give information on sections,
giving the size of a named directory and also the size of the subdirectories
available from that directory. The parameters are:

(1) directoryname
Scans the selected directory and all subdirectories and gives
comprehensive size information on the files found.

(2) total (minimum syntax tot)
This switch inhibits much of the information given by du so that just
the bytes used total is shown.

(3) to filename (minimum syntax to)
Directs the du output (comprehensive or totals) to a named file.

For example:

du gcallib -to temp

will give the size of files in the directory gcallib (and the size of any
subdirectories which gcallib may possess) and place the results in a file
called temp in the current directory.

ARM utilities 	 59

Chapter 7

7.1.3 File/directory delete utility
Syntax: rm (-parameter) (-parameter)

This utility complements the DELETE and DESTROY commands of the
ADFS filing system and makes it possible to remove the entire contents of a
hierarchical tree. rm should be used with the utmost care! Deleted files are
irretrievable. The parameters are:

(1) filenameldirectoryname
The files or directories to be deleted. The default is the present
directory.

(2) recurse (minimum syntax r)
This is a switch which causes du to check all subdirectories.

(3) force (minimum syntax fo)
This is a switch which causes file protection to be ignored, that is, the
delete is forced. Since directories are usually locked, this switch will
frequently need to be used.

(4) confirm (minimum syntax c)
This switch causes deletions to be interactively confirmed, that is, the
delete will only be made when the user has typed v to confirm that the
file or directory should be wiped.

For example:

rm gcallib -fo -r -c

will ask for confirmation to erase the gcallib directory and all gcallib's
subdirectories.

60 	 ARM utilities

Miscellaneous utilities

7.1.4 Grope utility
Grope is a powerful search utility capable of locating a sequence of
characters within all files, specified files or a specified group of files. The
conventions of this utility are similar to those of the find function of the
ARM's editor TWIN. The sequence of characters to be searched for is
known as the pattern. The search is line based and if the pattern crosses a
line end it will not be found. Pattern length is limited to 1024 characters.
When the pattern is found, the filename and the line number within that file
will be printed to the screen. If grope is run as a task under TWIN, then the
output will be directed to a TWIN file where it can be inspected at leisure.

Syntax: grope [parameters)

The parameters are:

[pattern) the pattern to search for
(-nocase) case insensitive search
(-case) case sensitive search, (the default)
(filenames) files to search in.

The patterns are constructed using a combination of alphanumeric and
special characters to provide an intelligent degree of searching using
sophisticated wildcards. The special characters are:

matches any single character

$

match the end of line character

matches any identifier character A-Z, a-z, 0-9 and _

matches any digit

c
make c a control character. If '@' <= c <= '_' matches CTRL c If c
= '?' matches the delete character

ARM utilities 	 61

Chapter 7

| !| c
make c a character in the range 128-149

! c
make c a character in the range 150-255

\
match exactly this character, for example, \# matches a hash

[abc]
defines a set of characters, any one of which may be matched, for
example, matches any one of a, b or c. Within the set delimited by
square brackets only the following characters retain their special
meanings: $ @ # \

within a set the sequence c1-c2 means match any single character
between cl and c2 (inclusive) in ASCII order, that is, a range of
characters may be specified

-c
don't match c. c is an alphanumeric, special, control or literal
character or a set of characters. Matches any character which is not c

*c
match as many contiguous occurrences of c as possible. (that is, zero
or more occurrences). c is an alphanumeric, special, control or literal
character or a set of characters, or a -c character

^c
match the most possible contiguous occurrences of c. (that is, one or
more). c is an alphanumeric, special, control or literal character or a
set of characters, or a -c character.

62 	 ARM utilities

Miscellaneous utilities

For example:

grope LDMIB file1 .

Look for the opcode LDMIB in file1.

grope computer -nocase file2,file3

Look for the word computer or Computer in file2 and file3.

grope ^ $ file4

Look for occurrences of trailing spaces in file4.

grope -pathelp

Ask for help on grope.

7.2 Program development utilities

7.2.1 Comparing files
The utility files compare and compx are for comparing a file produced by
a program to see whether it differes from a file produced by a previous
version of the program. compare compares ASCII files, while compx
compares binary files. The compare uses a sophisticated algorithm and will
not stop when the two files fail to match. Match failures are reported, then
an attempt is made to synchronise the two files for further comparison
attempts.

ASCI1 files are compared using the syntax:

compare filename1 filename2 (-to filename3)

Binary files are compared using the syntax:

compx filename1 filename2 (-to filename3)

Filename1 and filename2 are the files to be compared. Filename3,
which is optional, is a file into which the output generated by the compare
may be placed.

ARM utilities 	 63

Chapter 7

7.3 Software clock

ARM software supports a clock so that files can be time-and-date stamped.
The clock is not independent of the ARM's power supply, and will not in
itself maintain time over a power break. The utility file DATE expects to be
followed by parameters in the form:

DATE DD—MMM—YY HH:MM:SS

for example:

DATE 16-May-86 10:15:30

The system has been dated as the 16th May 1986, at a time of 10:15am
(and 30s), and that information is now available to other utilities and
programs. TWIN, for example, will start up with the current date and time
shown on the status line. The date of the TWIN file will be updated when
the file is saved. If the date has not been set, some programs will declare the
date and time to be unset.

7.4 Memory test
A variety of tests are performed by the program MemTest to validate the
address and data lines of the Random Access Memory (RAM). The utility
reports the four phases of tests as it performs them, with dots indicating
progress within each phase. In the example given below, the memory test
has been run as a task from TWIN so it confined its test to the free memory
under TWIN and went no further than &001D0000.

Memory tester for ARM 2nd processor
Testing up to address &001D0000
Phase one: incrementing pattern....
Phase two: TRUE hierarchy 	
Phase three: FALSE hierarchy....
Phase four: Cycling bits...
All seems OK

If any errors are found, the first ten are reported in detail, then the program
continues the test, making a tally of the errors found. The total count of
errors is given at the end of the test.

64 	 ARM utilities

Miscellaneous utilities

7.5 Column printing
The file mc is a utility for multi-column file printing. If an ordinary printout
is required, the column width can be set to the paper width. However, multi-
column printing is particularly suited to narrow listings and reduces the
amount of paper needed for the print run. The program may be given useful
parameters such as the width of the paper used, the number of columns
required across the page, and the number of lines required down the page.
Other parameters may also be given. The program, also has the capability of
creating a postscript file for printers which can accept postscript code. Font
size may be specified if the printer used is an Apple Laser Writer.

The program has a measure of intelligence in that it wil1 attempt to construct
a page with a satisfactory column layout if no specific requirements are
passed to it.

Syntax: mc (parameter list)

The parameters consist of the following options:

(1) From list of files to be printed
A 1ist of files may be provided; they will be printed one after another.

(2) To destination
The destination should be either printer: (outputs to the currently
selected printer).

(3) Title name
The title to be printed on output pages. If no name is provided, the
filename is used.

(4) Lines n
Lines to be printed per page. The default value is 65, unless the
1aser option is on, in which case the default value is computed
according to the value of other parameters.

(5) Width n
Characters to be printed per output line. The default is 132, unless the
laser option is on, in which case the default value is computed
according to the value of other parameters.

ARM utilities 	 65

Chapter 7

(6) Columns n
Columns to be printed per page. If not used, the number of columns
across the page wil1 be computed.

(7) Sep n
Number of spaces to separate each column on the output page. The
default is 2.

(8) LN
This is a switch. It causes source lines to be numbered.

(9) start n
Number of first source line to be printed. The default is 1.

(10) Stop n
Number of last source line to be printed. The default value is infinity.

(11) Truncate
This is a switch. It causes lines which are too long to fit into the
requested column size to be truncated. Otherwise they are wrapped
round.

(12) CRisNL
This is a switch. It causes carriage returns in the input text to be
treated as new lines.

(13) Size n
The size of output text, in units of 1/20 point. The figure is only
meaningfu1 if the output is to a laser printer. The default value is 120.

An example of the command could be:

me -from f red joe -lines 58 -width 80 -sep 4

66 	 ARM utilities

Miscellaneous utilities

7.6 The command command utility
The c command is used to execute a command sequence with parameter
substitution, and it requires that S execlib and s . tmp to exist in the filing
system.

Syntax: c filename argument argument ...

The filename refers to the command sequence file, which is searched for in
the current directory or in : o . S. execlib. By renaming the C program as a
different name, that name is used for the filename, for example, if c is
duplicated as f 77 then the command f 77 wil1 cause : 0. s .execlib.f 77

to be obeyed.

C functions by copying the command sequence to the temporary file called
: o . s .t mp. exec, obeying directives and performing parameter substitution
in the process. If the current input is from an exec file, this is appended to
the tmp. exec file so that nested command sequences can be used. The
tmp. exec file is then executed by the command exec : o .$.tmp.exec.

ARM utilities 	 67

Chapter 7

The files in : o. $.execlib contain directives. These are:

• . key keystring

Defines the keystring to be used to decode the parameters. The
keystring is in BCPL format and . key -help will give the syntax.
Only one .key directive is allowed: it must be present to allow any
parameter substitution referring to command line keys.

Example: .key from/a,to/a/k,opt/k

• .dot char

Subsequent directives introduced by different character.

Example:. dot +

• .bra char

Opening bracket for parameter substitution to be char.
Initially <

• .ket char

Closing bracket for parameter substitution to be char.
Initially >

• .dollar char

Set the character used to introduce parameter defaults to char.

Initially $

• . default key vl

Set the default value of keyword key to vl. Only one .default is
allowed for each key, and it must be after the . key directive.

Example: .default to vdu:

• .concat char

Concatenate a non-directive line ending in char with the following
line. There is no initial concert character.

• . text comment

A dot and space precedes a comment line.

68 	 ARM utilities

Miscellaneous utilities

The value of a parameter may be inserted with a reference 1ike <key>
where the < and > are specified by . bra and . ket above. The value of a
set switch is parameter is its name. A default value for a key may be
specified by <key$default> or even a default to another parameter
<key$<key2$default> (note only one > is needed).

As well as the names specified in the . key directive, the following are also
possible:

- DATE the date dd-mmm-yy

- TIME the time hh:mm:ss

- DAYNO the day of the month dd

=MONTH the month mmm

=YEAR the year 19yy

(or <unset> if the system time has not been set).

ARM utilities 	 69

Chapter 7

7.7 AOF handling utilities

7.7.1 Chunk file decoder
This utility displays textually the contents of a chunk file.

Syntax: deccf -parameters (-parameters)

The parameters are:

(1) chunkfilename
Chunk file to be decoded.

(2) display (Minimum syntax d)
The 1ist of chunks to be displayed. (The default is none.)

(3) to (Minimum syntax to)
The decoded output, which defaults to standard output.

7.7.2 Object file decoder
This utility displays the various sections of the object file such as headers
and area declarations. The utility can be used to check that the output of a
program under development is creating files in the correct format.

Syntax: decobj -parameters (-parameters)

The parameters are:

(1) objectfilename
The object file to be decoded.

(2) to (Minimum syntax to)
The decoded output, which defaults to standard output.

70 	 ARM utilities

Miscellaneous utilities

The following keywords control which parts of the decoded object file
are actually output. Since the default is for all parts, the keyword
should be quoted as -noKeyword to suppress output.

(1) header (Minimum syntax h)
The object file header.

(2) areadecls (Minimum syntax aread)
The area declarations.

(3) ident (Minimum syntax ide)
The identification.

(4) areas (Minimum syntax area)
The area contents.

(5) symbols (Minimum syntax s)
The symbol table.

(6) strings (Minimum syntax st)
The string table.

7.7.3 Merging two chunk files
This utility allows chunk files to be manipulated.

Syntax: MergeCF -parameters (-parameters)

The parameters are:

(1) chunkfilename
The chunk file to be updated.

(2) with secondfile (Minimum syntax w)
The chunk file which is to be merged with chunkfilename.

(3) replace (Minimum syntax r)
Overwrite any existing chunks in chunkfilename which also occur
in secondfile.

For example: mergecf target -with update

This would merge the chunks in update with those in target. Since the
-Replace switch is not set, it is an error for any chunks with the same
identity to appear in target and update.

ARM utilities 	 71

Chapter 7

7.7.4 m2run

OAF files may be run directly by the utility m2run, but only if the
files themselves do not contain unresolved references to other AOF
files. Normally m2run wil1 be used in conjunction with the debugger
to test and evaluate a single AOF file.

Parameters may be included in the command line after the filename
and will be handed to the application being run on the assumption that
the parameters are appropriate.

The syntax is:

m2 run filename -parameter (-parameter)

72 	 ARM utilities

8. Appendix A

8.1 Size of utility programs
Set machine time 	 Date 	20K
List catalogue 	 LS 	82K
Display usage of hierarchy 	DU 	82K
Delete hierarchy 	 RM 	81K
Search file(s) 	 grope 	86K
Text file compare 	 Compare 	29K
Binary file compare 	CompX 	24K
Machine code debugger 	Debug 	117K
The linker 	 link 	107K
Decode chunk file 	 deccf 	75K
Decode object format file 	decobj 	93K
Merge chunk file 	 MergeCF 	78K
Run object format file 	m2run 	38K
Multicolumn print 	 me 	35K
Floating point emulator 	fpe 	16K
Memory test 	 MemTest 	1K
Command command programs C 	26K

ARM utilities 	 73

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84

