
Dual High Speed Serial Interface
Expansion Card

for Acorn
RISC OS-Based Computer

Systems

User Guide and

Programmer's Reference Manual

Intelligent Interfaces Ltd

May 1996

C Copyright Intelligent Interfaces Ltd 1996

Neither the whole or any part of the information contained in this User Guide may be adapted or reproduced
in any material form except with the written approval of Intelligent Interfaces Ltd.

All information is given by Intelligent Interfaces in good faith. However, it is acknowledged that there may be
errors or omissions in this User Guide. Intelligent Interfaces welcomes comments and suggestions relating
to the Dual High Speed Serial Interface Expansion Card and this User Guide.

All correspondence should be addressed to:-

 Technical Enquiries
 Intelligent Interfaces Ltd
 P O Box 80
 Eastleigh
 Hampshire
 SO53 2YX

 Tel: 023 8026 1514
 Fax: 087 0052 1281
 Email: support@intint.demon.co.uk

This User Guide is intended only to assist the reader in the use of the Dual High Speed Serial Interface
Expansion Card and, therefore, Intelligent Interfaces shall not be liable for any loss or damage whatsoever
arising from the use of any information or particulars in, or any error or omission in, this User Guide, or any
incorrect use of the interface.

Contents

Introduction

User Guide
1 Fitting the Expansion Card
2 Installing the Software

2.1 Installing the IIDual Module
2.2 Installing the IIDual and IIDualPC Block Drivers
2.3 Installing the Diagnostic Applications

3 Dual High Speed Serial Interface Port Designations
4 Configuring Applications
5 Optimising the Performance of Applications

Programmer's Reference Manual
1 Software

1.1 The IIDual Module
1.2 The !IIDual Application
1.3 Block Drivers - The !SerialDev Application
1.4 The Serial BASIC Library
1.5 Writing and Optimising the Performance of Applications that Use Serial

 Communications

Appendices
1 Connector Pin Designations

II Serial Cables
Cable Wiring for Modems

Modem Cable with Acorn Wiring
Modem Cable with PC Wiring

Cable Wiring for Other Devices
Hardware Handshaking (RTS/DSR)
Hardware Handshaking (RTS/CTS)

Cable Wiring for Software Handshaking (Xon/Xoff)

III Baud Rates and Data Formats
Baud Rates
Data Formats

IV IIDual SWI's

V IIDual Options

VI IIDual Commands and Configuration Keywords
IIDual Commands
Configuration Keywords

VII Serial BASIC Library Procedures and Functions

Introduction

Each Dual High Speed Serial Interface Expansion Card provides any Acorn Risc OS-based
computer, with an expansion backplane and RISC OS 3.1 or later, with two additional high speed
RS232 compatible serial ports for communicating with serial devices eg modems, printers,
plotters, instruments, etc. The ports can input and output data at up to 230400 baud enabling the
use of the latest modems for high speed Internet access. They have robust socketed line drivers
and receivers. The connectors have the same pin assignments as the internal port. Modem cables
with either Acorn or PC wiring can be used.

Full software support is provided by a DeviceFS device driver module and block drivers to enable
the use of popular applications such as the ANT Internet Suite, Termite, Voyager, Internet Starter
Pak, ARCfax, Hearsay II, ArcTerm 7, etc.

Other areas of application include the connection of engineering, scientific and medical
instruments. The card enables the computer to be used in laboratory and production testing and
process monitoring and control.

 This document is divided into two parts:-

i) a User Guide which describes how to fit the expansion card, install the software and configure
popular applications. This part should be read by all users.

ii) a Programmer's Reference Manual. This part should be read by those users writing applications
which use serial communications.

Before fitting the expansion card check that the following items in addition to this document have
been received. If any item is missing contact the supplier.

Dual High Speed Serial Interface Expansion Card
Software Distribution Disc

UG - 1

User Guide

1 Fitting the Expansion Card

The card can be fitted in any Acorn Computer with an expansion backplane and RISC OS 3.1 or
later. The standard card cannot be fitted in the external expansion card socket of an A3000
computer unless an independent -5V supply is available for the card. However, a modified card is
available from Intelligent Interfaces for fitting in the external expansion card socket of an A3000
computer.

To fit the card in an A300 series, A400 series, A540, A5000, Risc PC or A7000 computer:-

1 Switch off the power to the Computer.
2 Disconnect the Computer from the mains supply.
3 The card can be fitted in any unused expansion card slot.
4 Remove the blanking plate from the rear of the Computer and retain the two screws.
5 Fit the card and secure it in position using the two screws retained at stage 4 (if required, fit a
joiner and blanking plate).
6 Reconnect the Computer to the mains supply.
7 Switch on the power to the Computer.
8 Confirm that the card has been fitted correctly by pressing F12 and typing

*Podules

This should list the Dual High Speed Serial Interface as

Intelligent Interfaces Dual High Speed Serial Interface

together with any other cards fitted. Press <Return> to return to the Desktop.

The maximum number of Dual High Speed Serial Interface Expansion Cards that can be fitted is
limited only by the number of unused expansion card slots.

2 Installing the Software

It is recommended that a Comms directory is created with sub-directories for each
communications application eg Internet, ArcFax, Hearsay, etc. If a !SerialDev application (which
contains block drivers) is already in use it is recommended that this is moved into the Comms
directory.

2.1 Installing the IIDual Module

It is essential that the IIDual module is loaded before any serial communications application.

1. Open the DevDriver directory of the distribution disc and drag the !IIDual application from the
distribution disc to the Comms directory of the destination filing system. The !IIDual application
automatically loads the IIDual module from the Modules directory within the application when a
window is opened on the directory containing it.

2. Immediately after installation, as the window is already open, it is necessary to double click on
the !IIDual application to load the IIDual module.

2.2 Installing the IIDual and IIDualPC Block Drivers

1. Open the BlkDriver directory of the distribution disc and drag the !SerialDev application from the
distribution disc to the Comms directory of the destination filing system. If a !SerialDev application
is already in use then it will contain the original II_Dual driver for use with the original IIRS423
Module. It is recommended that this is deleted in order to avoid confusion.

UG - 2

2. Immediately after installation, as the window is already open, it is necessary to double click on
!SerialDev in order to initialise the application.

2.3 Installing the Diagnostic Applications

1. Drag the Diagnostic directory from the distribution disc to the Comms directory of the
destination filing system. Open the Diagnostics directory and double click on the !Version
application. This lists the version number of the IIDual module and the version numbers of the
block drivers in the text file Version. Check that the IIDual module version and IIDual and IIDualPC
versions are correct.

3 Dual High Speed Serial Interface Port Designations

The IIDual module designates the inbuilt serial interface as Port 0.

If only one Intelligent Interfaces Dual High Speed Serial Interface is fitted, the ports are designated
1 and 2 from left to right (viewed from the rear of the computer), irrespective of which expansion
slot the card is fitted. If more than one card is fitted, the card in the lowest numbered slot has its
ports designated as 1 and 2, the card in the next highest slot has its ports designated as 3 and 4,
etc. For example, a computer fitted with cards in slots 1 and 3 will have ports 1 and 2 on the card
in slot 1 and 3 and 4 on the card in slot 3.

Important note - when configuring any application that uses Block Drivers eg Internet Starter Pak,
ArcFax, Hearsay II, etc., one must be subtracted from the port numbers as designated above ie
they start at 0 rather than 1. For example, if only one card is fitted the ports should be specified as
port 0 and port 1.

(Note - the original IIRS423 module designated the port numbers in a different way)

4 Configuring Applications

Notes on configuring popular applications, including the ANT Internet Suite, Voyager, Internet
Starter Pak, ArcFax, Hearsay II, etc, are contained in the directory $.Docs.InstallApp on the
distribution disc.

5 Optimising the Performance of Applications

The following recommendations apply to the older A300 series, A400 series, A540 and A5000
computers.

i) for A300 Series and A400 Series computers still fitted with the original ARM 2 processor,
upgrade to an ARM 3 processor.

ii) choose the lowest resolution screen mode with the lowest number of colours during periods of
Internet access. A significant increase in performance can be achieved by changing from mode 28
(640 x 480 x 256 colours) to mode 25 (640 x 480 x 2 colours) if a VGA monitor is in use or from
mode 15 (640 x 256 x 256 colours) to mode 0 (640 x 256 x 2 colours) if a TV standard monitor is
in use.

iii) normally a baud rate of 57600 is recommended for a 14k4 baud modem and a baud rate of
115200 for a 28k8 baud modem. In some circumstances reducing the baud rate to 38400 for a
14k4 baud modem and to 57600 for a 28k8 baud modem can result in a slightly higher overall
data transfer rate. This is due to the smoother data transfer which results from the reduction in the
amount of handshaking required (fewer stops and starts).

iv) have as few applications installed on the icon bar as possible.

Programmer's Reference Manual

1 Software

1.1 The IIDual Module

The IIDual module provides a RISC OS DeviceFS device driver for each serial port which appear
as separate objects IIDual1, IIDual2, etc, within the 'devices:' filing system. Most filing system
interface SWI's, OS_Find, OS_BGet, OS_BPut, etc, can be used, ie files can be opened for input
or output to each port and data transferred.

The IIDual module also provides a SWI interface. The IIDual SWI's are listed in Appendix IV and
are described in the text file $.Docs.IIDualSWIs on the distribution disc. The IIDual commands are
listed in Appendix VI. The IIDual SWI's offer a direct interface to the ports and should be used in
preference to the filing system interface. Additionally, they provide a means of setting the baud
rate, data format, etc, for each port.

The first 10 IIDual SWI's from IIDual_ReadWriteSerialStatus to IIDual_EnumerateBaudRates are
equivalent to the 10 OS_SerialOp's provided by the Risc OS SerialDeviceSupport module.

The IIDual module options listed in Appendix V enable

(i) diagnostic information to be read from the module.

(ii) the values of parameters used to optimise the input and output of data to be written to the
module. It should not be necessary to change the default values of these parameters.

An IIDual module option enables the buffer insert/remove mode, for both block and single byte
buffer operations, to be set.

 Mode Description

 0 RISC OS indirect routines ie insV, remV and cnpV used
 (the same way as the device driver for the internal port)

 1 RISC OS direct buffer manager service routines used
 (for faster operation on ARM6 and ARM7 computers -
 only possible with RISC OS 3.5 or later)

 2 IIDual module direct routines used
 (not RISC OS DeviceFS device driver compatible -
 for faster operation on ARM2 and ARM3 computers)

On module initialisation the following defaults are set:-

baud rate set set 4
input buffer size 1 Kbyte
output buffer size 1 Kbyte
input buffer minimum space 32 bytes
input buffer hysteresis32 bytes
Rx baud rate read from CMOS memory as one of

9600 or
19200 or
57600 or
115200

Tx baud rate read from CMOS memory as one of
9600 or
19200 or
57600 or
115200

PRM - 1

data format read from CMOS memory as one of
8 data, no parity, 2 stop bits or
8 data, no parity, 1stop bit or
8 data, even parity, 1 stop bit or
8 data, odd parity, 1 stop bit

insert/remove mode mode 0

In its default state the IIDual module sets the DTR output true, requires that both the CTS and
DSR inputs must be true before a byte can be transmitted and that the DCD input must be true
before a byte can be received. These conditions can be changed using the
IIDual_ReadWriteStatus SWI or the IIDual_Handshake command.

1.2 The !IIDual Application

The !IIDual application loads the !IIDual module. The !IIDual.!Boot obey file sets

 the baud rate set
 the Rx and Tx baud rate
 the data format
 the input buffer size
 the output buffer size
 the input buffer minimum space
 the input buffer hysteresis
 the handshake method
 the private input buffer entries at which input is halted
 the maximum number of bytes to be output per transmit interrupt
 the buffer insert/remove mode

Normally, it should not be necessary to change the values of these parameters set by the
!IIDual.!Boot obey file.

Most popular commercial applications subsequently set the values of the following parameters

 the Rx and Tx baud rate
 the data format
 the input buffer minimum space
 the handshake method

1.3 The !SerialDev Application - Block Drivers

The IIDual (for modem cable with Acorn wiring) and IIDualPC (for modem cable with PC wiring)
block drivers comply with the Block Driver Specification defined by Hugo Fiennes. They are
provided to enable the card to be used with existing popular commercial applications.

1.4 The Serial BASIC Library

The Serial BASIC Library is provided for the convenience of those writing applications in BASIC
which use serial communications. The library is located in the !IIDual.BASICLib directory. The
!IIDual.!Boot obey file sets the OS variable IIDual$Dir to the directory containing BASICLib. To use
the serial functions and procedures provided by the Serial BASIC Library, which are listed in
Appendix VII, include the following line at the beginning of the program.

LIBRARY "<IIDual$Dir>.BASICLib.Serial"

Examples are included on the distribution disc. The !ModemInit and !ModemDiag applications can
be used with a US Robotics Sportster 28k8 modem connected to port 1 (left hand port viewed
from the rear of the computer) and the !LoopBack application can be used if a loop back
connector which connects pin2 to pin 3 and pin 6 to pin 7 is plugged into port 2 (right hand port
viewed from the rear of the computer).

There are further examples in the Examples.BASIC directory.

PRM - 2

1.5 Writing and Optimising the Performance of Applications that Use Serial
Communications

It is recommended that an application sets the baud rate, data format, etc, for each port by calling
IIDual SWI's. The procedure Serial_Init in the Serial BASIC Library is an
example of this.

Every SWI call takes a certain amount of time to enter and exit and therefore reducing the number
of SWI calls reduces the total time taken for the same number of bytes transferred. It is important
to avoid any unnecessary SWI calls. Using block input and output rather than single byte input
and output does this.

The SWI IIDual_GetByte can be used to input data. For example to input 8 bytes

 FOR i% = 1 TO 8
 REPEAT
 SYS"IIDual_GetByte",port% TO ,byte% ;flags%
 UNTIL (flags% AND %0010) = %0000
 data$ = data$ + CHR$(byte%)
 NEXT i%

In the above example the C flag is set if there are no bytes in the input buffer. Therefore, there is
never a requirement to use the SWI IIDual_ReadEntriesInBuf before calling the SWI
IIDual_GetByte.

The SWI IIDual_SendByte can be used to output data. For example to output 8 bytes

 FOR i% = 1 TO 8
 REPEAT
 SYS"IIDual_SendByte",port%,ASC(MID$(data$, i%, 1)) TO ;flags%
 UNTIL (flags% AND %0010) = %0000
 NEXT i%

In the above example the C flag is set if there is no space in the output buffer. Therefore, there is
never a requirement to use the SWI IIDual_ReadSpaceOutBuf before calling the SWI
IIDual_SendByte.

The SWI IIDual_GetBlock can be used to input data. For example to input 8 bytes

 DIM buffer% 8

 adr_ptr% = buffer%
 cnt% = 8

 REPEAT
 SYS"IIDual_GetBlk", port%, adr_ptr%, cnt% TO , adr_ptr%, cnt%
 UNTIL cnt% <= 0

 FOR i% = 1 TO 8
 data$ = data$ + CHR$(buffer%(i% - 1))
 NEXT i%

PRM - 3

Note - all the bytes may be removed from the input buffer on the first call. For example

 DIM buffer% 1024

 adr_ptr% = buffer%
 max_cnt% = 1024

SYS"IIDual_GetBlk", port%, adr_ptr%, max_cnt% TO , adr_ptr%,not_removed%

 removed% = max_cnt% - not_removed%

In the above example removed% can range from 0 (if there were no entries in the input buffer) to
1024 (if there were greater or equal to max_cnt% entries). There is never any need to call the SWI
IIDual_ReadEntriesInBuf before calling the SWI IIDual_GetBlock. adr_ptr% is updated to point to
the location in buffer% following the last byte inserted.

The SWI IIDual_SendBlock can be used to output data. For example to output 8 bytes

 DIM buffer% 8

 FOR i% = 1 TO 8
 buffer%(i% - 1) = ASC(MID$(data$, i%, 1))
 NEXT i%

 adr_ptr% = buffer%
 cnt% = 8

 REPEAT
 SYS"IIDual_SendBlk", port%, adr_ptr%, cnt% TO , adr_ptr%, cnt%
 UNTIL cnt% <= 0

Note - all the bytes may be inserted in the output buffer on the first call. For example

 DIM buffer% 1024

 adr_ptr% = buffer%
 max_cnt% = 1024

 SYS"IIDual_SendBlk", port%, adr_ptr%, max_cnt% TO , adr_ptr%,
not_inserted%

 inserted% = max_cnt% - not_inserted%

In the above example inserted% can range from 0 (if there was no space in the output buffer) to
1024 (if there was greater or equal to max_cnt% space). There is never a requirement to call the
SWI IIDual_ReadSpaceOutBuf before calling the SWI IIDual_SendBlock. adr_ptr% is updated to
point to the location in buffer% following the last byte removed.

To summarise, it should be possible to input and output data using only the SWI's
IIDual_GetBlock and IIDual_SendBlock. This significantly reduces the number of SWI calls and
the resulting overhead, thereby increasing performance.

PRM - 4

Appendix I Connector Pin Designations

Pin
1 DCD Data Carrier Detect Input
2 RxD Receive Data Input
3 TxD Transmit Data Output
4 DTR Data Terminal Ready Output
5 0V Signal Ground
6 DSR Data Set Ready Input
7 RTS Request to Send Output
8 CTS Clear to Send Input
9 RI Ring Indicator Input

The above pin designations are identical to those of the inbuilt serial port. The Dual High Speed
Serial Interface uses RS423 line drivers and receivers which are RS232 compatible.

Appendix II Serial Cables

Cable Wiring for Modems

Intelligent Interfaces recommend the use of a modem cable with PC wiring, as these are more
readily available, unless the cable is also to be used with the inbuilt port of early Acorn RISC OS-
based computers, ie A300 series, A400 series, A3000 and A540, in which case a modem cable
with Acorn wiring must be used.

Modem Cable with Acorn Wiring

This cable wiring can also be used with the inbuilt port of any Acorn RISC OS-based computer.

Modem Cable with PC Wiring

This cable wiring should not be used with the inbuilt port of early Acorn RISC OS-based
computers, ie A300 series, A400 series, A3000 and A540.

1

2

3

4

5

6

7

8

9

DCD

RxD

TxD

DTR

0V

DSR

RTS

CTS

RI

3

2

20

7

4

5

RxD

TxD

DTR

0V

RTS

CTS

DCD

Card - 9 pin socket Modem - 25 pin plug

8

1

2

3

4

5

6

7

8

9

DCD

RxD

TxD

DTR

0V

DSR

RTS

CTS

RI No connection required

8

3

2

20

7

6

4

5

RxD

TxD

DTR

0V

DSR

RTS

CTS

DCD

Card - 9 pin socket Modem - 25 pin plug

Cable Wiring for Other Devices

Intelligent Interfaces recommend the use of a cable with hardware handshaking (RTS/CTS) wiring
unless the cable is also to be used with the inbuilt port of early Acorn RISC OS-based computers,
ie A300 series, A400 series, A3000 and A540, in which case a cable with Hardware Handshaking
(RTS/DSR) wiring must be used.

Hardware Handshaking (RTS/DSR)

This cable wiring can also be used with the inbuilt port of any Acorn RISC OS-based computer.

Hardware Handshaking (RTS/CTS)

This cable wiring should not be used with the inbuilt port of early Acorn RISC OS-based

computers, ie A300 series, A400 series, A3000 and A540.

1

2

3

4

5

6

7

8

9

DCD

RxD

TxD

DTR

0V

DSR

RTS

CTS

RI

Connect to transmit data of device

Connect to receive data of device

Signal ground of device

No connection required

Connect to pin of device used to
indicate request to send
Connect to pin of device used to
determine clear to send

Card - 9 pin socket

1

2

3

4

5

6

7

8

9

DCD

RxD

TxD

DTR

0V

DSR

RTS

CTS

RI

Connect to transmit data of device

Connect to receive data of device

Signal ground of device

Connect to pin of device used to
determine clear to send
Connect to pin of device used to
indicate request to send
No connection required

Card - 9 pin socket

Cable Wiring for Software Handshaking (Xon/Xoff)

Software handshaking (Xon/Xoff) should only be used when hardware handshaking is not
available.

This cable wiring can also be used with the inbuilt port of any Acorn RISC OS-based computer.

1

2

3

4

5

6

7

8

9

DCD

RxD

TxD

DTR

0V

DSR

RTS

CTS

RI

Connect to transmit data of device

Connect to receive data of device

Signal ground of device

No connection required

No connection required

Card - 9 pin socket

Appendix III Baud Rates and Data Formats

Baud Rates

The default baud rate set is Set 4. This set provides the same range of baud rates (from 50 to
115200) as the Risc PC and A7000 computers. The only reason to change from Set 4 (default) to
Set 2 is if a baud rate of 230400 is required.

The baud rate can be set using the SWIs IIDual_ReadWriteRxBaudRate and
IIDual_ReadWriteTxBaudRate. These SWIs are documented in the text file $.Docs.IIDualSWIs on
the distribution disc.

The baud rates available on odd numbered ports are slightly more accurate than those on even
numbered ports. The table below shows the baud rates available. Those baud rates denoted by
an asterisk are selected from the table of standard baud rates whilst the others are generated for
odd numbered ports by programming the 26C92 timer and for even numbered ports by
programming the 65C22 timer.

Index Set 0 Set 1 Set 2 Set 3 Set 4 Set 5
 (default)

 0 9600* 9600* 7200* 7200* 9600* 9600*
 1 75 75* 75 75 75 75
 2 150 150* 150 150 150 150
 3 300* 300* 300 300 300 300
 4 1200* 1200* 1200 1200 1200 1200
 5 2400* 2400* 2400 2400 2400 2400
 6 4800* 4800* 4800 4800 4800* 4800*
 7 9600* 9600* 9600* 9600*
 8 19200* 19200* 19200*
 9 50* 50 50* 50 50 50
10 110* 110* 110* 110* 110 110
11 134.5* 134.5* 134.5* 134.5 134.5 134.5
12 600* 600* 600 600 600 600
13 1800 1800* 1800* 1800* 1800 1800
14 3600 3600 3600* 3600* 3600 3600
15 7200 7200 7200* 7200* 7200 7200*
16 38400* 38400*
17 57600* 57600* 57600*
18 115200* 115200* 115200*
19 230400*
20 14400* 14400* 14400*
21 28800* 28800* 28800* 28800*
22 200 200 200* 200 200 200
23 450 450 450 450* 450 450
24 880 880 880 880 880* 880*
25 900 900 900 900* 900 900
26 1050 1050 1050* 1050 1050* 1050
27 1076 1076 1076 1076 1076* 1076
28 2000 2000* 2000 2000* 2000 2000

An alternative way of selecting the baud rate is to use the IIDual_Baud command which sets the
RX and TX baud rates.

Syntax IIDual_Baud <port> <index (0 - 28) or baud rate (50 - 230400)>

The following command selects for port 1 the receive and transmit baud rate as 19200.

IIDual_Baud 1 19200

The following command selects for port 2 the receive and transmit baud rate as 19200.

IIDual_Baud 2 19200

Data Formats

A wide range of data formats can be set using the SWI IIDual_ReadWriteDataFormat. This SWI is
documented in the text file $.Docs.IIDualSWIs on the distribution disc.

Bit Name Read/Write Value Meaning
 or Read Only
0,1 R/W 0 8 bit word
 1 7 bit word
 2 6 bit word
 3 5 bit word
2 R/W 0 1 stop bit
 1 2 stop bits in most cases.
 1 stop bit if 8 bit word with
 parity. 1.5 stop bits if 5 bit
 word without parity.
3 R/W 0 Parity disabled.
 1 Parity enabled.
4,5 R/W 0 Odd parity.
 1 Even parity
 2 Parity always 1 on TX and
 ignored on RX.
 3 Parity always 0 on TX and
 ignored on RX.
6-31 Reserved. Must be set to 0.

An alternative way of selecting the data format is to use the IIDual_Data command. The following
data formats are available:-

<n> Word Length Parity Stop
 bits bits
 0 7 even 2
 1 7 odd 2
 2 7 even 1
 3 7 odd 1
 4 8 none 2
 5 8 none 1
 6 8 even 1
 7 8 odd 1

Syntax IIDual_Data <port> <data format (0 - 7)>

The following commands selects for port 1 a data format of 8 bits, no parity, 1 stop bits

IIDual_Data 1 5

The following commands selects for port 2 a data format of 8 bits, no parity, 1 stop bits

IIDual_Data 2 5

Appendix IV IIDual SWI's

The documentation for the SWI's can be found in the text file $.Docs.IIDualSWIs on the
distribution disc.

&048680 IIDual_ReadWriteSerialStatus
&048681 IIDual_ReadWriteDataFormat
&048682 IIDual_SendBreak
&048683 IIDual_SendByte
&048684 IIDual_GetByte
&048685 IIDual_ReadWriteRxBaudRate
&048686 IIDual_ReadWriteTxBaudRate
&048687 IIDual_Reserved0
&048688 IIDual_ReadWriteInBufMinimumSpace
&048689 IIDual_EnumerateBaudRates
&04868A IIDual_EnableDisableInput
&04868B IIDual_EnableDisableOutput
&04868C IIDual_StartStopBreak
&04868D IIDual_SendBlk
&04868E IIDual_GetBlk
&04868F IIDual_GetBlkUntilMatch
&048690 IIDual_SendByteInTime
&048691 IIDual_GetByteInTime
&048692 IIDual_SendBlkInTime
&048693 IIDual_GetBlkInTime
&048694 IIDual_GetBlkUntilMatchInTime
&048695 IIDual_InsertByteInBuf
&048696 IIDual_RemoveByteOutBuf
&048697 IIDual_InsertBlkInBuf
&048698 IIDual_RemoveBlkOutBuf
&048699 IIDual_ReadSpaceInBuf
&04869A IIDual_ReadSpaceOutBuf
&04869B IIDual_ReadEntriesInBuf
&04869C IIDual_ReadEntriesOutBuf
&04869D IIDual_ExamineNextByteInBuf
&04869E IIDual_ExamineNextByteOutBuf
&04869F IIDual_ExamineBlkInBuf
&0486A0 IIDual_ExamineBlkOutBuf
&0486A1 IIDual_ExamineNextByteInBufInTime
&0486A2 IIDual_ExamineBlkInBufInTime
&0486A3 IIDual_ExamineBlkInBufUntilMatch
&0486A4 IIDual_ExamineBlkInBufUntilMatchInTime
&0486A5 IIDual_FlushInBuf
&0486A6 IIDual_FlushOutBuf
&0486A7 IIDual_ReadWriteInBufSize
&0486A8 IIDual_ReadWriteOutBufSize
&0486A9 IIDual_ReadInBufInfo
&0486AA IIDual_ReadOutBufInfo
&0486AB IIDual_ReadWriteInBuf
&0486AC IIDual_ReadWriteOutBuf
&0486AD IIDual_ReadWriteOptions
&0486AE IIDual_ReadNumberPorts

Appendix V IIDual Options

The documentation for the IIDual Options can be found in the text file $.Docs.IIDualSWIs on the
distribution disc in the section for the SWI IIDual_ReadWriteOptions.

0 to read the version number
1 to read the count of RxRdy interrupts since last read
2 to read the max number of bytes received per RxRdy interrupt since last read
3 to read the distribution of the number of bytes received per

RxRdy interrupt since last read
4 to read the number of TxRdy interrupts received since last read
5 to read the max number of bytes transmitted per TxRdy interrupt since last read
6 to read the distribution of the number of bytes transmitted per TxRdy interrupt

since last read
7 to read the number of times the private input buffer minimum has been

exceeded since last read
8 to read the maximum number of bytes in the private input buffer since last read
9 to read/write the buffer insert/remove mode (default 0)
10 to read/write the number of bytes for which interrupts are disabled during block

insert/remove operations (default 64)
11 to read/write the private input buffer entries (default 4) at which RTS is set in the

interrupt routine
12 to read/write the maximum number of bytes to be received per RxRdy interrupt

(default 16)
13 to read/write the maximum number of bytes to be transmitted per TxRdy

interrupt (default 8)
14 to read the receive errors that have occurred since last read.
15 to read/write the baud rate mode (default 0 common)
16 to read/write the baud rate set
17 to read/write the input buffer hysteresis hysteresis = on_space - off_space
18 to read/write the card default 6522 T2 period
19 to read/write the card short 6522 T2 period
20 to read/write the card short 6522 T2 count
21 to enable and disable the port's local loopback
22 to read and write the card's UserIO
253 to read the port DeviceDriverExternal_entry array
254 to read the port DeviceDriver_entry array
255 to read the port swi_cnt array

Appendix VI IIDual Commands and Configuration Keywords

IIDual Commands

IIDual_Baud
IIDual_RxBaud
IIDual_TxBaud
IIDual_Data
IIDual_HandShake
IIDual_InBuf
IIDual_OutBuf
IIDual_Options
IIDual_InBufMinSpace
IIDual_InBufHysteresis
IIDual_BaudRateSet

Configuration Keywords

IIDual_CMOSBaud
IIDual_CMOSData

Appendix VII Serial BASIC Library Procedures and Functions

PROCSerial_Init(port%, baud%, data_format%, flow_control%)
PROCSerial_Final(port%)
FNSerial_Status(port%)
PROCSerial_EnableDTR(port%)
PROCSerial_DisableDTR(port%)
PROCSerial_SendBreak(port%, time%)
PROCSerial_EnableInput(port%)
PROCSerial_DisableInput(port%)
PROCSerial_FlushInBuf(port%)
PROCSerial_FlushOutBuf(port%)
FNSerial_ReadEntriesInBuf(port%)
FNSerial_ReadSpaceOutBuf(port%)
PROCSerial_SendByte(port%, byte%)
FNSerial_GetByte(port%)
PROCSerial_SendString(port%,data$)
FNSerial_GetString(port%,match$)
PROCSerial_SendBlock(port%, adr%, cnt%)
PROCSerial_GetBlock(port%, adr%, cnt%)

