
MIDI and HQ Sound Sampler
User Guide



MIDI and HQ Sound Sampler
User Guide

Written by

Christopher Maughan

THIS MANUAL WAS PRODUCED ON AN ARCHIMEDES A4000 FITTED WITH 80MB IDE HARD DRIVE, MIDI + HQ

SOUND SAMPLER, HIVISION DIGITISER AND SCSI MICROPODULES.



Contents

The MIDI MicroPodule	 MIDI_TxControlChange (&404CE)

	

26
MIDI _TxLocalControl (&404CF)

	

26
MIDI _TxAllNotesOff (&404D0)

	

26I ntroducing MIDI

	

3

	

MIDI _TxOmniModeOff (&404D1)

	

27What is MIDI?

	

3

	

MIDI_TxOmniModeOn (&404D2)

	

27
What the MIDI interface can do.

	

3

	

MIDI_TxMonoModeOn (&404D3)

	

27Connecting up

	

4

	

MIDI_TxPolyModeOn (&404D4)

	

27Testing

	

5

	

MIDI_TxProgramChange (&404D5)

	

27
Programmer's guide to MIDI

	

6

	

MIDI_TxChannelPressure (&404D6)

	

28Application software

	

6

	

MIDI_TxPitchWheel (&404D7)

	

28
Software structure

	

6

	

MIDI_TxSongPositionPointer (&404D8)

	

28Data format

	

7

	

MIDI_TxSongSelect (&404D9)

	

28Data types

	

7

	

MIDI _TxTuneRequest (&404DA)

	

29
Channel modes

	

8

	

MIDI_TxStart (&404DB)

	

29MIDI interpreter and sound system driver

	

8

	

MIDI_TxContinue (&404DC)

	

29MIDI implementation

	

9

	

MIDI_TxStop (&404DD)

	

29Pitch Bend

	

9

	

MIDI_TxSystemReset (&404DE)

	

29
Midi ports

	

9

	

Service_MIDI (&58)

	

30MIDI 'commands

	

1 0

	

Event_MIDI (&11)

	

30I nterpreter control

	

10

	

Timing

	

32
Timing clock generator control

	

10

	

MIDI Timing Clock transmission counting

	

33
Software Interrupts (SWIS)

	

11

	

MIDI Timing Clock reception counting

	

33General

	

11

	

Sound system bar/microbeat counting

	

33General Interface commands

	

12

	

Fast Clock Timing mode

	

34
Reception of special messages

	

34 Real Time messages 	35

The MIDI SoftWare Interrupts

	

Exceptions

	

35
Removing sound modules

	

35
MIDI_Sound_Enable (&404C0)

	

12

	

Operating system

	

35
MIDI_SetMode (&404C1)

	

13

	

User timer

	

36
MIDI_SetTxChannel (&404C2)

	

13

	

MIDI interface data specification

	

36
MIDI_SetTxActiveSensing (&404C3)

	

14

	

Summary specification

	

36
MIDI_InqSongPositionPointer ( &404C4)

	

15

	

Data rate

	

36
MIDI_InqB ufferSize (&404C5)

	

1 5

	

Summary of status bytes

	

36
MIDI_InqError (&404C6)

	

16
MIDI_IgnoreTiming (&404DF)

	

17
MIDI_Sy nchSoundScheduler(&404E0)

	

18
MIDI_FastClock (&404E1)

	

18
MIDI_Init (&404E2)

	

19
MIDI_SetBufferSize (&404E3)

	

20
MIDI_Interface (&404E4)

	

20
Data reception commands

	

21
MIDI_RxByte (&404C7)

	

21
MIDI_RxCommand (&404C8)

	

22
MIDI_TxByte (&404C9)

	

23
Data transmission commands

	

24
MIDI_TxCommand (&404CA)

	

24
MIDI_TxNoteOff (&404CB)

	

25
MIDI_TxNoteOn (&404CC)

	

25
MIDI_TxPolyKeyPressure (&404CD)

	

26

1 MIDI and HO Sampler User Guide



The HQ Sound Sampler

I ntroducing the Sound Sampler

	

37
Connecting up

	

37
Testing

	

37
The !Sampler application

	

38
Changing the settings of the Sound Sampler 39
Duration

	

39
Trigger level 39
Sample rate

	

40
Gain

	

40

The HQ Sound Sampler
SoftWare Interrupts

SWI MuSampler_NewSample

	

41
SWI MuSampler_Sample

	

41
SWI MuSampler_AttachSample

	

41
SWI MuSampler_KillSample

	

41
SWI MuSampler_SaveSample

	

42
SWI MuSampler_LoadSample

	

42
SWI MuSampler_FindSample

	

42
SWI MuSampler_CopySample

	

42
SWI MuSampler_Squelch

	

43
SWI MuSampler_Version

	

43
SWI MuSampler_SetFlags

	

43
SWI MuSampler_Trim

	

44
SWI MuSampler_Echo

	

44
SWI MuSampler_SetPitch

	

45
SWI MuSampler_Poll

	

45
SWI MuSampler_Summary

	

45

Bibliography

	

46

MIDI and HQ Sampler User Guide 2



I ntroducing MIDI

What is MIDI?

MIDI is the acronym for Musical Instrument Digital Interface. It is a means of connecting
electronic instruments, such as synthesisers and drum machines, to each other and to
sequencers and computers, so that they can interact. Thus music can be stored and edited by
a computer, to be played on a synthesiser or rhythm machine. This is possible because MIDI
provides a standard form of communication.

Each MIDI instrument will have a transmitter and a receiver, or occasionally just one of
these, using a standard code to convey information about keys pressed, note lengths and a
variety of other possible messages, such as which of the different voices of a synthesiser is to
play the note.

These voices are the different programmed sounds which the instrument can make, such as
piano or bongo.

What the MIDI interface can do

By installing the MIDI interface in your computer and connecting a music keyboard, you can
use the computer as a musical instrument. The sound can be played through the speakers on
the computer, through headphones or your Hi-Fi system.

The computer can also be used to extend the capabilities of the instruments you have,
provided they have MIDI installed. By writing or buying application programs much more
becomes possible. You can write such programs yourself using the high speed BASIC V on
the computer.

3 MIDI and HQ Sampler User Guide



Connecting up
Warning : MIDI sockets carry digital information; audio
connections (such as those from your Hi-Fi system) must NEVER
be made to these sockets as serious damage could result.

MIDI instruments must be connected to your computer via MIDI leads. These may look the
same as your ordinary Hi-Fi leads, but the cables are different. The MIDI leads will have a
five pin DIN plug on each end, connected by a shielded, twisted-pair cable, and are available
from your HCCS dealer.

Your Music keyboard or synthesiser must have MIDI installed. This is sometimes an
optional extra, so check before you buy.

The HCCS micropodule has two MIDI ports, they are labelled:

PORTI PORT2
MIDI (1) OUT

	

MIDI (2) OUT
MIDI (1) IN

	

MIDI (2) IN

These connections can be found on the connector provided with your micropodule. This
consists of 5 leads protruding from a shrouded D-Type plug. One of these leads is for the
High Quality Sound Sampler, if fitted. The four leads for use with the MIDI should be
clearly labelled and easily identified, they all terminate in a 5-pin DIN female socket of
standard MIDI type; it is into these that your MIDI leads should be plugged.

Choose which of the ports you wish to use, and connect the MIDI IN socket on the
instrument to the relevant MIDI OUT socket on the MIDI expansion card, and the MIDI
OUT socket on the instrument to the relevant MIDI IN socket on the expansion card, see
figure 1.

To connect further instruments, use the MIDI THRU connectors provided on the instruments.
Refer to the instrument user guide for details.

MIDI and HQ Sampler User Guide 4



Testing
To check that you have connected your interface satisfactorily, type:

*modules

The system will now list the modules you have available, which should include:

MIDI

If not, your MIDI interface has not been installed correctly. Refer back to your supplier or
check your installation instructions, if you have made the installation yourself.

Assuming that MIDI is on the list, type:

*midisound in

Now when you play the music keyboard it will play the computer sound system. You can
either type

*speaker on

to hear it from the built in speaker or, for higher quality stereo sound, plug a pair of
headphones or your Hi-Fi system into the Headphones socket at the back of the computer.

If, when you type *voices, a number of voices are listed on your screen, then you can switch
your system between these voices using the program change buttons on your intrument.

MIDI Problems

Setting up MIDI equipment is usually quite an easy task, although getting software, hardware
and instrument to work together can sometimes be not as simple a process as it first seems.
If, while setting up your system, you encounter problems, you may wish to confirm the
functionality of the HCCS MIDI MicroPodule. To this end HCCS provides, with your
MicroPodule, a piece of test software to ensure that you are succesfully sending and receiving
MIDI information via your MicroPodule.

As you have seen, the MIDI MicroPodule has two MIDI Ports (see the previous page). Using
some MIDI leads connect Port (1) OUT to Port (1) IN, and Port (2) OUT to Port (2) IN. This
creates a loop for the test program to check the ports with. Now switch on and double click
on the supplied application - !MSTest. The program will ask how many ports you have
connected (the default is 2), and the screen will then split into numbered sections, depending
on the specified number of Ports . Number 1 corresponds to Port 1, Number 2 to Port 2.
Each number will have a background colour which will fill a large portion of the screen. If
all of the colours are green then everything is OK. If one of the areas is red then you may
have a faulty MIDI lead in which case try swapping them. If both areas are red your MIDI
interface may have developed a fault in which case please contact your dealer or HCCS.

5 MIDI and HQ Sampler User Guide



Programmer's guide to MIDI

Writing programs

The very fast BASIC V enables you to write application programs in BASIC which use your
MIDI interface. To do this, use the software interrupts listed in the next chapter.

Application software

The full potential of the MIDI system can be realised using application software. Only
packages specifically written for the RISC OS operating system are suitable. This chapter
should be read in conjunction with the Programmer's Reference Manual, available from
Acorn.

Software structure

The MIDI micropodule interface consists of hardware and software to give an interface for
both input and output of data to MIDI specification 1.0.

The software is in six main parts:

• A low-level interrupt routine which buffers data to and from the DUART (Dual Universal
Asynchronous Receiver Transmitter), which transmits and receives the raw MIDI data.
This routine also deals invisibly with transmission and reception of the System Real Time
messages used to synchronise the system.

• A combined MIDI interpreter and sound system driver which can be driven from the
incoming or outgoing MIDI data.

• A millisecond routine which time-stamps the incoming MIDI data, and which can time
scheduled outgoing data.

• A sound interrupt (SIRQ) synchronous routine for background operation, and which can
ti me scheduled outgoing data.

• A set of SWI (SoftWare Interrupt) calls (listed in the next chapter) to provide an interface
between the application program and the MIDI interface.

• A set of operating system *commands.

The MIDI software is controlled and communicated with using SWI calls and can also be
controlled, to a limited extent, with *commands and via the MIDI interface. The software
provides low-level support for receiving and transmitting data bytes allowing great flexibility
for an application program.

MIDI and HQ Sampler User Guide 6



Data format

MIDI messages have one status byte followed by one or two data bytes, except System Real
Time and System Exclusive messages - see below.

• Channel Voice messages contain a four-bit number in the status byte which
addresses the message to one of 16 channels. An instrument is assigned to a
basic channel over which mode messages are sent. If the instrument has
several voices these can be assigned extra channels to control the voices
separately.

• System messages are not given channel numbers; there are three types, as
follows:

• Common messages are for all the units in a system.

• Real Time messages are for all the units in a system and contain only
status bytes. They can be sent at any time, even between bytes of
another message.

• Exclusive messages include a manufacturer's identification code, and
any number of data bytes, terminated by an 'end of exclusive' or another
status byte. Only equipment which recognises the identification will
accept the data, the format of which is specified by the manufacturer.

Data types

Status bytes

Status bytes are eight bits with the most significant bit (MSB) set (1). These identify the
message type. Status bytes command the receiver to adopt their status, except for Real Time
messages. Unimplemented or undefined status bytes are ignored.

Running status

For voice and mode messages, the receiver will remain in the status of the last status byte
until a different one is received. Therefore when many messages with the same status are
being sent, the status byte may be omitted. This is particularly useful for long strings of Note
On/Off messages. Real Time messages will only change the running status temporarily.

Data bytes

One or two data bytes follow the status bytes, except in Real Time messages. Data bytes are
eight bits, with the most significant bit set to 0. Each status byte must be followed by the
correct number of data bytes, and action will wait until they are all received.

7 MIDI and HQ Sampler User Guide



Channel modes

Mode messages control the way in which Note On/Off information is routed to the
instruments and their voices via the 16 MIDI channels. The mode messages available for this
purpose are defined in the table below. A MIDI receiver or transmitter can only operate in
one mode at a time.

Each receiver is assigned to a basic channel N, and may have a number of voices M assigned
to adjacent channels.

Mode Omni

1

	

On

	

Poly

	

Voice messages are received from all
channels and assigned to voices
polyphonically by the receiver.

2

	

On

	

Mono

	

Voice messages are received from all
voice channels and control only one
voice, set by the receiver, monophonically.

3

	

Off

	

Poly

	

Voice messages are received in voice
channel N only, and are assigned to
voices polyphonically by the receiver.

4

	

Off

	

Mono

	

Voice messages are received in voice
channels N to N+M-1 and assigned
monophonically to voices 1 to M
respectively. The number of voices M is
specified by the Mono Mode message,
one voice per channel. This means that
each voice in the receiver can be
controlled separately by the transmitter.

Each transmitter is also assigned to a basic channel N. Those without the capacity to select
channels will normally use channel one.

MIDI interpreter and sound system driver

This background process allows MIDI data from the MIDI IN or MIDI OUT sockets to drive
the sound system directly, without user intervention, and with the computer still able to
perform other tasks normally. This facility is disabled by default, and is enabled from the
command line using *midi sound. The state of this driver does not effect the data
received by MIDI_RxCommand and MIDI_RxByte.

The MIDI interpreter does not respond to notes of very short duration (less than about 20ms).
This means that certain drum machines cannot be used to trigger notes on the computer sound
voices.

MIDI and HQ Sampler User Guide 8



Program Change messages are interpreted as Sound Voice requests (like *Channel
Voice). If a program change message with a data value greater than the number of installed
sound voices is interpreted; a non-existent voice will be selected and the sound will
apparently stop working. To restart the sound a lower Program Change data value should be
used. Which Voice Channels are affected depends upon the MIDI Mode and MIDI Basic
Channel in the normal way.

MIDI implementation

Some MIDI commands are ignored by the MIDI interpreter. These are listed below:

System messages:

• Song Position Pointer
• Song Select
• System Exclusive

Real time messages:

• Timing Clock
• Start
• Continue
• Stop
• System reset

Channel voice messages:

• Control Change 0-121
• Polyphonic Key Pressure (After touch)
• Channel Pressure (After touch)

and all bytes undefined in MIDI specification 1.0.

These commands are, however, available for use by application software.

Pitch Bend

The pitch bend algorithm used by the sound system driver has the shortcoming that if notes
are newly triggered while pitch bend is in operation, they will start with the normal pitch, and
will only be pitch changed when the next pitch bend message is received.

Midi ports

With one MIDI micropodule installed, you will have two MIDI ports, numbered 0 and 1. Up
to four MIDI ports are supported by the MIDI module, which can be obtained by installing

9 MIDI and HQ Sampler User Guide



MIDI *commands can be divided into two groups:

• Interpreter control

• Timing clock generator control.

These are as follows:

Interpreter control

*MidiSound

	

Parameter 1 'in','out' or 'off' to specify incoming data,
outgoing data or disable port.

*MidiTouch

	

Parameter 2 (optional) <1-4> to specify MIDI port
number. This enables or disables the MIDI interpreter
and specifies the source of MIDI data.

*MidiChannel

	

Used to set the Basic Channel of the MIDI interpreter.
Parameter is 1-16.

*MidiMode

	

Used to set the MIDI mode of the MIDI interpreter.
Parameter is 1-4

Timing clock generator control

*MidiStart <time>

	

Used to transmit a Start message and start automatic
transmission of Timing Clock messages every <time>
milliseconds. Parameter, if specified, is integer time
in milliseconds 1-&FFFF, or 0 to leave unchanged.

*MidiStop

	

Used to transmit a Stop message and stop automatic
transmission of MIDI Timing Clock messages.

*MidiContinue

	

Used to transmit a Continue message and to restart
automatic transmission of Timing Clock messages.

MIDI and HQ Sampler User Guide 1 0

another micropodule. Application software supporting multiple ports should use the SWI
MIDI Init to find the number of recognised ports currently installed.

MIDI *commands



Software interrupts provide an interface between an application program and the MIDI
interface itself.

Values given for RO and R I are the contents of those CPU registers; where no values are
given the command does not use the registers.

SWI calls used for setting up and controlling the MIDI are detailed on the following pages.
They have been divided into the following groups:

• General interface commands

• Data reception commands

• Data transmission commands

• Service calls

• Events.

II MIDI and HQ Sampler User Guide

Software Interrupts (SWIs)

General



MIDI and HQ Sampler User Guide 12

MIDI_Sound_Enable

Enable the MIDI interpreter/sound system driver, so that MIDI data will be interpreted, and
control the sound system. The mode will default to I (Omni On:Poly), but may be changed
under MIDI or SWI control.

+)n entry

	

R0

	

=

	

0

	

to disable Sound Interpreter. (It is disabled on
initialisation).

=

	

I

	

for connection to Port 0, input buffer.
=

	

2

	

for connection to Port 0, output buffer.
=

	

3

	

for connection to Port l, input buffer.
=

	

4

	

for connection to Port 1, output buffer.

R 1

	

=

	

I

	

to enable touch sensitivity of interpreter.
=

	

2

	

to disable touch sensitivity.

Any other values of R I ignored at present.

On exit

	

R0

	

undefined

Example

	

In BASIC:
SYS "MIDI_SoundEnable",1

does the same as:
*MidiSound in

General Interface
commands

(&404C0)



MIDI_SetMode
(&404C1)

Set the MIDI channel mode of the internal sound system controller. Use 0 to read current
values.

On Entry 	R0	 =

	

mode number, 1-4, if 0 then unchanged.
R1 byte 0

	

=

	

basic channel number N, 1-16, if 0 then unchanged.
byte 1

	

=

	

Number of channels in mode 4, 1-8 (M), if 0 then
unchanged.

On Exit

	

R0

	

=

	

new (or current) mode number (1-4).
R1

	

=

	

new (or last) settings of N (1-16) and M (1-8).

The possible modes are defined under Channel Modes.

MIDI_SetTxChannel
(&404C2)

Set the MIDI channel and port number for subsequent transmitted commands to be sent on.
This applies to all SWI commands prefixed by MIDI_Tx except MIDI_TxByte and
MIDI_TxCommand.

On entry	 R0

	

=

	

new channel number (1-64), if 0 then unchanged.
1-16

	

MIDI channels 1-16 of receivers connected to MIDI
port number 0

17-32

	

channels 1-16 connected to port 1.
33-48

	

channels 1-16 connected to port 2.
49-64

	

channels 1-16 connected to port 3.

On exit

	

R0

	

=

	

new (or current) channel number.

If selected MIDI port is not installed, then it is undefined which port this and other SWIs will
use instead. Use MIDI_Init to find the maximum port number installed, and never exceed it.

13 MIDI and HQ Sampler User Guide



MIDI_SetTxActiveSensing
(&404C3)

This puts the transmitter into Active Sensing mode, which causes dummy bytes to be
transmitted in the absence of any other MIDI activity for longer than 280ms. The receiver
should automatically switch to Active Sensing mode and expect this activity, or switch off all
voices if it stops. This prevents voices becoming 'stuck on' if the MIDI cable becomes
disconnected. Some MIDI receivers do not support this.

On entry	R0bit 0	=	0	to stop automatic regular transmission of
Active Sensing Messages in requested Port.

= 	1	 to start automatic regular transmission of Active
Sensing Messages in requested Port.

R0 bits 1-2

	

=

	

Midi Port Number.

On exit

	

R0 bits 0-3

	

=

	

corresponding to Midi Ports 0-3; bits set if Transmit
Active Sensing is enabled for this Port.

R0 bits 4-7

	

=

	

corresponding to Midi Ports 0-3; bits set if this Port
is receiving Active Sensing.

MIDI and HQ Sampler User Guide 1 4



MIDI_InqSongPositionPointer
(&404C4)

Return the value of the internal Song Position Pointer, which is the value of the MIDI beat
counter divided by six. See the chapter entitled Timing.

On entry

	

Unimportant.

On exit

	

R0

	

=

	

Song Position Pointer.
R1

	

=

	

bits set according to current state of MIDI:
bit 0

	

set if in External Timing Mode (Start message has
been received).

bit 1

	

set if in Internal Timing Mode (Start message has
been transmitted. Timing Clock transmission is
automatic).

bit 2

	

set if in Fast Clock Mode.
bit 3

	

set if new (version 3) facilities enabled
(MIDI_FastClock has been called). This flag is
only reset on MIDI_Init with R0=0,
*RMReInit midi or Ctrl-Break.

bit 4

	

set if in special mode to store System Real Time
Messages in receive buffer.

bit 5

	

set if in special mode to cause System Real Time
Messages not to be treated in a special way.

Bits 0 and I are determined by the current timing mode. See the chapter Timing.
Bits 2 and 3 are set by calling MIDI_FastClock with relevant parameters.
Bits 4 and 5 are set by calling MIDI_Init with bits 30 and 31 of R0 set.

MIDI_InqBufferSize
(&404C5)

Return the number of empty bytes in the transmit or receive buffer. These buffers can fill (rx
buffer) or empty (tx buffer) at a maximum rate of 320 microseconds per byte. Default buffer
sizes are:

• Transmit buffer size - 512 bytes
• Receive buffer size - 1024 bytes

(Programmable with MIDI_SetBufferSize).

On Entry

	

R0 bit 0

	

=

	

0

	

to read rx buffer size.
=

	

1

	

to read tx buffer size.
R0 bits 1-2

	

=

	

MIDI port number 0-3.

On exit

	

R0

	

=

	

number of bytes free in selected buffer.

1 5 MIDI and HQ Sampler User Guide



MIDI_InqError
(&404C6)

Return the value of the MIDI error bytes.

On entry

	

Unimportant.

On exit

	

R0

	

=

	

Up to four error bytes, corresponding to one byte per
i nstalled MIDI port.

Possible values of the error byte (shown as the ASCII character with the decimal value
following in brackets) are:

' A' (65)

	

Active Sensing failure error (MIDI connection
removed, or Active Sensing transmission was stopped
by the transmitter).

'B' (66)

	

Receive data FIFO buffer was (and still may be) full
and data has been lost. The application program
should take the data more quickly.

'O' (79)

	

DUART overrun error. This means that the received
data arrived, but was not read from the DUART receive
register before it was overwritten by the next data
byte. This might occasionally happen when there is
a lot of other processing occurring with the processor
interrupt flag clear (high-numbered screen modes with
simultaneous sound and intensive processor activity
might also occasionally cause this error).

' F' (70)

	

Framing error. This flag is generated by the DUART
when serial data arrives which does not fit the
expected protocol, i.e. not sensible MIDI data.

'V' (86)

	

Received MIDI data has caused the interpreter to
attempt to use more than eight voices of the internal
sound system, which are allocated on a first-come
first-served basis.

'T' (84)

	

Transmit data FIFO buffer has overflowed, and data to
be transmitted has been lost. The application program
should transmit data more slowly, or use
MIDI_InqTxBufferSize.

MIDI and HQ Sampler User Guide 1 6



' L' (76)

	

Note too low (or too high) for the internal sound
system, received by the interpreter and ignored. The
l owest note that the sound system can make is the C
four octaves below middle C, or MIDI value 12. The
highest note is MIDI value 96 or three octaves above
middle C.

0 (zero)

	

No error.

NOTES:

• Only the latest error is shown. Previous errors are overwritten.
• Overrun and framing errors are also returned as standard SWI errors by

MIDI_RxCommand and MIDI_RxByte at the time that they read the
corrupted byte.

• The error is cleared when read.

MIDI_IgnoreTiming
(&404DF)

This operates as a switch, instructing the system either to ignore any further received Timing
messages: Start, Continue, Stop and Timing Clock, or to revert to normal reception of them.

On entry

	

R0

	

= 0

	

receive messages normally (default).
=

	

I

	

ignore received timing messages.

On exit

	

No change.

NOTE: There is a subtle distinction between the mode set by this SWI, where received
Timing Messages are completely ignored, and the mode set by calling MIDI_Init with bit 31
set, which only disables special actions on Timing Message reception. The messages may
still be stored in the receive buffer in the later case, if MIDI_Init is called with bit 30 set, but
not if Ignore Timing mode is set.

1 7 MIDI and HQ Sampler User Guide



MIDI_SynchSoundScheduler
(&404E0)

On entry

	

R0

	

= 0

	

set normal mode where sound scheduler is
synchronised to the Sound Interrupt (SIRQ).

=

	

1

	

set special mode where the sound scheduler is
synchronised to incoming MIDI Timing Clock
Messages (prefixed by Start, ended by Stop).
Scheduler time is incremented by one tick for each
Timing Clock message received.

On exit

	

R0

	

=

	

previous value of SynchSoundScheduler flag.

MIDI_FastClock
(&404E1)

On entry

	

R0

	

= <0

	

read current value of fast clock.
=

	

0

	

stop fast clock; revert to normal timing.
= >0

	

= t = Timing Clock Transmission rate.
Reset and start fast clock. Incoming data will be time
stamped with the time in milliseconds shown on this
clock. When started with MIDI_TxStart or *midistart,
Timing Clock messages will be automatically
transmitted at a rate of one every t milliseconds. The
transmission will be stopped with SWI MIDI_TxStop
or *midistop.

R 1

	

=

	

ti me to reset clock to if R0 >= 0.

On exit

	

R1

	

=

	

previous value of fast clock.
The fast clock increments every millisecond.

This SWI should be called at least once by new applications that want to use the MIDI
scheduler.
On calling MIDI_FastClock with R0 > 0, Fast Clock Timing mode is set. In this mode the
value in R1 when calling SWI MIDI_TxCommand will determine the schedule time in
milliseconds, as registered by the Fast Clock. If the value in R I is zero, then the message
will be sent immediately.

User Timer

	

The fast clock uses Timer 1 (the User Timer). Obviously this cannot be used simultaneously
by other software while the Fast Clock is running, or the Fast Clock will not work correctly.

MIDI and HQ Sampler User Guide 18



MIDI_Init
(&404E2)

On entry

	

R0

	

=

	

0

	

do an Internal System Reset (reset to power-on state).
R0 > 0

bit 0

	

set to clear current transmitted running status (ensure
status is included with next transmitted message).

bit I

	

set to clear receive buffers and reset midi interpreter.
bit 2

	

set to clear transmit buffers and reset midi interpreter.
bit 3

	

set to clear MIDI scheduler.
bit 4

	

set to clear current error.
(special mode bits, only cleared by a call with R0=0).

bit 30

	

set to enable special mode so that received System
Real Time messages will be stored in the receive
buffer, so that they can be read with
SWI MIDI_RxCommand and SWI MIDI_RxByte.

bit 31

	

set to prevent special actions on reception of System
Real Time messages. Use SWI MIDI_IgnoreTiming
in preference to this, to just cause Timing messages to
be ignored.

On exit

	

R0

	

=

	

number of recognised Midi Ports installed.
Subtract one from this number for the maximum port
number, which should not be exceeded.

Certain MIDI recording and replaying applications may need to set bits 30 and 31 so that they
can precisely reproduce the recorded data with the Real Time messages.

19

	

MIDI and HQ Sampler User Guide



MIDI_SetBufferSize
(&404E3)

Clears the buffer and then claims the requested buffer size from the RMA. Returns No
room in RMA error (&102) if unable to claim the new buffers, and leaves the previous

buffers intact.

NOTE: This should only be used when the buffers are empty, otherwise data will be lost.

On entry

	

R0

	

=

	

0

	

for set receive buffer size (nothing else currently
supported).

R l

	

=

	

new buffer size in bytes.
= 0

	

i nterrogate current value.

On exit

	

R0

	

=

	

buffer size in bytes.
R1

	

=

	

total space in bytes claimed from RMA for new
buffers.

=

	

5 x size x number of MIDI Ports installed for receive
buffer (for each byte received, four bytes of time
stamp is also stored)

Use SWI MIDI Init to just clear the buffers, (R0, bits 1 and 2).

MIDI_Interface
(&404E4)

(For advanced use only.) Get addresses for more efficient access to critical SWIs.

On exit

	

R0

	

=

	

workspace pointer, moved to R12 when calling
a SWI through this interface.

R1

	

=

	

SWI code pointer.

When calling SWIs using this interface, the CPU should be in supervisor mode.

The MIDI SWIs do not support re-entrancy, so they should not generally be called from an
interrupt routine. R11 should contain the SWI offset from chunk base (MIDI_SoundEnable =
0). R12 should contain the workspace pointer. The addresses become invalid if the MIDI
module is re-initialised, or finalised, so watch for MIDI service calls to warn of this, and re-
call this SWI.

MIDI and HQ Sampler User Guide

	

20



Data reception commands

MIDI_RxByte
(&404C7)

Return the next received MIDI byte, excluding Real Time messages which are processed
internally (see section on special messages). In general, MIDI_RxCommand should be used
in preference to this command, for reduced SWI time overhead, although this SWI should be
used for reading the 'raw' data.

On entry

	

R0

	

=

	

port number (0-3) to receive message from.
_

	

-1

	

to look at each port in order of increasing port
number, until one is found in which new data as been\
received, and return that data.

On exit

	

R0 byte 0

	

=

	

next received MIDI byte.
= 0

	

if receive buffer empty, or incomplete message
received. If entered with R0 =-l, distinguish between
these cases by checking the port number returned in
bits 28-31.

bit 24

	

=

	

1

	

if byte received.
bits 28-31

	

MIDI port number where this byte was received.
R1

	

=

	

received time (see section on timing).
= 0

	

if receive buffer empty or clock disabled.

In the case of a low-level error registered by the DUART, this SWI returns an error number:

• &20402 if there was a Framing Error when this byte was received
• &20403 if there was an Overrun Error when this byte was received.

The error number &20404 will be returned if the receive buffer of the interrogated port
overflowed.
The corrupted byte will be returned on the next SWI MIDI_RxByte or MIDI_RxCommand.

2 1

	

MIDI and HQ Sampler User Guide



MIDI_RxCommand
(&404C8)

Return the next complete MIDI command as a set of bytes (normally excluding System Real
Time). A status byte should always be returned, even when the incoming data is on running
status, except when the receive buffer is empty.

NOTE: System Exclusive messages will be received as one status byte (&FO and one data
byte, and successive calls to MIDI_RxCommand will treat the system exclusive as Running
Status, with one data byte, until EOX (end of exclusive: &F7) or any other status byte, except
System Real Time, is encountered (&80-&F7).

On entry

	

R0

	

=

	

port number (0-3) message will be received from.
_

	

-1

	

look at each port in order of increasing port number,
until one is found in which new data has been
received, and return that data, if Midi Message
entirely received, or 0 if not or if no port has received
any data.

On exit

	

R0 byte 0

	

=

	

status.
byte 1

	

=

	

data byte 1, or 0 if none expected.
byte 2

	

=

	

data byte 2, or 0 if none expected.
bits 24-25

	

number of bytes in this message = 0-3.
bits 28-31

	

MIDI port number of port that this message was
received by.

=

	

0

	

if receive buffer empty, or incomplete message
received.

R1

	

=

	

received time of last byte in message.
=

	

0

	

if receive buffer empty or clock disabled.

In the case of a low-level error registered by the DUART, this SW I returns the following
error numbers:

• &20402 if there was a Framing Error when a byte in this message was
received.

• &20403 if there was an Overrun Error when a byte in this message was
received.

The error number &20404 will be returned if the receive buffer of the interrogated port
overflowed.
The corrupted byte will be returned on the next MIDI_RxByte or MIDI_RxCommand.

MIDI and HQ Sampler User Guide

	

22



MIDI_TxByte
(&404C9)

Transmit a byte from the MIDI OUT. This will be transmitted, regardless of Running Status

On entry

	

R0 byte 0

	

Byte to transmit.
bits 28-31

	

Port number to transmit from (0-3).

On exit

	

Unchanged.

Returns error number &20401 if this fails because the transmit buffer is full.

23

	

MIDI and HQ Sampler User Guide



Data transmission commands
with automatic running status
optimisation

Automatic Running Status optimisation applies to all the commands in this section; that is,
the status byte may not be transmitted if the last command had the same status. However. a
li mit applies to long chains of commands under Running status, and the status byte is
periodically re-transmitted.

MIDI TxCommand
(&404CA)

Transmit or schedule on the MIDI schedule queue a complete MIDI command. The status
byte may not be transmitted if Running Status applies. The command will be ignored and not
transmitted if byte 0 is not a status byte (bit 7 set), or if the data bytes have bit 7 set.

NOTE: The format is the same as MIDI_RxCommand, so that received commands can be
simply re-transmitted without decoding or encoding. It can be used to transmit a MIDI
command immediately, or to schedule one to be transmitted at some future time (if in Fast
Clock mode, and RI>0).

On entry

	

R0

	

byte 0

	

=

	

status.
byte 1

	

=

	

data byte I, if required by specified status.
byte 2

	

=

	

data byte 2, if required by specified status.
bits 24-25

	

(optional) number of bytes in command; only needed
for status undefined in MIDI Specification 1.0.

bits 28-31

	

port number to transmit from (0-3.)
R1

	

=

	

schedule time (0 for immediate) in:
Fast clock time if in Unset or Internal timing modes.
Timing Clock received count time if in External
ti ming mode.

On exit

	

If R I was non-zero on entry:
R0

	

=

	

number of scheduler slots free in queue.
=

	

-1

	

if it failed because the scheduler was full.
=

	

-2

	

if it failed because the schedule time requested
was earlier than the time of the previous event
in the scheduler queue.

Returns error number &20401 if this fails because the transmit buffer is full.

All commands will be transmitted in the current MIDI transmission channel defined by the
last MIDI_SetTxChannel.

MIDI and HQ Sampler User Guide

	

24



NOTES:

• The size of the scheduler queue is 1023 commands.

• All calls to RxCommand with non-zero R1, from clearing the scheduler
should be with non-decreasing schedule time. For efficiency, only the
schedule time of the next item on the queue in the order they were put in.

• For backwards compatibility, the value of R1 on entry to this routine is
ignored if SWI MIDI_FastClock has not been called since the module was
initialised. This state can be interrogated with MIDI_InqSongPositionPointer.
R 1, bit 3 is zero if in 'backwards compatible' mode.

• Scheduling too many commands for the same time will cause an overflow of
the transmit buffer. The maximum size of the transmit buffer (in kbytes) can be
read using SWI MIDI_InqBufferSize.

	

If a transmit buffer overflow does occur
with too many scheduled commands at the same time, it may be necessary to clear the
scheduler using SWI MIDI_Init, since it can get into a state where it repeatedly
tries to schedule the commands and fails.

MIDI_TxNote0ff
(&404CB)

MIDI TxNoteOn
(&404CC)

25

	

MIDI and HQ Sampler User Guide

Transmit a MIDI Note Off command.

On entry

	

R0

	

=

	

note number, 0-127
(60 = middle C, 1 unit = 1 semitone).

R1

	

=

	

key off velocity, 0-127

On exit

	

No change.

Transmit a MIDI Note On command.

On entry

	

R0

	

=

	

note number, 0-127
(60 = middle C, 1 unit = 1 semitone).

R1

	

=

	

key on velocity, 0-127.

On exit

	

No change



MIDI_TxPolyKeyPressure
' (&404CD)

Transmit a MIDI Poly key Pressure (after touch) command. This will apply to any one voice
and may affect volume, modulation or pitch depending on the setting of the receiver.

On entry

	

R0

	

=

	

note number, 0-127
(60 = middle C, 1 unit = 1 semitone).

R 1

	

=

	

key pressure value, 0-127.

On exit

	

No Change

MIDI_TxControlChange
(&404CE)

MIDI_TxLocalControl
(&404CF)

Transmit a MIDI Local Control command with control number of 122, and R0 having one of
the values defined below.

On entry

	

R0

	

= 0

	

local control off.
R0

	

=

	

127

	

local control on.

On exit

	

No change.

MIDI_TxAIINotesOff
(&404D0)

Transmit a MIDI All Notes Off command.

MIDI and HQ Sampler User Guide

	

26

Transmit a MIDI Control Change command.

On entry

	

R0

	

=

	

control number 0-121, 122-127 reserved for channel
mode messages, which can be transmitted using this
command, or by using the Channel Mode SWIs; see
the chapter MID/ interface data specification.

R1

	

=

	

control value, 0-127.

On exit

	

No change.



MIDI_Tx0mniMode0ff
(&404D1)

Transmit a MIDI Omni Mode Off command.

MIDI_TxOmniModeOn
(&404D2)

Transmit a MIDI Omni Mode On command.

MIDI_TxMonoModeOn
(&404D3)

Transmit a MIDI Mono Mode On command.

On entry

	

R0

	

=

	

M

	

where M is the current number of channels 1-16

On exit

	

No change

MIDI_TxPolyModeOn
(&404D4)

Transmit a MIDI Poly Mode On command.

MIDI_TxProgramChange
(&404D5)

Transmit a MIDI Program Change command. The program referred to is the 'voice', 'tone' or
'patch' number in the receiver.

On entry

	

R0

	

=

	

program number, 0-127.

On exit

	

No change.

27

	

MIDI and HQ Sampler User Guide



MIDI_TxChannelPressure
(&404D6)

Transmit a MIDI Channel Pressure command. This will affect all the notes on that channel,
and may alter volume, modulation or pitch depending on the receiver setting.

On entry

	

R0

	

=

	

pressure value, 0-127.

On exit

	

No change.

MIDI_TxPitchWheel
(&404D7)

Transmit a MIDI Pitch Wheel command

On entry

	

R0

	

=pitch wheel change, 0-16383 (&3FFF). 8192
(&2000) is centre position value (no pitch change).

On exit

	

No change.

MIDI_TxSongPositionPointer
(&404D8)

Transmit a MIDI Song Position Pointer command. This automatically updates the internal
copy which could affect the time-stamping of received data.

On entry

	

R0

	

=

	

Song Position Pointer, 0-16383 (&3FFF).

On exit

	

No change.

MIDI_TxSongSelect
(&404D9)

Transmit a MIDI Song Select command.

On entry

	

R0

	

=

	

song number, 0-127.

On exit

	

No change.

MIDI and HQ Sampler User Guide

	

28



MIDI_TxTuneRequest
(&404DA)

Transmit a MIDI Tune Request command.

MIDI_TxStart
(&404DB)

Transmit a MIDI Start command, reset the MIDI beat counter to zero (and the internal Song
Position Pointer), enable automatic transmission of Timing Clock messages every 16 internal
microbeats (or else timed by fast clock; see MIDI_FastClock), and disable reception of Start,
Continue, Stop and Timing Clock messages. This affects all installed MIDI ports.

MIDI_TxContinue
(&404DC)

The same as TxStart, but without resetting the beat counter.

MIDI_TxStop
(&404DD)

Transmit a MIDI Stop command, and stop transmission of Timing Clock messages, thus
allowing reception of Start, Continue, Stop and Timing Clock messages.

MIDI_TxSystemReset
(&404DE)

Transmit a MIDI System Reset command.

29

	

MIDI and HQ Sampler User Guide



Service_MIDI
(&58)

Service call.

Service_MIDIAlive

	

= 0

	

module about to be initialised.

Service_MIDIDying

	

=

	

1

	

module about to be removed.

Enters module service with R 1 = Service_MIDI, and R0 = sub reason code.

This is necessary for advanced use only, where the actual address of the MIDI module or its
workspace is being implicitly or explicitly used.

Event_MIDI
(&11)

MIDI_DataReceivedEvent=0
receive buffer was empty and has received some data.

MIDI_ErrorEvent=1
an error has occurred in the background; use MIDI_InqError
to find out what it is.

MIDI_ScheduleEmptyingEvent=2
the MIDI scheduler will empty within the next lOms. This
event does not occur in cases where there are fewer than four
free slots in the scheduler when the event would normally be
triggered, which will only occur if more than 1020 commands
are scheduled to happen, all within l Oms

Enters an event handler routine with R0 = Event MIDI and R 1 = sub reason code.

MIDI and HQ Sampler User Guide

	

30



In simple BASIC programs, the SWIs may be called as in the following example:

SYS "MIDI_TxNoteOn", 60, 64

The two parameters are the values of R0 and RI. Case is important - upper and lower case

must be used as above. The most efficient way to use these SWIs in BASIC is to define

integer variables at the start of the program.

To find the SWI number from the string, OS_SWINumberFromString:

SYS "OS_SWINumberFromString",0,"MIDI_TxNoteOff" TO

TxNote Off%

SYS "OS_SWINumberFromString",0,"MIDI_TxNote0n" TO

TxNote On%

SYS "OS_SWINumberFromString",0,"MIDI _InqError" TO

IngError%

Then to use them:

v%=64

a%=60

SYS NoteOn%, a%, v%

key%=INKEY (80)

SYS NoteOff%, a%, v%

SYS IngError%,0 TO Error%

IF Error% <> 0 THEN PRINT CHR$(Error%)

(the line beginning key% provides a delay of 80 centiseconds).

31

	

MIDI and HQ Sampler User Guide



T i ming

The timing mode can be:

• Unset

• Internal

• External

Internal timing mode is set if timing messages are being transmitted.

External timing mode is set if timing messages are currently being received and not
transmitted or ignored.

Three possible types of time-stamp can be returned by RxCommand and RxByte depending
on which of four internal timing modes is current. These four modes are:

• MIDI Timing Clock transmission counting. The time-stamp is the value of
the MIDI beat counter, which is equal to the number of Timing Clock
messages transmitted since the last Start transmitted.

• MIDI Timing Clock reception counting. The time-stamp is the value of the
MIDI beat counter which is equal to the number of Timing Clock messages
received since the last received Start command.

• The sound system beat counter (see the chapter on sound in the RISC OS
User Guide). The time-stamp is the value of the sound system bar/beat
counter. The bar counter is incremented every time the beat counter resets to
zero, and the time-stamp is a combination of the sound system beat value and
an incrementing bar value.

The beat count is off by default, so BEATS must be set to a positive value to
set the beat count in operation, and so give non-zero values for internal BAR/
BEAT time-stamping.

• Fast Clock Timing mode. The Fast Clock is reset and stated by SWI
MIDI_FastClock, and incremented every millisecond. The timestamp is
set equal to this count.

NOTE: The types of time-stamp are related to the different time periods, or beats, used. For
the purposes of this guide, a sound system beat, as defined in the RISC OS User Guide, is
referred to as a microbeat, in order to distinguish it from a MIDI beat.

One MIDI beat is equal to 16 microbeats, when microbeats govern the timing of MIDI beats.

MIDI and HQ Sampler User Guide

	

32



MIDI Timing Clock transmission counting

This mode is set by the call MIDI_TxStart, if the fast clock is not running, and any received
Start, Continue, Stop or Timing Clock messages are ignored. Incoming data is time-stamped
with the current value of the MIDI beat counter, the value being returned in R1 on calling
MIDI_RxCommand, or MIDI_RxByte.

The call MIDI_TxStart enables automatic transmission of Timing Clock messages. They can
then be stopped with MIDI_TxStop, and restarted with MIDI_TxContinue. The frequency
can be controlled by programming the sound system tempo, using Sound_QTempo (or
TEMPO in BASIC). A MIDI Timing Clock message will be transmitted every 16 sound
system microbeats. The song position pointer is equal to the value of the MIDI beat counter
divided by six.

For example, if the sound system is programmed to the default tempo of &1000 (=100 per
second), then, when enabled by MIDI_TxStart, Timing Clock messages will be transmitted at
a rate of 6.25 per second, and the song position pointer will increment approximately once
per second. For the maximum tempo of &FFFF the pointer will increment at a rate of 16.66
per second and Timing Clock messages will be transmitted at 100 per second.

NOTES: 1. The sound system beat counter must be started to enable this mode to work (for
example, BEATS 100 in BASIC).
2. The CLI command *MidiStart enables Fast Clock Timing mode (see below),
and NOT this mode.

MIDI Timing Clock reception counting

When Timing Clock messages are being transmitted, they take priority. If not, any Timing
Clock messages received (preceded by Start) will cause the MIDI beat counter to increment.
This can be prevented by disabling reception of timing messages, using MIDI_IgnoreTiming
with R0=1.

The MIDI beat counter is updated automatically on reception of a Song Position Pointer
message only if the MIDI beat counter is currently being controlled by received Real Time
messages. The MIDI beat counter is set to the received value multiplied by six. The internal
MIDI beat counter is always updated by the call MIDI_TxSongPositionPointer.

Sound system bar/microbeat counting

If Fast Clock Timing mode is not enabled, and if Timing Clock messages are neither being
received nor transmitted, which may be because they were never started, or because they
were stopped with a MIDI Stop command, then the received bytes are given a sound system
bar/microbeat time stamp, with the value of microbeat in the bottom 16 bits, and an
incrementing bar count in the top 16 bits. The bar counter is reset on transmission or
reception of a MIDIStop, or on changing the value of BEATS (microbeats per bar), or upon
incrementing beyond &FFFF.

33 MIDI and HQ Sampler User Guide



Queueing of MIDI data to be transmitted on a future microbeat can be done using the
general-purpose sound system call:

Sound_QSchedule

On entry:

	

R0 = the schedule period
R 1 = &F000000 + SWI number to schedule.
R2 = SWI parameter for R0
R3 = SWI parameter for R1

On exit:

	

R0 = 0 if SW 1 successfully added to queue.
R0 < 0 if queue is full and command failed.

NOTE: The queueing time is the value of the sound system microbeat counter and NOT the
MIDI beat counter.

For details of the microbeat timing see the RISC OS User Guide.

The Sound Scheduler may be synchronised to an external source of MIDI Timing Clock
messages by using SWI MIDI_SynchSoundScheduler with R0 = 1.

NOTE: For new applications it is preferable to use the MIDI Scheduler by calling
SWI MIDI_TxCommand with R1 = Schedule time (see Fast Clock Timing mode
below).

Fast Clock Timing mode

This mode is enabled by calling SWI MIDI_FastClock. Incoming messages will be stamped
with the current Fast Clock time, unless timing messages are being received, in which case
MIDI Timing Clock Reception Counting (see above) will apply. Scheduling to this time is
done using the special MIDI Scheduler by calling the SWI MIDI_TxCommand with the
schedule time in R1. This mode automatically set by the CLI command *MidiStart.

Reception of special messages

Most MIDI messages when received have no further effect than to be stored in the receive
buffer to be read by the SWIs MIDI_RxCommand and, MIDI_RxByte, or by the MIDI
interpreter. Certain messages, however, have other side-effects, and some are not stored in
the receive buffer at all, making them invisible to the application, except by their side-effects.
This behaviour can be re-programmed if required using MIDI_Init with special bits set.

Song Position Pointer as a side-effect updates the internal MIDI beat counter to the received
value multiplied by six.

System Real Time messages, except for System Reset, are invisible to the application except
in their side-effects.

MIDI and HQ Sampler User Guide

	

34



Real Time messages

Side-effects on receiving System Real Time messages are:

Start

	

If Timing Clock messages are not being transmitted, i.e. the
call MIDI_TxStart has not been made since the last Stop, then
reset the internal MIDI beat counter, and the Song Position
Pointer) and enable received Timing Clock messages to
increment it.

Timing Clock

	

If external timing is enabled (see Start) then increment the
MIDI beat counter. The Song Position Pointer is incremented
on every sixth Timing Clock message received.

Stop

	

Disable external clocking. Received Timing Clock will have
no further effect.

Continue

	

The same as start, without resetting the MIDI beat counter.

Active sensing

	

This will set the receiver into Active Sensing mode, so that if
no message is received for more than 300ms for any reason

(for example if the MIDI cable is pulled out), then all MIDI-triggered notes are turned off. The transmitter should send
regular Active Sensing status messages, when enabled, in the
absence of any other activity. An application program can be
warned of an Active Sensing timeout by polling the error flag,
or by enabling the MIDI error event.

Exceptions

It is the task of the application program to deal with exceptions and errors. For example,
when Note On messages have been sent via the MIDI, and then an error occurs, or escape is
pressed, the program must automatically send a matching set of Note Off messages, to avoid
notes becoming stuck on. For this reason, if you are using the Sound Scheduler to schedule
MIDI data, use Sound_Qlnit only with great care to avoid losing Note Off messages and
leaving notes on in the receiver. Similar considerations apply to the MIDI Scheduler of
course.

Removing sound modules

If a sound module is removed for any reason, the MIDI module may stop functioning
normally. If this occurs, replace the sound module, reinitialise ALL Sound modules and
Voice modules in ascending order of module number and type *RMReInit MIDI.

Operating system

The MIDI module is only compatible with RISC_OS version 3.

35

	

MIDI and HQ Sampler User Guide



User timer

The User Timer (IOC timer 1) is used by the Fast Clock. This means that other software
cannot use this timer while in Fast Clock timing mode, or if it does not use the correct claim
SWI (OS_ClaimDeviceVector), but writes to it directly, it will make the fast clock go wrong.

MIDI interface data specification

Summary specification

MIDI equipped instruments contain a receiver and a transmitter, the receiver being
optoisolated. It interprets and acts on MIDI commands. The transmitter sends messages in
MIDI format via a line driver.

Data rate

31.25 (+/- I%) Kbaud, asynchronous. There is a start bit, eight data bits and a stop bit, so
each serial byte consists of 10 bits lasting 320 microseconds.

Summary of status bytes

Status D7-DO

	

No.of Data bytes

	

Description
Channel voice messages

&8n

	

2

	

Note Off
&9n

	

2

	

Note On
(velocity=0, note off)

&An

	

2

	

Polyphonic Key Pressure
(after touch)

&Bn

	

2

	

Control Change if data
byte I in the range 0-121

&Cn

	

1

	

Program Change
&Dn

	

1

	

Channel Pressure
(after touch)

&En

	

2

	

Pitch Wheel Change
Channel mode messages

&Bn

	

2

	

Channel mode message
if data byte I in the
range 122-127

System messages
&F0

	

any

	

System Exclusive
&Fs

	

0 to 2

	

System common
&Ft

	

0

	

System Real Time
where

	

n=N-1; N is channel number.
s=1 to 7
t=8 to 15

MIDI and HQ Sampler User Guide 36



I ntroducing the HQ Sound Sampler

The HQ Sound Sampler, for use with the MicroPodule MIDI, provides a facility for sampling
and digitising sound. The easy to use application provided allows sampling and playing back
of sound through the computer's speakers. You can view samples and export them to disk for
later play-back, for use in games, other applications, or musical
compositions.

This section of the manual describes the application software and its function, for fitting
instructions please refer to the instruction sheet provided.

Connecting up
Assuming you now have your MIDI-Sampler card correctly installed, you should find a dual
purpose lead supplied. This consists of 5 leads protruding from a shrouded D-Type plug.
Four of these leads are for the MIDI module and their use is described in the previous section.
One of the leads terminates in a standard mono jack socket, it is into this that you should plug
your sound source, or microphone. It must accept a 100KOhm input impedance. The
shrouded D-Type connector must be connected to the MicroPodule.

Testing
To check that your Sound Sampler has been installed correctly, press F12 to get to the
command line and type:

*modules

The system will now list all the currently available modules. Near the bottom of this list you
should see:

MuSampler

If not, your Sound Sampler has not been installed correctly. Refer back to your supplier, or
check the installation instructions, if you have made the installation yourself.

Assuming that MuSampler is on the list, you can now go onto the application instructions.

37

	

MIDI and HQ Sampler User Guide



The !Sampler application

The !Sampler application allows the user to collect samples, view them, play them back and
save them to disk. The sample rate, gain, duration and frequency are all configurable from
the settings menu, which also provides an option for automatic recording when a sound
triggers the Sound Sampler.

The !Sampler applicaton is loaded onto the icon bar, just like any other RISC_OS
application, by double clicking the select (left mouse) button with the arrow on its icon,
shown left. The Sound Sampler installs itself on the right hand side of the icon bar.

To start up the Sound Sampler, click on the select button whilst the mouse pointer is over the
microphone symbol on the icon bar. This will bring up a window on the screen similar to the
one below, depending on your version of RISC_OS and current screen mode:

The window supports standard RISC_OS style dragging etc. The two icons on the left are the
function buttons; the speaker on the top is for play-back and the microphone on the bottom is
for record.

To see this in action, simply connect a suitable sound source, or microphone, and click on the
record button. The main bar of the window will now read - ** Sampling ** - and the Sound
Sampler will record whatever is present on the line, for a set time (see later for how to alter
this, and other settings). When the Sound Sampler has finished an image of the waveform
will be displayed in the empty box, to the right of the play and record buttons.

To play back your sample, simply click on the play-back button. This will cause the
computer to replay your sample through the loudspeakers. The quality and volume of the
sampled sound will depend a great deal on how you have the Sound Sampler configured.
This will be dealt with on the next page.

When you have collected a suitable sound sample, you will wish to save it. This is done in
the normal RISC OS way; position the mouse pointer anywhere over the window and click
the middle menu button. Move to the save option and the sample icon, shown left, will
appear. Drag this icon to a suitable directory on your hard/floppy disk drive and the sample
will be saved.

	

If you wish to view the sample at a later date, simply drag its icon onto the
! Sampler window and it will be re-loaded. If you want to play this sample, simply double
click on the icon and it will play. Note: If you want to play samples on computers without
MIDI hardware a play only module called SamplerNS is provided, simply load this before
t rying to play the samples. The SamplerNS module is public domain and can be distributed.

MIDI and HQ Sampler User Guide

	

38



Changing the settings of the Sound Sampler

To alter the configuration of your Sound Sampler, move the icon over the window and click
on the middle button. The menu now displayed has a settings option, select it. You will now
see a window similar to the one below:

This is the settings box. To alter any of the settings, simply click on the required value and
edit it in the normal way. The meanings of the settings are as follows:

Duration

This controls the amount of time that !Sampler records for. Note that it is not limitless, and
will greatly depend upon the amount of RAM you have available to hold the sample. It also
depends upon the sample rate; the more samples per second (in Hz), the more memory the
sample will take.

Trigger level

If you click on the left hand box labeled 'trigger', the two boxes to the right will become
active. Setting a trigger level causes !Sampler to start recording only after a sound above that
level is heard. If no sound reaches that level then the Sound Sampler will stop trying to
obtain one after the set 'time out'. The trigger level can be set between 1 and 127. The time
out can be set up to a maximum of 10000 seconds. Note: the sampler will not start waiting
for a trigger until the record button is pressed.

39

	

MIDI and HQ Sampler User Guide



Sample rate
This is the number of times that the sound source is sampled per second (in Hz). The more
samples per second, the higher the quality of the sound. There is a trade-off however; as the
number of samples increases, so does the amount ofmemory required to store a second of
sound. The maximum sample rate is 44.1Khz (44100). This is the standard for CD quality
sound.

Gain
The volume at which the Sound Sampler records is controlled by this setting. If the sample is
distorted on play-back then the gain is to high; if the sample is too quiet on play-back then
the gain is too low. For general use, the best settings will be in the 90-100 range.

After setting your required values, click on the 'OK' button and they will be set accordingly.
Sometimes the software may set a slightly different sample rate to the one you have chosen,
in order that the hardware can efficiently digitise the sound.

MIDI and HQ Sampler User Guide

	

40



SWI MuSampler_NewSample

Create a new sample buffer in RMA, optionally naming it. If there is not sufficient room in
RMA an error will be returned. The returned handle must be used to specify this sample to
any of the other SWIs.

SWI MuSampler_Sample

Record into a previously created sample. SWI MuSampler_Poll may be used to monitor
the progress of sampling.

SWI MuSampler_AttachSample
Attach a sample to the playback voice 'MuSampler'. To play a sample it must be attached to
the voice generator using this SWI. The voice must then be attached to a sound channel
using SWI Sound_AttachVoice, and finally a sound command must be issued to play the
sample. To play the sample at its correct pitch the note value for middle 'C' should be used.

SWI MuSampler_KillSample

Remove a sample from RMA. See also MuSampler_KillAndShrink.

On entry

	

R0

	

=

	

sample handle.

4 1

	

MIDI and HQ Sampler User Guide

On entry

	

R0

	

=

	

sample size in bytes.

R1

	

=

	

pointer to sample name, maximum 16 characters, optional.
R2

	

=

	

flags (must be 0 at present)

On exit

	

R0

	

=

	

sample handle (V clear), or error message (V set)

On entry

	

R0

	

=

	

sample handle.
R 1

	

=

	

sound trigger level (1..127), or 0 to sample immediately.

R2

	

=

	

sample rate in kHz, or 0 for default.
R3

	

=

	

ti meout in cs (in the event of no trigger), or 0 to wait forever.

R4

	

=

	

attenuation level (0 is min. vol., 100 is max. vol.).

On entry

	

R0

	

=

	

Sample handle.
R1

	

=

	

Offset within sample to start playing from in bytes (0 means
start).

R2

	

=

	

Amount of sample data to play, 0 means whole sample.



SWI MuSampler_SaveSample

Save a sample to a named file. Samples have the filetype &DF5.

SWI MuSampler_LoadSample

Load a sample from a named file, and return the handle allocated to it. The file must have the
correct file type.

SWI MuSampler_FindSample

Return the address and size of a sample, and the address and size of the data portion of the
sample. The sample data is stored as a series of 8 bit excess 128 values (i.e. 0 is represented
by 128, -1 by 127, 1 by 129 etc).

SWI MuSampler_CopySample

Make a duplicate of a sample with a new name.

MIDI and HQ Sampler User Guide

	

42

On entry

	

R0

	

=

	

sample handle.
R1

	

= filename.

On entry

	

R1

	

=

	

filename.

On exit

	

R0

	

=

	

sample handle.

On entry

	

R0

	

=

	

Sample handle.

On exit

	

R0

	

=

	

unchanged.
R1

	

=

	

base address of sample.
R2

	

=

	

size of sample.
R3

	

=

	

base address of raw data.
R4

	

=

	

size of raw data.

On entry

	

R0

	

=

	

sample handle.
R1	 =

	

name for new sample.

On exit

	

R0

	

=

	

new sample handle



SWI MuSampler_Squelch

Modify a sample to suppress any quiet portions.

On entry

	

R0

	

=

	

sample handle.
R1

	

=

	

squelch level (0-127)

Any portions of the sample whose level is less than R 1 will be set to zero. Squelching only
modifies the portions of samples between zero crossings to avoid clicks.

SWI MuSampler_Version
Return MuSampler version number.

On exit

	

R0

	

=

	

version number * 100 (e.g. 1.50 is returned as 150).

SWI MuSampler_SetFlags

Set or read a sample's internal flags. You should not alter the values of these flags but it may
be useful to read them, for example to find out if a sample is playing.

On entry

	

R0

	

=

	

sample handle.
R 1

	

=

	

FOR mask.
R2

	

=

	

AND mask.

New value = (Old value AND R2) FOR R 1.

On exit

	

R1

	

=

	

previous value of flags.
R2

	

= preserved.

The flags have the following meanings:

Bit 0

	

sample is playing.
Bit 1

	

sample is recording.
Bit 2

	

sample is waiting to play.
Bit 3

	

sample has been deleted, but is either playing or recording. It will be
deleted when it finishes.

Bit 4

	

sample has claimed a voice (only used by *MuSampler_Play).
Bit 5

	

reserved.
Bit 6

	

shrink RMA as far as possible when freeing this sample. Used intemally
by SWI MuSampler_KillAndShrink.

Bit 7+ reserved.

43

	

MIDI and HQ Sampler User Guide



SWI MuSampler_Trim

Trim a sample to remove unwanted sounds at its start or end.

On entry

	

R0

	

=

	

sample handle.
R1 Flags

bit 0

	

=

	

remove samples from start, number in R2.
bit 1

	

=

	

trim start of sample, level specified in R3.
bit 2

	

=

	

remove samples from end, number in R4.
bit 3

	

=

	

trim end of sample, level specified in R5.
bit 4

	

=

	

apply fade to remaining end of sample over R6 samples.

R2

	

=

	

number of samples to remove from start if bit 0 of R 1 set.
R3

	

=

	

l evel below which to trim samples if bit 1 of R 1 set.
R4

	

=

	

number of samples to remove from end if bit 2 of R 1 set.
R5

	

=

	

l evel below which to trim samples if bit 3 of rl set.
R6

	

=

	

duration of tail fade in samples if bit 4 of rl set.

If bits 0 or 2 of the flags are set the specified number of samples will be removed
from the start or end of the sample. If bits 1 or 3 are set, the start (end) of the
sample will be removed up to the first sample whose value exceeds the level in R3
(R5).

If bit 4 of the sample is set the remaining sample data after any of the above steps
have been performed will be faded over R6 samples.

SWI MuSampler_Echo

Add an echo effect to a sample

R0

	

=

	

sample handle.
R1

	

=

	

echo delay (may be -ve for'pre echo').
R2

	

=

	

echo amplitude (0-128).

An echo is added to the specified sample. The echo volume is in the range 0 to 128, where 0
is inaudible and 128 is an echo which is as loud as the original sample.

MIDI and HQ Sampler User Guide

	

44



SWI MuSampler_SetPitch

Each sample 'knows' what its natural pitch is: they all default to middle C. If you were
sampling a musical instrument you might sample a range of several octaves then use this call
to adjust the natural pitch of each sample so that they were all normalised, and middle C
would always sound like middle C.

SWI MuSampler_Poll

During sampling this call can be used to monitor progress. It should be used after
MuSampler Sample. If a sample times out while waiting for a trigger level this call will
return an error message indicating that the timeout'has occured, and sampling will be aborted.

SWI MuSampler_Summary

It is useful when writing a sampling application to give the user some indication of
the amplitude of the sample, so that volume adjustments may be made. This SWI performs
the processing to prepare the data for a simple amplitude envelope display. It divides
the sample into R1 slices then fills the buffer with values which represent the overall
amplitude of each slice. By plotting these values connected by a solid line above and
below the X axis of a graph a waveform display may be generated.

45

	

MIDI and HQ Sampler User Guide

Set the natural pitch of a sample

On entry

	

R0

	

=

	

sample handle.
R1

	

=

	

pitch (&4000 is middle C).

Get data for an amplitude envelope display.

On entry

	

R0

	

=

	

sample handle.
R 1

	

=

	

number of points in display.
R2

	

=

	

buffer for data (one byte per point).

On exit

	

R2

	

=

	

filled buffer containing bytes in the range 0-127 indicating the
overall amplitude of the corresponding 'slice' of sample.

Monitor sampling progress

On entry R0 = sample handle.

On exit R0 = state:
= 0 finished sampling.
= 1 waiting for trigger level.
= 2 sampling.



Bibliography

MIDI and HQ Sampler User Guide

	

46

The MIDI Specification Document (no.MIDI-1.0, August 5th, 1983), is available from:

International MIDI Association,
11857 Hartsook Street,
North Hollywood,
CA91607,
USA.

This specification is included in:

MIDI for musicians by Craig Anderson, AMSCO Publication.

(ISBN 0 8256 1050 8).

Music through MIDI by Michael Boom, Microsoft Press.

(ISBN 1 55615 026 1).



HCCS Associates Ltd
575-583 Durham Road

Gateshead
Tyne and Wear

NE9 5JJ

Tel (091) 487 0760
Fax (091) 491 0431

Copyright 1994 HCCS E&OE


