
ARCHIMEDES
COLOUR VIDEO
D I G I T I S E R

Pineapple Software

CONTENTS

Section

Getting Started 1

Introduction to Digitising 2

Digitiser Software 3

Printing and Editing 4

Effeots of different Soreen Modes 5

* Commands 6

SWI Commands 7

Error nos. and Messages 8

Writing Basic Programs 9

Using the Applications Programs 10

Hardware Blook Sohematic 11

Hardware Adjustments 12

Specification & Component Layout 13

v2.0

COPYRIGHT PINEAPPLE SOFTWARE c1991

This publication and the produot it describes are
copyright. All rights reserved. No part or whole of this
publioation or the produot it describes may be copied or
stored by any means whatsoever except by the registered
purohaser, solely for his or her own use.

It is aoknowledged that there may be omissions or error
in this publication for whioh responsibility cannot be
assumed. No liability will be accepted for loss or damage
resulting from the use of information contained in this manual
or from use of the described produot.

All correspondence should be addressed to:-

Pineapple Software
39, Brownlea Gardens
Seven Kings
Ilford
Essex
1G3 9NL

Tel. 081-599 1476

Fax. 081-598 2343

ii

G e t t i n g S t a r t e d

This chapter is provided primarily for those people who
want to start getting pictures on their Archimedes screens
without having to read the whole of this handbook!

First you should install the podule into your Arohimedes
computer. Instructions for this are supplied separately as
they will vary aooording to the actual model of computer you
have.

To test the hardware installation you will first need to
exit the Desktop (if your oomputer boots up in this mode), by
pressing f12. At the * prompt type PODULES <RETURN> and the
presence of the Digitiser podule should be indicated when the
list of podules is displayed.

The easiest way to test the rest of the features is by
using the !DIGI application on disc 2. Place Disc 2 in the
disc drive and if your computer is not already in Desktop
type *DESKTOP <RETURN>.

Click with Select on the drive Icon and when the
directory display appears double click with Select on the !DIGI
file. (If you only have a floppy system you will also need
access to the !System directory on your Apps1 disc). After a
few seconds the DIGI Icon should appear on the Icon bar
together with a window in the top right of the screen which may
contain a moving image of your input video signal.

If no moving image is present then check that you are
feeding the Digitiser with a suitable video signal. If you don'
t have a video signal then you can still test the
software features using the demo video file on this disc. To
load the video file ('Tortoise') into the Digitiser podule
ram, drag the 'Tortoise' Icon to the 'Digi Source' window.

After a short while a picture of a butterfly should
appear in the Digi Source window. This window shows the current
picture stored in the podule ram. To digitise the image double
click with Select on the Digi Source window. To utilise the
many video processing options see chapter 10 of this
handbook for full instructions on using this
application.

A d j u s t i n g t h e C o n t r o l s

If the moving picture shows that you have a video signal
present then try adjusting the three controls on the
Digitiser front panel for best results. (If you have loaded '
Tortoise' then restore the moving image by double clicking
Adjust over the Digi Source window). The controls are actually
very similar to those on the front of your TV set and should
be adjusted in a similar way.

1-1

First adjust LIFT (Brightness) to make any dark areas in
the picture appear black on the computer screen. Next adjust
GAIN (Contrast) until peak white parts of the picture are
just not 'clipping'. It is probably best to turn the Gain
control to maximum and then gradually reduce it until full
detail is seen in the white areas of the pioture. SAT
(Colour) should be adjusted for best colour, and this will
probably be best at near maximum setting.

Now freeze and Digitise the picture by double clicking
with Select. After a few seconds a 'Digi Digitised' window
should appear which can be expanded to full screen size if
required. The setting of the three variable oontrols on the
Digitiser can be adjusted more accurately on a trial and error
basis by digitising a few pictures. To restore the 'Moving'
image double click with Adjust over the 'Digi Source' window.
The 'LIFT' should be set so that dark areas of the pioture
appear really black on the computer soreen, and the 'GAIN'
should be adjusted as high as possible without too muoh loss
of detail in the white areas. There will be a small amount of
interaotion between these two oontrols so it is best to adjust
them by fairly small amounts once they are close to their
correct settings.

Once set they should not require any further adjustment
unless a video signal from a different source is used, and
then it is likely that only the GAIN control will need
adjustment. This control is the one nearest the side of the
computer and hence the most readily adjustable.

Once the controls have been set to their best positions
you can investigate the other features of the Digitiser
software. Turn to section 10 of the handbook for details of
other features of the 'DIGI' program and other applications
supplied with the Digitiser.

1-2

INTRODUCTION to VIDEO DIGITISING

Video digitising can be regarded as a way of transferring
images from a video source into a computers memory, in such a
way that the picture can then be displayed on the computer
screen, or analysed in any manner by the computer.

Because the video signal is in analogue form and has a
frequency spectrum up to about 6Mhz it does not represent a
signal that a computer can readily access directly via either
the serial or parallel input ports. Because of this there has
to be a certain amount of dedicated hardware involved in any
device to enable a computer to convert the video picture into a
form which it can understand.

There are various possible types of digitiser. In it's
simplest form the digitiser can work at quite a slow speed.
This means that only fairly simple hardware is required, but
unfortunately this also means that only stationary images
can be transferred to the computer memory. In order to be able
to capture a moving image the digitiser hardware must be
capable of storing a complete video 'frame'. To do this it
must keep updating it's own memory with frames fifty times
per second, until suoh time as the instruotion is received to '
grab', when it stops updating it's memory and retains the last
image it stored.

Memory Requirements

The amount of memory required depends upon the resolution
of the image stored and the number of bits used to store
each pixel. As the image is eventually going to be displayed
on the Archimedes screen, and the vertioal resolution of
most screen modes is 256, it would seem sensible to use this
as the vertioal resolution for the video ram. A slight
disadvantage here is that the actual TV signal has 312.5
lines on each frame (a 625 line picture is made up from two
frames). This means that if we only store 256 lines some of
the picture will be lost. This is not a serious disadvantage
as not all of the 312 lines oontain picture information, and
only about 20 lines are actually lost, mostly near the
bottom of the pioture.

The horizontal resolution could also be set to 256 pixels
which would give an equivalent frequency response of around
2Mhz. This would give reasonable quality pictures, (a good
video recorder has a frequency response up to about 3.0Mhz),
but the Archimedes screen can provide a horizontal
resolution of up to 640 or more pixels, so to get the best
possible pictures more resolution would be an advantage. The
Pineapple Digitiser actual uses 512 pixels horizontally
which gives a resolution better than a domestic video
recorder and not far short of the full PAL system.

2-1

Bits per Pixel

Another factor affecting the amount of memory used, and
the eventual picture quality, is the number of bits used to
store each pixel. The number of bits determine how many separate
levels or shades can be reconstructed from the digital image
stored in ram. In the analogue signal there are an infinite
number of levels available, but a digitised image clearly has
to have a finite number of levels to store the picture
information. If we were to consider just a black and white
image, then the number of levels used by professional video
equipment is 256, which therefore needs 8 bits to store each
pixel.

Colour Pictures

To store a colour image which later needs to be accessed
by the computer, the most versatile approach to storing the
image is to store each of the three primary red, green and
blue images separately. This is achieved in the Pineapple
Digitiser by decoding the PAL signal into it's R,G and B parts
using an analogue decoder, and then storing each image
separately in ram. The number of bits used is dictated by
the capabilities of the Archimedes colour system. By using colour
patterning to achieve more than the possible 256 colours, it
has been found worthwhile to use 16 bits of total storage
for each pixel. As 16 does not divide exactly by three, the
allocation has been split into 5 bits for red and blue, and 6
bits for green. This actually produces a possible 65,536
colours!

The effect of using fewer bits is easily demonstrated
using the *BITS command, and it will be seen that the number
of bits can be reduced quite considerably before serious
degradation of the picture occurs.

Once the Digitiser hardware has 'grabbed' the required image,
the computer can then work at a speed of it's own choosing to
read out each of the pixels forming the complete picture. It can
transfer them to the screen as required, in any scale,
orientation, colour etc.

By saving the pictures to disc in a form compatible with other
software, many more possibilities become available for editing
and printing of captured images.

Noise

Noise is not normally considered as a likely problem with
video images these days, unlike the days of early TV sets when
'snow' was quite often a problem due to lower power transmitters
and less sensitive receivers.

2-2

Unfortunately, the problem still exists when a static image
is grabbed from a series of moving pictures. Because noise is a
completely random phenomenon, it is not very visible on tv
sets because each little spike of noise is only present in a
particular place on the screen for an instant. Although the
noise is present, it is not very visible as it is continually
moving around on the screen. (This is of course a simplified
view of things, and noise does become visible on tv pictures
if it is a large enough amplitude.

With a static picture things are different. Any noise
generated in the TV camera, or the transmission system, is
grabbed along with the picture, and each noise 'spike' is
then static on screen and clearly visible. It is possible
with software routines to reduce the noise content although
this inevitably takes considerably longer than the standard
digitising routine. To get the best results from the
Digitiser try to get the best possible noise free signal to
feed it with, as it is capable of producing the highest quality
pictures given a good input signal.

Cross Colour

Another form of interference which is more visible on a
static image than a moving one is cross colour. This is an
effect caused by the luminance component of the PAL video
signal being falsely decoded by the chrominance circuits in
the decoder as a colour image. It is caused by large luminance
transitions which have a rise time similar to the 4.43Mhz
colour subcarrier frequency. It is more often visible
on domestic TV sets as a coloured moire patterning on people
wearing striped shirts which happen to produce vertical lines
on screen of a similar frequency to colour suboarrier.

There is little that can be done about this apart from using
the R,G,B,S inputs rather than the PAL video input.
Unfortunately, R,G,B outputs are only likely to be available
from the more expensive video cameras, and not from domestic
video equipment. The effect is however, not too serious and
only occasionally visible on some types of picture.

Pixel Visibility

Because of the high resolution of the Digitiser,
individual pixels will not be visible when displaying a full
screen picture. The further a picture is 'zoomed in',
however, the easier it becomes to see the individual pixels.
This limits the usefulness of the zoom feature, (not just with
this digitiser but with any eleotronic video zoom). As with
noise, the visibility of the individual pixels can be masked
using software techniques. A software routine oan

2-3

smooth out the straight edges of the pixels and merge adjacent
colours together to produce a high quality picture even when
zoomed in quite considerably.

Software Requirements

The initial design philosophy for the software has been
to create a series of very easy to use commands to access
the most useful features of the digitiser. There are too
many possibilties available, to be tied down by one piece of
software, so the commands allow even the most inexperienoed
programmer to create simple programs to achieve whatever he/she
requires. The chapter on Basic programs shows the inexperienced
programmer some simple techniques which can be used to include
variables in the commands, and details some example programs to
demonstrate the use of each command.

For the more experienced programmer there are SWI
commands available to access the Podule Video Ram and access
such features as individual video pixels. This makes it possible
to produce programs to do virtually anything in the field of
video analysing or display.

2-4

DIGITISER SOFTWARE

Once the video image has been captured in the podule ram
some method must be provided to convert it into a viewable
form on the computer screen. This is done using a software module
which provides a whole range of *commands (and SWI's) to
perform the necessary transferring of data from podule to
screen. *Commands provide a very powerful method of
accessing the podule as they may be used directly from the
command line prompt,, or easily incorporated into Basic
programs.

To make it easier to understand the effects of the
various commands available, they have been grouped together
here, and brief descriptions of each provided. Each command
is described in greater detail in the alphabetically organised
section.

An important point to note about the software module is
that none of the *commands actually change the video image stored
in the podule ram. (Apart from *LOADVIDEO which loads an image
from disc into the podule ram). This means that whatever
commands are used to produce an image on screen, you can
always revert to producing the standard full size image again
if required.

Group 1:- DIGITISE, AVERAGE, MOVING

These three commands have been grouped together because
they are the only ones which actually transfer data from the
podule ram to the screen. Most of the other commands simply
change the way in which the first two of these work.

DIGITISE could be regarded as the fundamental Digitiser
software command as this is the one which causes the picture
to be drawn on the soreen. Most of the other commands (
particularly groups 2,3 & 6)) are setup to simply ohange
the way in which the picture is drawn, in one respect or
another.

AVERAGE is a command which is particularly useful if you
have a 'still' picture available as the Digitiser input source.
This oould be in the form of a camera looking at a still
photograph. Average does more than the simple Digitise command
because it repeatedly updates the screen image with a new
version of the input signal. By doing this it can greatly reduce
any noise present in the camera or Digitiser hardware as any
differences in the suocessive grabs will be averaged out.
Parameters can be included in the *Average command to set both
the way in which the averaging is done, and the number of
times it is performed. Clearly this will only work with a
statio input signal although there is nothing to prevent trying
it with a moving input!

3-1

MOVING is a special command to allow viewing of the input
video signal. As the name implies it provides a continuously
updated picture which can be used to view the input video
prior to grabbing a particular frame. This is particularly
useful if you are using a video recorder as an input source as
it means you don't require a separate TV to see what pictures
are being fed to the Digitiser. A useful feature available
with this command is the abilty to save whatever was on the
computer screen before the moving display was started. This
allows multiscreen images to be built up easily using
*MOVING without corrupting pictures already stored on screen.

Group 2:- SCREENAREA, VIDEOAREA, SETSCREEN, SETVIDEO

These commands are grouped together because they can all be
used to set the scaling of the image produced on screen when
*Digitise (or *Average) is used. *Screenarea as the name
implies, sets the actual screenarea to be used for displaying
the picture. This is done by following the command with
four parameters to set the left, bottom, right and top limits
using standard Acorn graphics coordinates for a given screen
mode. *Videoarea allows you to set in a similar manner,
the actual area of the TV picture stored in the podule ram
that will be displayed in the selected screen area. You need
to imagine that the full size TV picture is always stored in
the podule ram and that the coordinates are arranged such that
the bottom left corner of the picture is 0,0 and the top
right of the picture is 1024,1024.

By using these two simple commands any part of a TV
picture can be displayed on any part of the computer screen.

An even simpler way of choosing screen and video areas is
to use the *Setsceen and *Setvideo commands. These commands
don't require the four parameters to specify the area, they
actually draw boxes on screen for you, which can be
manipulated in any way you choose using the Archimedes
mouse. Once you have set the box to the required size and
shape the routine is exited and the screen or video area
parameters are automatically updated to the required values.

Group 3:- BITS, FLIP, IMAGE, MONO, NEGATIVE, PRIMARY

As with the previous group of commands for setting the
scale of the picture, this group are all independant
commands. This means that they may all be set quite
independantly of each other without cancelling the effect of
any others already set. For instance, you can specify a
particular scale, a certain state for Flip, and then use
Primary to only display the green component of the signal, all
quite independantly.

3-2

The BITS command allows independant setting of the number
of bits used to display each of the three primary colours (
red, green or blue). When a video image is grabbed the podule
ram automatically stores 5 bits of red information, 5 bits of
blue information and 6 bits of green information. (Note that
if you have the standard version with less ram, then only 4
bits of each colour are stored). The bits command is
provided to allow less than the maximum no. of bits to be used
when transferring the image to the computer screen. This can be
useful to demonstrate the effect of 'contouring' on shaded areas
of a picture, and can also be used to produce more acceptable
pictures in 16 colour screen modes.

The FLIP command is used to 'flip' the picture either
horizontally or vertically (or both) according to the
parameters following the command.

IMAGE sets the way in which the picture is stored on the
screen ram. It may either be stored straight to the screen (
the default option), or it may be OR'ed, AND'ed or EOR'ed with
information already stored on the screen.

MONO as the name implies produces a monchrome image on
screen. It does this by adding together the red, green and
blue images in the proportions 3/8R + 1/2G + 1/8B. This is
quite close to the correct PAL proportions of .3R + .59G + .
11B and the calculations are considerably faster! If you are
using a black and white video input signal then you should set
the software to 'Mono' mode as the results will be
considerably better than leaving the colour options enabled.
Because of the way the palette is set for the monochrome mode,
very good results can be obtained in 16 colour screen modes
with a considerable saving in screen memory.

NEGATIVE is fairly obvious when considering a monochrome
image, but not quite so obvious for colour images. The software
works by inverting the red, green and blue images independantly
so that white becomes black and black becomes white, but the
intermediate colours are not so obvious. The parameters also
allow inverting of just one or two colours giving even more
interesting effects.

PRIMARY is a command which enables any one or two of the
three primary colours to be switched off. This oan be quite
useful when viewing colour pictures and you only want to see
the information contained say, in the red signal.

3-3

Group 4:- SAVESCREEN, SAVESPRITE, SAVEVIDEO, SAVEAIM,
SAVEFSI

This group of commands all provide ways of saving
pictures to disc in one form or another.

SAVESCREEN is a command which does exactly what it says.
The area of screen being saved can be specified, and this
command is most useful when used to save images which will
later be loaded to the screen in your own Basic programs.

SAVESPRITE saves a defined screenarea in a format
suitable for use as an Acorn sprite. (The palette is saved
with the data). This form of saving an image is most useful
if you wish to incorporate the image into other Archimedes
software. An image saved in this way can be edited and printed
using Paint or loaded into many of the 'Art' and 'Publishing'
packages available.

The disadvantage of the previous two methods described
for saving the image is that once saved as a screen image,
the pioture cannot be soaled or processed in any way using
the module *commands. It can only be loaded back onto the screen
again (possibly in a different place, but not in a different
scale).

SAVEVIDEO is a special command which enables the complete
podule ram to be saved to disc. In it's most complete form
it uses a lot of disc space (256k) but does have
considerable advantages over other forms of saving an image.

Because Savevideo saves the complete podule ram in a special
format, all the module *commands can be used to process the
image again. This is undoubtedly the best way to save an
image if you don't yet know what size you will eventually want
it to be on screen. Just make sure you have plenty of discs
available!

SAVEAIM is a command which saves an image of the podule
ram in a format suitable for use with the 'AIM' software
available in the public domain. It saves a 256 * 256 resolution
monochrome image which can then be loaded directly into AIM.

SAVEFSI saves a file which can be used by Roger Wilson's
ChangeFSl program to perform video processing. Copies of this
program are available from Roger Wilson at Acorn.

3-4

Group 5:- LOADSCREEN, LOADSPRITE, LOADVIDEO

These commands are the corresponding versions of group 4 which
enable files on diso to be reloaded into the oomputer.
LOADSCREEN allows any file saved using the Savescreen
command to be loaded back to any specified point on the screen,
and LOADSPRITE allows any spritefile to be loaded to a given
soreen location.

LOADVIDEO will reload the podule ram with an image previously
saved using Savevideo. This will not produce an immediate change
to anything displayed on the computer soreen, of course, as a
further *Digitise command will be neoessary to transfer the
image to the soreen. Multipicture screens can easily be built
up in this way by first saving all the required pictures on
disc, and then reloading them one at a time, and transferring
them in the required soale to the required position on screen.

Group 6:- FOCUS, NOISE, OUTLINE, SMOOTH

This group of commands is somewhat different to those
previously described because only one of them can be
selected at any one time. This means for instance that if
you set up a *Noise option then any previously set Focus, Outline
or Smooth options will be disabled. This is not a serious
disadvantage as these are not normally commands that would
require more than one to be set at a time. None of the other
group oommands are affected so you can still set up soales,
areas, etc.

FOCUS allows the displayed pioture to be defocussed by preset
amounts. This is achieved by adding together a number of
pixels surrounding the one being prooessed, and then dividing the
result by the total number of pixels added together. The amount
of defocus is controlled by the number of pixels added together
to achieve the result. This does provide a considerable amount of
noise reduction in the picture but only at the expense of '
softening' the image. It does also reduce the 'pixel
visibility' to a certain extent when using zoomed in images.

NOISE provides a better way of reducing the noise in the
picture without much apparent loss of focus. It still works
by averaging together a number of pixels but it only
performs this averaging if there are no sharply defined edges
detected at that point in the picture. The edge detection is
oarried out separately in both horizontal and vertical
directions and various parameters may be specified to
determine how the edges are detected and how the
averaging is performed.

3-5

OUTLINE is a routine which uses the edge detection
routines to simply draw the outlines of objects in the
picture. All the processing in this group of commands is
performed separately for the red, green and blue images and
for colour pictures separate red, green and blue outlines
are provided. To obtain a black and white outline simply set
the monochrome option using *Mono.

SMOOTH is a routine to reduce the visibility of
individual pixels when a picture has been 'zoomed in'. It uses
an averaging technique similar to the other routines in this
group of commands to smooth out the edges of the rectangular
pixels by merging them together to make them less visible.

Group 7:- DEFAULT, FREEZE, UNFREEZE, PALETTE, RESTORESCREEN
This group of commands is really made up from those that

don't fit into any of the other groups already described.
DEFAULT is a single command which sets all the other oommands

to their default settings. If a *Digitise is issued after a
*Default then a full screen picture of whatever is present in the
podule ram will be obtained with 4 bits per colour, no flips, no
noise reduction etc.

FREEZE and UNFREEZE are commands which affect the
operation of the hardware in the podule. After an Unfreeze
command the podule ram is in a state where it is being
constantly updated with every single field of the video
input signal. When a Freeze oommand is issued the hardware waits
for the next field pulse and then 'freezes' the memory so that
no further updating occurs. Many of the other *commands
automatically use Freeze and Unfreeze to ensure that the
computer does not try to access the podule ram while it is
in the 'unfrozen' mode. For instance *Digitise and *Savevideo
both autbmatically set the freeze option, and *Average and
*Moving both continually issue 'freeze' and 'unfreeze' commands
during their operation.

PALETTE is a oommand which sets the computers colour palette
to the best condition according to the current soreen mode
and the setting of the 'Mono' option. This is normally done
automatically by the *Digitise command, but it can be useful
to see the effects of instantly changing between the standard
screen palette and the one preferred by the Digitiser
software.

RESTORESCREEN is simply a command that can be used after
*Moving to replace whatever image was stored on the screen
area occupied by the moving image, after the moving image is
no longer required. This allows the incoming video to be viewed
without losing any part of a picture already stored on the
screen.

3-6

PRINTING & EDITING PICTURES

There are no commands built into the software module for
either editing or printing of pictures. The main reason for
this is that Acorn already provide a very good medium for
achieving both of these ends with the PAINT and DRAW
programs which can be used from the Desktop.

The interface between the Digitser and the Paint program
is achieved by saving a partioular area of picture as a sprite
file using *Savesprite. It is strongly reoommended that this
is done from a MODE 15 Digitised picture for best results.

If you save a sprite whioh is a full screen size MODE 15,
and you only have 1Mb of ram, there is very little spare memory
available when using Paint in MODE 15. This means that you
will probably need to clear all software Modules from memory
using *RMClear before booting up the Paint program.

Paint is extremely versatile for both editing pictures
and printing them using any of the available Archimedes printer
drivers. It would take too long to describe the full use of
the program here so it is recommended that you refer to your
Archimedes manual for details of how to use Paint (and Draw)
for editing and printing sprites.

For those more experienoed programmers who can see that
better printed pictures could be obtained by printing
directly from the picture stored in the podule ram, rather
than the image available on screen, there is a SWI command
available to access pixels directly from the podule. This
SWI could be inoorporated into a Basio program to enable you
to write your own printer driver routine that would probably
give superior results to one that works direotly from sprite
or screen memory. Details of this and other SWI commands are
available elsewhere in this handbook.

4-1

Screen Modes

Introduction

The effect of using the Digitiser with the numerous different
screen modes available on the Archimedes is quite important and
so it is worthwhile spending some time describing the attributes
of each mode and the quality of picture likely to be obtained.
The test mode of operation (*DIGITISE T) which generates a
monochrome sawtooth, demonstrates very well the effects
of *BITS and the visibilty of colour patterning on
different screen modes. The sawtooth is the most difficult
test for any digital video system and demonstrates how good
the results can be in 256 colour high resolution screen modes.
It also shows in 16 oolour modes, how an aotual picture can be
quite acceptable when the test signal is obviously not very good
at all!

The Digitiser works by storing the video image in it's
own podule memory with a resolution of 512 pixels
horizontally by 256 pixels vertically. The standard version
uses 4 bits to store each of the red, green and blue signals
giving a total of 12 bits per pixel. The extended version uses
5 bits of red, 6 bits of green, and 5 bits of blue giving a
total of 16 bits per pixel. (Note that although 6 bits of green
are available, the best results for colour images are usually
obtained when the three oolours have the same bit settings).

Colour Patterns

Even with 4 bits for each oolour this gives 16 possible levels
for each of the red, green and blue signals, which means a total
of 4096 possible colours. Now the most number of colours
obtainable with the Archimedes palette is 256 so some way has
to be found to display all these extra colours on screen. The
method of doing this is by using patterns for each colour to
achieve the necessry extra shades. The best way to envisage
this is by considering a 2 * 2 block of 4 pixels. By having
different numbers of pixels switched on it is possible to
obtain 4 different shades (not including black). If the
pattern of the pixels is small enough, and the resolution
high enough, and there are no obvious straight lines made
up in the pattern, then the individual dots are practically
invisible.

One problem that can arise with this system is that resolution
is lost because the overall size of the blocks of pixels
becomes considerably larger than the individual pixels.
The Pineapple Digitiser overcomes this problem by not
necessarily completing a complete pattern block for each and
every pixel. If a particular colour pixel is required on screen
and the system is halfway through transferring a

5-1

different colour pixel to the screen, then the new pixel colour
is immediately started at whatever point through the pattern
block the system happens to be. This gives a resolution which
is as good as the individual screen pixels and the very slight
possible colour errors near to a oolour transition are too small
to be visible.

The largest pattern that was considered usable for this system
was an 8 pixel block spread over two consecutive screen rows, (4
pixels per row). This in itself would give 8 possible different
shades, but by combining it with the fact that in the 256
colour mode the palette is also set up to give 3 bits of red,
3 bits of green and 2 bits of blue, we can see that our 6 bits
of information for green can all be utilised. The 5 bits for
red is easily achievable with only a 4 pixel pattern block and
the 5 bits of blue can still be achieved with the full 8 pixel
pattern.

With the standard 12 bit storage, the pattern never needs
to be larger than 2 pixels for red and green, and 4 pixels for
blue. On a mode 15 screen this makes any patterning effeots
virtually invisible.

Monochrome operation

The situation in the monochrome mode is somewhat easier
as the Archimedes palette can be set up to give a wider
range of shades without requiring too large a pattern block.
However, because the mono image is produced by adding together
the red, green and blue signals, a resultant signal with more
than 6 bits oan be obtained. This result is in fact limited
to 7 bits which can all be used to produce the mono image on
both 16 and 256 oolour modes. The way in which the mono image
is obtained from R, G & B is to add them together in the
proportions 3/8R + 1/2G + 1/8B. This is not exactly correct
according to the PAL specification but gives very
acceptable results without restricting speed of
operation.

2 COLOUR MODES

Two colour modes are only capable of giving mono images,
and these are limited to 3 bits (8 shades of grey).

4 COLOUR MODES

These modes are not capable of giving colour pictures,
but a better monochrome image is obtainable using up to 4
bits (16 levels) of the sum of R,G & B.

5-2

16 COLOUR MODES

In these modes the colour image is limited to 3 bits red, 4
bits green and 3 bits blue. The palette is set up to use 1 bit
for red, 2 bits for green and 1 bit for blue, the extra shades
being achieved with colour patterns.

These are very good modes for producing monochrome images
as the full 7 bits are utilised by producing a palette with 16
levels of grey, just as many as are possible in the 256 colour
modes.

256 COLOUR MODES

In these modes the palette is not adjusted at all for
monochrome images and only slightly for colour images. The colour
palette is set to give 3 bits of red, 3 bits of green and 2
bits of blue. The default palette is used to achieve 16 grey
levels for monochrome images.

Patterning allows the full 5 bits red, 6 bits green and 5
bits blue to be used for colour images.

MODE ATTRIBUTES

MODE Text Resolution cols memory

Mode 0 80 * 32 640 * 256 2 20k
Mode 1 40 * 32 320 * 256 4 20k
Mode 2 20 * 32 320 * 256 16 40k
Mode 3 80 * 25 Text only 2 40k
Mode 4 40 * 32 640 * 256 2 20k
Mode 5 20 * 32 320 * 256 4 20k
Mode 6 40 * 25 Text only 2 20k
Mode 7 40 * 25 Teletext 16 80k
Mode 8 80 * 32 640 * 256 4 40k
Mode 9 40 * 32 320 * 256 16 40k
Mode 10 20 * 32 320 * 256 256 80k
Mode 11 80 * 25 640 * 256 4 40k
Mode 12 80 * 32 640 * 256 16 80k
Mode 13 40 * 32 320 * 256 256 80k
Mode 14 80 * 25 640 * 256 16 80k
Mode 15 80 * 32 640 * 256 256 160k
Mode 16 132 * 32 1056 * 256 16 132k
Mode 17 132 * 25 Text only 16 132k
Mode 18 80 * 64 640 * 512 2 40k
Mode 19 80 * 64 640 * 512 4 80k
Mode 20 80 * 64 640 * 512 16 160k
Mode 21 80 * 64 640 * 512 256 320k
MODE 22 Not present
MODE 23 144 * 56 1152 * 896 2 126k
MODE 24 132 * 32 1056 * 256 256 264k

5-3

This table may appear to differ slightly from that in the
Archimedes User guide in terms of the horizontal resolution of
some modes. This is because some modes are what Acorn term
'double pixel' modes. In these modes although the VDU drivers do
not access the full horizontal resolution available, the
Digitiser accesses screen memory directly and can make use of
all the available resolution. One example would be modes such as
10 & 13 which will give identical digitised pictures but have
different size text.

From the above table it can be seen that the best
possible results should be obtained from mode 24. This is in
fact true, but there is very little visible difference
between this mode and mode 15 which is considerably more
economical on memory. Mode 13 and mode 10 also give quite
acceptable colour pictures while being very economical of memory
usage. In general, with colour pictures, by far the best
results are obtained with 256 colour modes rather than 16
colour modes. For example, mode 13 is far superior to mode
12, although they both use the same amount of screen memory. The
loss of resolution on mode 13 is much less noticeable than the
extra colour patterning required to achieve the colours on mode
mode12.

For monochrome images mode 12 gives very good results,
although if you want to have colour pictures and a
monochrome picture converted from colour, on screen
together, then you will need to use a 256 colour mode where
the palette allows quite a good compromise between the two.

5-4

*COMMAND SUMMARY

*AVERAGE <repeats>[<type>] Range: <0-128> <0-2>
*BITS [<R> <G>] Range: < 0 - 5 > < 0 - 6 > < 0 - 5 >
*DEFAULT
*DIGITISE [<Shadow>[<Palette>]][<T>] Range:<0-shadow><P> <T>
* F L I P [< H > [< V >]] R a n g e : < 0 - 1 > < 0 - 1 > * F O C U S [
< a m o u n t >] R a n g e : < 0 - 6 > *FREEZE
*IMAGE [<value>] Range: <0-3>

*LOADSCREEN <filename>
*LOADSPRITE <filename>
*LOADVIDEO <filename>
*MONO [<off/on>] Range: <0-1>

*MOVING [<size> [<restore>]] Range: <0-2> <R>
*NEGATIVE [<R> <G> [<M>]]

Range: <0-1> <0-1> <0-1> <0-1>
*NOISE [<coring> [(edge detection>]] Range: <0-255> <1-3>
*OUTLINE [(coring> [<edge detection>]] Range: <0-255> <1-3>
*PALETTE
*PRIMARY [<R> <G>] Range: <0-1> <0-1> <0-1>
*RESTORESCREEN
*SAVEAIM <filename>
*SAVEFSI <filename>
*SAVESCREEN <filename>
*SAVESPRITE <filename>
*SAVEVIDEO <filename> [<bits> [<resolution>]]

Range: <filename> < 0 - 2 > <0-3>
*SCREENAREA [<left> <bottom> <right> <top>]

R a n g e : < 0 - 1 2 8 0 > < 0 - 1 0 2 4 > < 0 - 1 2 8 0 > < 0 - 1 0 2 4 >
*SETSCREEN
*SETVIDEO
*SMOOTH [<off/on>] Range: <0-1>
*UNFREEZE
*VIDEOAREA [<left> <bottom> <right> <top>]

R a n g e : < 0 - 1 0 2 4 > < 0 - 1 0 2 4 > < 0 - 1 0 2 4 > < 0 - 1 0 2 4 >

6-1

*AVERAGE [<repeats: (<type>]]

RANGE: <0-128> <0-2>

DEFAULT: <0> <0>

No Parameters sets default values. (No averaging)

Average is a command which can be used to produce a
higher quality image than *Digitise if a stationary video picture
is available. It achieves a lower noise image by repeatedly
digitising the same picture and averaging each new
digitisation with previous ones. The method of averaging the
pictures can be determined using the 'type' parameter.

Type 0 performs a simple *Digitise on the first pass and
then for subsequent passes adds together the existing screen
byte with the new pixel value and divides the result by two
before storing to the screen.

Type 1 performs a simple *Digitise followed by the required
number of passes where the ratio of screenbyte to new pixel
added together is set by the number of passes as follows:

e.g. for 4 passes
Pass 1 0 * Screenbyte + 1 * New Pixel

Passes 2-4 3/4 * Screenbyte + 1/4 * New Pixel

For 8 passes
Pass 1 0 * Screenbyte + 1 * New Pixel

Passes 2-8 3/8 * Soreenbyte + 1/8 * New Pixel

Note that for type 1 operations the number of passes should
be a number in the range 2,4,8, otherwise the selected
number of passes will be rounded down to the nearest of
these values. Using a number higher than 8 will not give any
further improvement to the image.

Type 2 is similar to type 1 except that the ratio of
screenbyte to new pixel changes for each pass:

e.g.for 4 passes:-
Pass 1 0 * Screenbyte + 1 * New Pixel
Pass 2 1/2 * Screenbyte + 1/2 * New Pixel
Pass 3 3/4 * Screenbyte + 1/4 * New Pixel
Pass 4 7/8 * Screenbyte + 1/8 * New Pixel

No improvement will be achieved beyond 4 passes. Note also
that the *Average command will not take any notice of any
*Image settings.

6-2

*BITS [<R> <G>]

RANGE: <0-5> <0-6> <0-5>

DEFAULT: <4> <4> <4>

No Parameters sets default values.

This command sets the number of bits of each oolour to be
used to display the image on screen.

The video ram always oontains the full number of bits
available, (4,4,4 for standard version - 5,6,5 for extended
version), but the number of bits actually used to create the
image on screen can be set using this command.

The number of bits determines the number of levels of
each partioular colour used to create the image. Because of
the limitations of the screen, dot patterns have to be used
to create the necessary number of levels for each colour
even in the 256 colour modes. The notioeability of the dot
patterns depends on the number of bits selected, the resolution
of the chosen screen mode, and the number of colours available
in that particular mode. Because of this the number of bits
for each colour are limited to a maximum value less than the
default for some screen modes. More information about this
can be found in the section describing the different
screen modes.

Some interesting effects can be achieved by limiting the
number of bits, and in some low resolution modes a more
acceptable image can sometimes be obtained in this way.

Changing the number of bits will affect monochrome images
in a similar way to colour images. The monochrome image is
actually produced by adding together the R,G, and B signals
in the proportions 3/8R + 1/2G + 1/8B so the effect of just
changing the number of bits of one colour will probably not
be very notioeable in the case of a monochrome image.

6-3

*DEFAULT

No Parameters required.

This command sets all parameters to their default state.
This corresponds to the state immediately after the software
module is loaded.

Individual parameters may be set to their default state
by issuing the relevant *oommand without any parameters.

It is worth noting that when a *Digitise oommand is
issued and all the parameters are in their default state (
and a Mode15 screen is used), then a special 'turbo'
routine is used to display the image on the screen. This works
about twice as fast as when non-default parameters are set.

6-4

*DIGITISE [<Shadow>[<Palette>]] [<T>]

RANGE: <0-no.of shadow screens> <P>
RANGE: <T>

This command transfers the stored picture in the Podule
video ram to the current or any nominated shadow screen. The
picture is displayed according to the parameters set up by
other star commands such as Videoarea, Screenarea, Flip,
Image, Bits, Mono etc.If no parameters are specified then the
picture will be stored to the currently displayed screen with
the palette automatically set for the best results
depending on the screen mode and whether the 'Mono' option has
been selected.

If a numeric parameter is specified this will be taken to
mean that the picture is to be transferred to a shadow
screen. The number of shadow screens available will depend on
the amount of configured screen memory and the mode
chosen. A mode 15 screen for instance, will use 160k of memory
so that if 480k is configured then there will actually
be three screens available to store separate pictures
at any one time. The default screen number is 1 so that if
number 2 or 3 is specified after the *DIGITISE command nothing
will appear to happen as the picture is acutally being
transferred to a 'hidden' screen.

To switch the computers display to show a different shadow
screen you can use the *FX113,<screen no.> command. This
will instantly switch to any specified soreen.

If the 'P' option is speoified then the palette will not
be affected by the Digitise command. This allows you to
experiment with different palettes to produce some strangely
coloured pictures! More information on the effect of the palette
can be found under the section on screen modes.

If the 'T' option is used after the command then a 'test' mode
is entered where an artificial monochrome 'sawtooth' waveform is
generated and displayed according to all the other command
parameters that have been set.

The monochrome sawtooth is the most difficult test signal
for any digital video system to reproduce acourately, and
the effects of the *BITS command is particularly notioeable
here. The effect of the patterns used to generate the
intermediate grey levels is also very noticeable using this
test signal. Try it with different screen modes, numbers of
bits, mono and colour modes, and looking at each primary colour
in turn to see the effects of all these options on the
final image. It clearly shows that for colour pictures the 256
colour modes are by far the best, but for monochrome pictures
there is little to choose between 16 colour and 256 colour
modes.

6-5

*FLIP [<H> [<V>]]

RANGE: <0-1> <0-1>

DEFAULT: <0> <0>

No Parameters sets default values.

This command sets whether the image will be 'flipped'
horizontally or vertically or both.

A zero for the parameter value gives normal orientation and
a 1 gives a 'flipped' picture. A single parameter sets the
horizontal flip state and restores the vertical state to normal.
No parameters at all restores the default state of no 'flips'
.

6-6

*FOCUS '<amount>)

RANGE: <0-6>

DEFAULT: <0>

No Parameters sets default values. (No defocussing)

Focus is a command which can defocus the image by predefined
amounts. Only the image stored on the screen is actually
defocussed so that by specifying a smaller parameter value the
image may be resharpened again.

The routine works by adding surrounding pixels to the one
actually being transferred to the screen, and then dividing
the result by the number of pixels added together.

The number of pixels added together for various
parameters is as follows:

Parameter Pixels

1 4
2 9
3 25
4 49
5 81
6 132

As the routine involves quite a large amount of
processing for each pixel stored on the screen, the process
slows down the *Digitise operation quite considerably,
especially for the higher parameter values.

A parameter value of 0 or no parameter at all disables
the routine.

6-7

*FREEZE

No parameters

This command is used to stop the incoming video updating
the video ram and thus 'freeze' the picture being stored at
that instant.

It is not necessary to use this command if the video is '
frozen' while watching the moving image on the Archimedes
screen as the Freeze option is automatically set when exiting
the *Moving routine.

The command is most useful when watching the incoming video
on a normal TV set when a single key press can be used to
initiate the command and 'freeze' the picture at that instant.

This gives the ability to 'grab' any single frame,
whereas when grabbing while displaying the moving image on
screen, only about one in fifteen frames can be frozen. This
is because the video ram only updates about 15 times a
second when displaying the moving image on screen rather
than 50 times a second when in normal 'unfrozen' mode.

6-8

*IMAGE [<value>]

RANGE: <0-3>

DEFAULT: <0>

No Parameters sets default value.

This oommand sets the way in which the pioture will be
written to screen memory. The default value of 0 replaoes
any image already on the screen with the new image.

A value of 1 will make the new soreen image the result of AND'
ing the image already present with the new image.

A value of 2 will perform the OR function with the image
already on screen, and a value of 3 will perform an FOR with
the ourrent image.

6-9

*LOADSCREEN <filename>

This oommand loads a previously saved area of screen to
the bottom left hand corner of the currently specified screen
area.

It is normally expected that the area will be loaded back
into a screen of the same mode as that from which it was
saved. It is possible, however, to load back to a different
screen mode as long as that mode has the same number of colours
as the one from which it was saved. If this is done it is
likely that the size of the image will be incorrect in the
horizontal direction due to different screen
resolutions.

There is no protection against the image 'wrapping round'
in the horizontal direction if the saved image is wider than
the available space from the bottom left corner of the specified
screen area to the right hand edge of the screen. Vertical '
wrap' is prevented and any part of the pioture that would be
off the top of the soreen will be lost.

*LOADSPRITE <filename>

This command loads a sprite image to the bottom left hand
corner of the currently specified screenarea.

It would normally be more economical on disc space to use
the *Savescreen, *Loadsoreen combination to perform this
operation, but the command is available so that sprites can be
edited with 'Paint' and then reloaded into a screen containing
other digitised images.

*LOADVIDEO <filename>

This command loads a previously saved image of the Video
Ram back into the Podule Video Ram.

As explained elsewhere, using this method of storage does
use a large amount of disc space although it does have the
advantage that the picture is stored with the full
resolution of the Video Ram. This means that reloading the
image from disc is exactly the same as if the picture had been
'grabbed' from an incoming video souroe.

See *SAVEVIDEO for details of different file formats.

6-10

*MONO [<on/off>]

RANGE: <0-1>

DEFAULT: <0>

No Parameters sets default values.

This command sets whether the Digitise and Palette
operations will be in monoohrome or colour mode.

A '1' parameter sets the mono option and a '0' reverts to
colour mode. As explained elsewhere, any screen mode with
less than 16 colours automatically defaults to monochrome
operation but it does this without actually changing the setting
of the mono flag, so that future operations in a mode with
16 or 256 colours will still be in colour.

6-11

*MOVING <size> [<restore>]

RANGE: <0-2> <R>

DEFAULT: <1>

This command is used to display a moving colour picture
on screen.

It's main purpose is to provide monitoring of the
inooming video signal rather than to give an impressive
colour display. The image is positioned at the bottom left hand
corner of the current screen area and although there is
protection against vertical 'wrap around' there is no
protection from horizontal wrap if the left screen area
corner point is too close to the right hand edge of the
screen.

The size parameter gives three choices of display size. '
0' gives a large image about 3/4 full screen size, a '1' gives a
size of just less than a 1/4 screen, and '2' gives a smaller
image still.

Currently only two sizes are supported, and these only on
three screen modes. Size '1' is supported on Mode 15 and
Mode 21 screens,and size '0' is provided on Mode 13 screens.

The 'R' option which can optionally follow the size is
used to automatically replace the original screen image which
has been overwritten by the moving picture. Even if this
option is not specified, the original image may still be
replaced by using the *Restorescreen command later.

The moving image routine can be exited by either pressing
ESCAPE or any other key. If any other key is used then the
character for the key pressed will be in the keyboard buffer
on exit and can be removed as required using GET or INPUT.

When the routine is exited the video memory is
automatically left in the 'freeze' mode so no further '
Freeze' command is required.

In these three 256 colour modes the image is displayed
using 3 Bits of Red, 3 Bits of Green and 2 Bits of Blue which
does not require any dot patterning to achieve the necessary
colour shades.

The palette is automatioally set when the Moving image
mode is initiated.

6-12

*NEGATIVE [<R> <G> [<M>]]

RANGE: <0-1> <0-1> <0-1> <0-1>

DEFAULT: <0> <0> <0> <0>

No Parameters sets default values.

This command allows any of the three primary colour
signals to be inverted to obtain a negative image.

A fourth parameter allows a separate setting when
Digitising in the monochrome mode.

This command needs little explanation as the results are
fairly obvious. Some interesting effects can be obtained by
only inverting one or two colours when displaying oolour
pictures.

The separate settings of the colour parameters have no
effect on the monochrome image, only the fourth parameter
affects this mode of operation.

6-13

*NOISE [<coring level> [<edge detection>]]

RANGE: <0-255> <1-3>

DEFAULT: <0> <2>

No Parameters sets default values (No noise reduction)

Noise is a routine which helps to reduce the visible
noise in a displayed picture without notioeably degrading it
in other ways. It works in a similar manner to *FOCUS in
that it averages together the pixel being displayed with
surrounding pixels to remove the noise. However, the routine
only performs the averaging if it detects that the
surrounding pixels are all within a specified amplitude
range. If the routine detects that a transition with an
amplitude greater than the 'coring level' is present then the
averaging is not performed. This ensures that the
picture sharpness is maintained, unlike the *FOCUS routine where
it is deliberately reduced.

The routine works seperately in the horizontal and vertical
directions and the averaging is performed either with the
pixel either side of the pixel being displayed, or with the
pixels above and below the central pixel, or both, depending on
whether a vertical or horizontal transition is detected.

The transitions are detected by looking for a sequence of
pixels (horizontally or vertically). The edge detection
parameter specifies the number of pixels each side of the
central pixel used for this sequence in the following
manner. If the speoified number of consecutive pixels of a
certain amplitude, are followed by the same number of
pixels, which are all either greater or smaller than the
preceding pixels by an amount greater than the specified coring
level, then an edge has been detected. The SWI version
of this routine allows the extra facility of being able to
specify the number of successive pixels required to make an '
edge detection', separately for horizontal and vertical
directions.

Because of the complicated processing involved in this
routine it slows down the *Digitise operation quite
considerably.

If a coring level of 0 is specified (or no parameter is
present), then the Noise routine is disabled. note that this
routine cannot be used at the same time as the Focus,
Outline, or Smooth routines. If this routine is enabled then
the others will be disabled.

6-14

*OUTLINE [<coring level> [<edge detection>]]

RANGE: <0-255> <1-3>

DEFAULT: <0> <2>

No Parameters sets default values

Outline is a command which produces a picture consisting of
just the outlines of the video picture stored in the podule ram.
The outline is drawn wherever the video picture has a
transition exceeding the specified 'coring level'. The edge
detection is performed in the same way as for *Noise, and
details of how this is done can be found on page 6-14.

As well as the parameters available with this command,
the routine takes notice of other settings such as *Bits
etc. which can significantly affect the results with pictures
which may have outlines which are difficult to detect.

In colour modes outlines are drawn seperately for each of
the three colours, red, green and blue. To obtain a black
and white outline set the mono option using *MONO 1 which then
adds together the R,G & B signals in the usual proportions before
performing the edge detection.

A parameter of 0 or no parameter disables the routine.

6-15

*PALETTE

No Parameters required.

This command sets the palette for any given screen mode and
the setting will depend on whether the monochrome option has
been selected.

Colour images can only be obtained in 16 or 256 colour modes
and in the case of 16 colour modes the palette command sets up
the 16 available colours to give the best possible colour
rendering. If the monochrome option has been enabled using the
*mono command then the palette will be set up entirely differenty
to give 16 levels of grey.

With the 256 colour modes however, there is not much
difference between the palette settings for colour and
monochrome and it is quite possible to obtain reasonable
colour pictures with the palette set up for mono operation
and vice versa.

Modes with less than 16 colours will always have their
palette set up to give the best possible monochrome picture,
but by setting up your own palette you can achieve some
interesting colour effects.

This command might appear to be unnecessary as the
palette can be set automatically when issuing the *Digitise
command. The reason for providing it is that a program may
wish to set the palette before any Digitise commands are issued.
This would enable text to be set to a certain colour which
will then not change when the Digitise command is eventually
used.

6-16

*PRIMARY [<R> <G>]

RANGE: <0-1> <0-1> <0-1>

DEFAULT: <0> <0> <0>

No Parameters sets default values.

This command sets which of the primary colours will be used
to make up the screen image. It effectively allows any of the
three colours to be switched off, giving eight possible
variations (including no output if all three are switched off!)
. A parameter value of 0 turns a colour on and a value of 1
turns it off.

If the input signal was pure white then the colours
obtained for the different combinations would be White,
Yellow, Cyan, Green, Magenta, Red, Blue and Black.

The command works for the monochrome option as well,
removing the given signal from the calculation of the
monochrome image from the equation:- 3/8R + 1/2G + 1/8B.

6-17

*RESTORESCREEN

No parameters

This command is used to restore the screen image
which has been erased by the 'moving' picture routine.

This enables the incoming video to be monitored for '
grabbing' purposes, while building up multiple pictures on
screen, without having to worry about erasing part of the
picture already on the screen.

Although this can be done by specifying the 'R' parameter
after the *Moving command, it is sometimes convenient to be
able to keep the 'frozen' final image from the moving
routine until you decide to replace it with the original screen
image using this command.

This command may give unpredictable results if issued
without having previously used the *Moving command.

6-18

*SAVEAIM <filename>

This command saves a file in a format suitable to be read
by the 'AIM' software which is currently available in the public
domain.

The format is 256 * 256 pixels monochrome, and the file
is produced by averaging the 512 pixels available across the
line to give the best possible results.

The monochrome image is produced as a result of adding
together the R, G and B signals in the ratio 3/8R + 1/2G +
1/8B.

*SAVEFSI<filename>

This oommand saves a file which can be used by the
ChangeFSl software available from Roger Wilson at Acorn.

This software can perform various video processing
functions using error diffusion dithering techniques.

*SAVESCREEN <filename>

This command saves an area of screen to the current or
specified filing system.The area saved is that currently
defined using the *Screenarea or *Setscreen commands.

Of the three ways available to save images (*Savevideo
and *Savesprite are also available), this uses the least amount
of disc space for a given size of image. It is most useful for
saving images which only need to be loaded back to the screen
at the same size as the saved area.

*SAVESPRITE <filename>

This command saves the specified screenarea as an Acorn
Sprite Image. The image is stored with the palette information
included in the file.

This routine is extremely useful as it provides an interface
between the Digitiser and all other software which is
compatible with Sprite Images. By using a file oreated in this
way, the image can be edited with 'Paint' and then reloaded into
the Digitser to be merged with other images if required.

This routine also provides access to printer drivers either
directly or through the 'Paint' applioation. More details of
this can be found under the section on printing.

6-19

*SAVEVIDEO <filename> [<Bits> [<Resolution>]]

RANGE: <filename> <0-2> <0-3>

DEFAULT: <filename> <0> <0>

This command saves the complete image stored in the
Podule Video Ram.

Although this method of saving does use a large amount of
disc space it has the advantage that the picture is stored
with the full resolution of the Video Ram. This means that
when reloaded into Video Ram all the features of the
software may be used to redisplay the image on the screen.

The two optional parameters following the filename can be
used to reduce the amount of disc space required to store
the image at the expense of image quality.

The first parameter allows less than the full 16 bits to be
saved to disc. The options are numerical values 0,1 or 2. 0
- Saves 5 bits Red, 6 bits Green, 5 bits Blue.

1 - Saves 4 bits Red, 4 bits Green, 4 bits Blue.
2 - Saves 3 bits Red, 3 bits Green, 2 bits blue.

The second parameter allows the podule ram to be saved
with half the horizontal or vertical resolution. This is
most useful where the image is required to be stored to disc
but it is known than when it is to be used later it will
only be used at a scale of about half screen size. This
means that if half resolution mode is used, the image will
have a noticeable loss of quality if reloaded to full screen
size, but the loss of quality will not be visible at half screen
size or less.

0 - Full resolution
1 - Half horizontal resolution
2 - Half vertical resolution
3 - Half horiz and vertical resolution

The saving of disc space is quite substantial using the above
techniques, and still enables all the functions provided
by the other *commands to be used once the image is reloaded.

A full resolution image will use 256k of disc space.
Option 1 for the bits will reduce this to 192k, and option 2
will reduce it to 128k.Using half resolution mode will
reduce the size further by a factor of 2 for both horizontal
and vertical modes.

By using all the reduction options the size can be reduced
from 256k to only 32k, and if the image is only required at
about 1/4 screen size or less then the loss of quality is only
slight.

6-20

*SCREENAREA [<left> <bottom> <right> <top>]

RANGE: <0-1280> <0-1024> <0-1280> <0-1024>

DEFAULT: <0> <0> <1280> <1024>

No Parameters sets default values.

This command sets the area of screen on which the image
will be displayed. Any chosen size of image (set using
*Videoarea) will be scaled to fit in the selected screen
area.

If no parameters are specified after the Screenarea command
then the default values for a full screen area are used.

Although the range of values shown above apply to most screen
modes, modes which have a horizontal graphics resolution of
1056 pixels, (Modes 16,17,& 24) do not conform to the usual
Acorn screen coordinates. In the case of these screens the
maximum sizes for the horizontal values are 2112 instead of
1280.

6-21

*SETSCREEN

No Parameters required.

This command offers an alternative way of setting the
screenarea parameters by displaying a variable size box on
the screen which is controlled by the mouse.

Initially the size of the box is set to a default size of
one quarter screen area, but subsequent calls will set the box
to it's last size and position on screen. This enables multiple
images of exactly the same size to be placed on screen easily.

Moving the mouse with no buttons pressed simply moves the
box around the screen. Holding the left mouse button and moving
the mouse changes the size of the box in a constant 5/4
ratio which maintains the correct picture aspect ratio.

Holding the centre mouse button while moving the mouse
allows the size to change independantly in the X & Y
directions.

The right hand mouse button is used to exit the routine and
update the screen area coordinates. If Escape is used to exit
the routine then the coordinates are not updated.

This routine will read the state of the VDU drivers on
entry, enable them if disabled for it's own use, and then
restore them to their previous state on exit. This allows
the user to disable the VDU drivers if required without
preventing the box from being displayed on screen.

6-22

*SETVIDEO

No Parameters required.

This command offers an alternative way of setting the
videoarea parameters by displaying a variable size box on
the screen which is controlled by the mouse.

When using this method of setting the videoarea you must
always regard the screen as displaying the full area of the
video ram. This means that you can only use the box to
select an exact area of picture when the full picture is
displayed on the full screen area. If a 'zoomed in' picture is
displayed then positioning the box over a particular part of
the picture will not select that part of the picture to the
video area coordinates. Although this might appear to be a
disadvantage it does provide a way of 'zooming out' which
would otherwise be impossible.

One possible solution is to always keep a full size image
of the video ram stored on a shadow soreen, whioh can be selected
when a new video area is to be defined.

As with the SETSCREEN command moving the mouse with no
buttons pressed simply moves the box around the screen. Holding
the left mouse button and moving the mouse changes the size
of the box in a oonstant 5/4 ratio which maintains the
correct picture aspect ratio.

Holding the centre mouse button while moving the mouse
allows the size to change independantly in the X & Y
directions.

The right hand mouse button is used to exit the routine
and update the video area coordinates.If Escape is pressed the
routine will be exited without updating the coordinates.

This routine will read the state of the VDU drivers on
entry, enable them if disabled for it's own use, and then
restore them to their previous state on exit. This allows
the user to disable the VDU drivers if required without
preventing the box from being displayed on screen.

6-23

*SMOOTH [<off/on>]

Range: <0-1>

Default: <0>

No Parameters sets default option. (No smoothing)

This command works in a similar way to *FOCUS but detects
the amount by which a picture has been 'zoomed in', and selects
the best ratio of defocussing to suit the amount of zoom.

For pictures which are zoomed in to a large extent the
routine can be fairly slow if a full sized image is being
processed.

The routine cannot be used at the same time as *FOCUS,
*OUTLINE or *NOISE.

6-24

*UNFREEZE

No parameters

This command is used to re-enable updating of the
video ram by the incoming video signal.

Clearly, this will not affect any picture actually displayed
on the computer screen, but will simply change the image that
will produoe the next picture when *Digitise is used.

6-25

*VIDEOAREA [<left> <bottom> <right> <top>]

RANGE: <0-1024> <0-1024> <0-1024> <0-1024>

DEFAULT: <0> <4> <1020> <1024>

No Parameters sets default values.

This command sets the area of the video ram to be used
for displaying on the screen. By selecting a small area of
video ram and a large screen area a 'zoomed in' image will
be obtained. There is no limit to how far you can zoom in if
small enough video areas are chosen, but the individual
pixels become more and more visible the further you zoom in.

If no parameters are specified after the Videoarea command
then the default values for a full video area are used. It
should be noted that the default values are not exactly the
maximum values. This is because the bottom row of the video
ram and the right most pixel horizontally do not contain
valid video pixels.

6-26

SWI COMMANDS

This section of the handbook gives details of all the SWI
commands currently available in the Digitiser Module
software. For newcomers to these commands some details of how
to use them are included in the section on Basic programming,
and more details can be found in the Acorn Archimedes manuals.

Digitise_GetPixel &40B00

On entry: R0 = Red bits (0-5)
R1 = Green bits (0-6)
R2 = Blue bits (0-5)
R3 = XAddress (0-511)
R4 = Y_Address (0-255)

On exit: R0-R4 & R8-R13 preserved
R5 = Red pixel
R6 = Green pixel
R7 = Blue pixel

This routine allows reading of the pixel values stored
in the podule ram. The number of bits returned for
each colour can be specified in R0-R2, and the
address in the podule ram is specified in R3-R4. The
values returned are always adjusted so that the most
significant bit returned is in bit 7 of the byte.

Digitise_PutPixel &40B01

On entry: R0 = Red pixel
R1 Green pixel
R2 = Blue pixel
R3 = X_Address
R4 = YAddress

On exit: R0-R13 preserved

This routine allows pixels to be stored in
specific locations in the podule ram. Input bytes
should be adjusted so that the most significant
bit is in bit 7 of the byte. For Red and Blue,
bits 0-2 will be ignored and for Green, bits 0-1 will
be ignored. Note that because the Digitiser works by
transferring a complete row of pixels at a time to
and from the podule ram, the overheads on this call
are very high if a complete row is to be
transferred. The next routine 'Digitise_PutRow' is
far more efficient if more than a few pixels are
to be stored to a given row.

7-1

Digitise_PutRow &40B02

On entry: R0 = Pointer to 1536 byte buffer
R1 = Row number

On exit: R0-R13 preserved

This routine transfers a complete row of video
pixels from a buffer set up by the user, to the
podule ram. The buffer is in the form:- R1,G1,B1,R2,
G2,B2...etc up to 512 * 3 pixels. The bytes should
be in the same form as for PutPixel.

This routine is much faster than 'PutPixel' if more
than a few bytes are to be transferred. The
opposite routine 'LoadRow' is not necessary because
'GetPixel' keeps track of which row is currently
buffered in memory and therefore does not suffer
from the same speed overheads as 'PutPixel'.

Digitise_Display &40B03

On entry: R0 0 For normal display mode
1 for test sawtooth mode.

R1 = Shadow screen number
R2 = 0 Pallette set

1 Palette unchanged

On exit: R0-R13 preserved

This routine performs the same as *Digitise.

Digitise_VideoArea &40B04

On entry: R0 = Left coordinate (0-1024)
R1 = Bottom coordinate (0-1024)
R2 Right Coordinate (0-1024)
R3 = Top coordinate (0-1024)

On exit: R0-R13 preserved

This routine is the same as *Videoarea

7-2

Digitise_ScreenArea &40B05

On entry: R0 = Left screen coordinate (0-1280/2112)
R1 = Bottom screen coordinate (0-1024)
R2 = Right screen coordinate (0-1280/2112)
R3 = Top screen coordinate (0-1024)

On exit: R0-R13 preserved

This routine is the same as *Screenarea

Digitise_SetVideo &40B06

On entry: R0 = 0 Performs setvideo
<>0 Read video area coordinates

On exit: R0 = Left coordinate
R1 = Bottom coordinate
R2 = Right coordinate
R3 = Top coordinate
R4-R13 preserved

This routine performs the same as *Setvideo with
the additional ability to be able to read the
actual coordinates set up by the routine. It is
also possible to use this routine to just read the
coordinates without actually performing *Setvideo.

Digitise_SetScreen &40B07

On entry: R0 = 0 Performs setscreen
<>0 Read screen area coordinates

On exit: R0 = Left coordinate
R1 = Bottom coordinate
R2 = Right coordinate
R3 = Top coordinate
R4-R13 preserved

This routine performs the same as *Setscreen with
the additional ability to be able to read the
actual coordinates set up by the routine. It is
also possible to use this routine to just read the
coordinates without actually performing
*Setscreen.

7-3

Digitise_Fileop &40B08

On entry: R0= Fileaction

R1= Pointer to filename

R0 = 0 Savescreenarea
R0 = 1 Loadscreenarea
R0 = 2 Savevideo ram
R0 = 3 Loadvideo ram
R0 = 4 Savesprite
R0 5 Loadsprite
R0 6 SaveAIM file
R0 = 7 SaveChangeFSl file

On exit: R1-R13 preserved

This routine allows all the fileactions to be
performed according to the value of R0 on entry.

Digitise_Setups &40B09

On entry: R0 = Action

R0 = 0 Performs freeze
R0 = 1 Performs unfreeze
R0 = 2 Performs default R0
= 3 Performs palette
R0 = 4 Performs restorescreen

On exit: R0-R13 preserved
This routine performs a number of digitiser
functions depending on the value of R0 on entry.

Digitise_Bits &40B0A

On entry: R0 Red bit setting
R1 = Green bit setting
R2 = Blue bit setting

On exit: R0-R13 preserved

This routine performs as *Bits

7-4

Digitise Flip &40B0A

On entry: R0 0 Horizontal flip off
= 1 Horizontal flip on

R1 = 0 Vertical flip off
1 Vertical flip on

On exit: R0-R13 preserved

This routine performs as *Flip

Digitise_Image &40B0C

On entry: R0 = 0 Store direot to screen
= 1 AND's with existing screen byte
= 2 OR's with existing screen byte
= 3 EOR's with existing screen byte

On exit: R0-R13 preserved

This routine is the same as *Image

Digitise Mono &40B0D

On entry: R0 = 0 Colour output
= 1 Monochrome output

On exit: R0-R13 preserved

This routine performs as *Mono

Digitise Moving &40B0E

On entry: R0 Size of moving image
R1 = 0 Screen not restored

= 1 Automatic restoring of screen

On exit: R0 = 1 If exited via ESCAPE key
= 0 If any other key (still in buffer)

R1-R13 preserved

This routine is similar to *Moving

7-5

Digitise_Negative

On entry: R0 0
1

&40B0F

Red normal
Red inverted

R1 = 0Green normal
= 1Green inverted

R2 = 0Blue normal
= 1Blue inverted

R3 = 0Mono mode normal
= 1Mono mode inverted

On exit: R0-R13 preserved

This routine is similar to *Negative

Digitise_Primary &40B10

On entry: R0 = 0Red signal on
= 1Red signal off

R1 = 0Green signal on
= 1Green signal off

R2 = 0Blue signal on
= 1Blue signal off

On exit: R0-R13 preserved

This routine is similar to *Primary

Digitise_Average &40B11

On entry: R0 No. of repeats
R1 = Type

On exit: R0-R13 preserved

This routine is similar to *Average

Digitise_Focus &40B12

On entry: R0 = Amount of defocus

On exit: R0-R13 preserved

This routine is similar to *Focus

7-6

Digitise_Noise &40B13

On entry: R0 = coring level
R1 No of H pixels used for edge detection (1-3)
R2 = No of V pixels used for edge detection (1-3)

On exit: R0-R13 preserved

This routine is similar to *NOISE with the
additional facility of being able to specify the
number of pixels each side of the central one,
separately for H & V edge detection.

Digitise_Outline &40B14

On entry: R0 = coring level
R1 = No of H pixels used for edge detection (1-3)
R2 = No of V pixels used for edge detection (1-3)

On exit: R0-R13 preserved

This routine is similar to *OUTLINE with the
additional facility of being able to specify the
number of pixels each side of the central one
separately for H & V edge detection.

Digitise_Smooth &40B15

On entry: R0 = 0 No smoothing
1 Smoothed output

On exit: R0-R13 preserved
This routine works in the same way as *SMOOTH

Digitise_Sequence &40B16

On entry: R0 = Pointer to buffer
R1 = No. of images required
R2 = No. of frames between images
R3 = 0 for 256 pixels by 200 rows

= 1 for 256 pixels by 100 rows
On exit: R0 = Next free address in buffer

R1-R13 preserved

This routine allows a sequence of images to be
grabbed and stored in a specified area of computer
memory. Normally the gap between images is
determined by the size of the grabbed image and
the operating speed of the computer. If longer
gaps are required then they may be extended by a
specified no. of frames. You should ensure that the
buffer is large enough to hold the specified no. of
images as no checking is performed to prevent writing
beyond the end of the buffer.

7-7

Digitise_Spritelnit &40B17

On entry: No entry parameters

On exit: R0 preserved
R1 Pointer to Sprite control block
R2 Pointer to Sprite

This routine initialises a sprite area to be used
with the following SWI to enable a moving image to
be used in a multitasking manner.

Digitise_SpriteRead &40B18

On entry: No entry parameters

On exit: R0 = 0 Do nothing
R0 <> 0 New Sprite available
R1 Pointer to Sprite control block
R2 Pointer to Sprite

This SWI in conjunotion with the previous one enables
a moving image to be displayed while allowing other
tasks to be performed at the same time. This SWI
should be inoluded in the multitasking loop
and depending on the contents of R0 on exit a new
sprite may be drawn using the relevant SpriteOp.

Digitise_SpriteMov &40B19

On entry: R0 = Size of moving image
= 0 for 504 x 200 pixels
= 1 for 252 x 100 pixels
= 2 for 126 x 52 pixels

R1 = 0 for normal operation
= 1 to write sprite without unfreezing.

On exit: R0 = 0 Do nothing
= 1 New sprite available.

This SWI is similar to the previous pair in that
it enables a moving image to be obtained in a
multitasking manner. It differs in that three
sizes of moving image are available and in the way
the sprite is drawn. This SWI does not actually
produce a Sprite. It will normally draw the image
straight to the soreen, but by using the relevant
SpriteOp SWI, the image may be redirected into a
Sprite and then placed on the soreen.

7-8

ERROR Nos. and MESSAGES

There are various dedicated errors which can be generated
by the software module and these are detailed below along with
their respective error numbers. The error messages should be
self explanatory.

E r r o r No. Error Message

&00802E00 Pineapple Digitiser Podule not present

&00802E01 Parameters Incorrect

&00802E02 Parameter out of Range

&00802E03 Negative Width Value

&00802E04 Negative Height Value

&00802E05 Insufficient Parameters

&00802E06 Filename Required

&00802E07 Incompatible Mode

&00802E08 Not a Digitiser Screen File

&00802E09 Not available in this mode yet

&00802E0A Not a video ram file

&00802E0B Only in 256 colour modes

&00802E0C Not in mono mode

8-1

WRITING BASIC PROGRAMS

This section is provided for those not very experienced
at writing Basic programs, but who want to be able to write
simple programs using Digitiser commands. It is not intended
as a comprehensive Basic tutorial as there are many other
books which cover this very adequately. What it does explain
are a few techniques which are very useful particularly
where variables are to be included as parameters to
*commands.

Before attempting to write and run your own Basic
programs you should set up your Archimedes computer to boot
up in BASIC rather than the Desktop, and configure the RMAsize
and Screensize options to the required amounts.

To make the computer boot up in Basic type:
*CO.LANGUAGE 4 <RETURN> from a * prompt.To set the RMAsize
to 128k type:
*CO.RMASIZE 128K <RETURN>
and to set the screensize to 160k (for a mode 15 screen)
type:
*CO.SCREENSIZE 160K <RETURN>

follow these configurations by a CTRL/BREAK.

You will find it easiest to write your programs using the
BASIC EDITOR supplied on one of the applications discs. See
the Archimedes handbook for details of how to use this program.

Because *commands are passed directly to the operating
system by Basic programs they cannot normally contain
references to Basic variables. Hence the line:-

10 *SCREENAREA 50 150 600 75

is perfectly acceptable, but

10 L%=50:B%=150:R%=600:T%=75
20 *SCREENAREA L% B% R% T%

is not acceptable and would generate an error.

Clearly this is a big disadvantage as far as writing
comprehensive Basic programs is concerned, and Acorn
overcame the problem early on in BBC BASIC by introducing
the keyword 'OSCLI' which allows Basic variables to be included
in *command statements by converting the command line into a
string. The syntax of this command is best shown by means of
the previous example which could be written as follows:-

9-1

20 OSCLI"*SCREENAREA "+STR$(L%)+" "+STR$(B%)+ "
 "+STR$(R%)+" "+STR$(T%)

Note that spaces must be included in the string just as
if it was written out as in the first example. Although writing
the command out as shown above works well it is somewhat
cumbersome if it needs to be used frequently in the program. A
better system is to use a procedure to include the OSCLI
statement which would then enable multiple calls to be made
using a single PROC statement with the variable parameters in
brackets. This would be done like this:-

10 L%=50:B%=150:R%=600:T%=75
20 PROCscreenarea(L%,B%,R%,T%)

1000 DEFPROCscreenarea(left%,bottom%,right%,top%)
1010 OSCLI"*SCREENAREA "+STR$(1eft%)+" "+STR$(bottom%)+ "

 "+STR$(right%)+" "+STR$(top%)
1020ENDPROC
A simple procedure can be written for every *command which is

required in a particular program. This enables variables to be
used easily, and also overcomes the other constraint of
*commands which is that they may only be used at the end of
BASIC program lines. Once converted to a procedure they can be
used anywhere within a Basic line.

The following program is a complete example utilising two
different *commands, which puts 16 copies on screen of whatever
picture is stored in podule ram. The pictures are alternately
flipped horizontally and vertically. It is assumed that the
computer is in Basic and the Digitiser module is already
installed before the program is run:

5 MODE15
10 H%=0:V%=0
20 FOR Y%=0 TO 768 STEP 256
30 FOR X%=0 TO 960 STEP 320
40 PROCscreenarea(X%,Y%,X%+320,Y%+256)
50 PROCflip(H%,V%)
60 *DIGITISE
70 H%=H% EOR 1
80 NEXT X%
90 V%=V% EOR 1
100 NEXT Y%
110 END
1000 DEFPROCscreenarea(left%,bottom%,right%,top%)

1010 OSCLI"*SCREENAREA "+STR$(left%)+" "+STR$(bottom%)+
" "+STR$(right%)+" "+STR$(top%)

1020 ENDPROC
1030 DEFPROCflip(hor%,ver%)
1040 OSCLI"*FLIP "+STR$(hor%)+" "STR$(ver%)
1050 ENDPROC

9-2

Another way of incorporating variables into the Digitiser
commands is to use the SWI version of the *command. The
Digitiser software module provides a SWI version for all the
existing *commands as well as some extra ones. These are mainly
provided for use in assembly language programs, but BASIC
provides a command called 'SYS' which gives access to those
SWI routines. The syntax of the SYS command is as follows:-

SYS"DigitiseCommand",R0,R1,R2...TO,var1%,var2%....etc.

The name following SYS can either be the SWI name in quotes or
just the SWI number. R0,R1,R2 etc. represent the processor
register that a particular variable will be passed to, and
these will depend on the particular SWI command being
used. The rest of the line including the keyword 'TO' is
optional and is only required if the SWI routine is going to
return a value to one of your BASIC variables. An example of
this would be the SWI"Digitise_GetPixel" routine which
returns pixel values from the podule ram.

To see which processor registers are used by a particular
SWI routine check the section on SWI commands. The previous
example program written using SYS would be as follows:-

10 MODE15
20 H%=0:V%=0
30 FOR Y%=0 TO 768 STEP 256
40 FOR X%=0 TO 960 STEP 320
50 SYS"Digitise_ScreenArea",X%,Y%,X%+320,Y%+256
60 SYS"Digitise_Flip",H%,V%
70 SYS"Digitise_Display" 80
H%=H% EOR 1
90 NEXT X%
100 V%=V% EOR 1
110 NEXT Y%
120 END

One command which needs special mention is *MOVING. As this
is a continuous operation command, a way has to be provided to
exit the routine and continue with the next line of the BASIC
program. Two ways of leaving *MOVING are provided. One way is to
simply press ESCAPE which exits the routine and generates an
'Escape Error' which can be detected with an ON ERROR
routine.

To cater for the possibility that other keys might need
to be used to exit the routine, and the fact that the program
might need to detect which key was actually pressed to exit
the routine, another method is also provided.

If a key other than ESCAPE is pressed during *MOVING then
the routine is exited as before, 'freezing' the last video

9-3

field, but in this case the key which was pressed is left in
the keyboard buffer so that it's value may be easily read. E.g.
.-

10 *MOVING 1
20 X%=GET
30 PRINT CHR$(X%)

The above example exits *MOVING when any key is pressed
and the key value is removed from the buffer in line 20. If
you don't wish to know which key was pressed to exit the
routine, then you should follow the *MOVING command with *FX21,0
to clear the keyboard buffer.

9-4

USING THE APPLICATIONS PROGRAMS

There are currently five applications programs inoluded with
the Digitiser. Two of these are multitasking Desktop programs.
Also supplied on the two discs are a number of 'Video' files
which can be used to demonstrate the Digitiser software without
the need for a video signal.

Both the multitasking applications will run in their own
right with 1Mb of memory, but to achieve image transfer to other
applications such as Paint will almost certainly require
2Mb.

The most powerful of the multitasking programs is !DIGI
on disc 2 and this will be described first.

!DIGI

All the normal RiscOS guidelines are followed and for
those familiar with multitasking applications most of the
operations will be fairly straightforward. A full
description is however given as there are some areas which
may not be obvious.

Loading the Program

If you have a hard diso system then the first thing to
do is to copy the !DIGI application from the floppy disc
supplied, to your hard disc in the normal way.

For those with just a floppy system the !DIGI
application can be run simply by double clicking with Select
on the !DIGI file in the usual way. You will need access to
the !System directory on Apps1 so it may be easiest to set up
a disc containing this and the !DIGI application. If your
Desktop is not set up to run in Mode 15 then a message will
appear recommending that you change to Mode 15. The
Digitiser software will operate in any screen mode but Mode
15 (or any higher resolution 256 colour mode) will give best
results. The Mode may be easily changed by clicking with the Menu
button over the Palette Icon.

After a few seconds the !DIGI Icon should appear on the
Icon bar together with a window which may contain a moving
picture (if you have a video signal connected to the Digitiser)
, or just 'garbage' if no signal is present.

Clicking Menu over the !DIGI Icon will allow you to quit
the application if required.

Closing the 'Digi Source' window will leave the Icon present
on the Icon bar and the application can be restarted by
clicking with Select on the !DIGI Icon.

10-1

Loading Video files

If you don't have a video signal available but still
want to investigate the Digitiser features you can load a video
file into the podule ram simply by dragging the file to
either the !DIGI Icon or to the 'Digi Source' window. This
will take a few seconds to load and then the image will be
displayed in the Source window.

An important concept with the Digitiser is that the Source
window shows the image that is present in the Digitiser Podule
memory. All of the Digitiser software analysis commands (which
generate Sprites) will operate on this image and once the
image is unfrozen it will be lost unless it has been saved as a
Video file.

Freezing and Unfreezing

If you have a video signal present and have adjusted the
controls as described in section 1 you can experiment with
grabbing images.

As has been described previously the 'Digi Source'
window shows the current image in the podule ram. When the ram
is 'unfrozen' the image will be constantly changing to show the
changing input signal. To freeze any required image into the
Podule Ram simply click over the Source window with the Select
button.

To unfreeze the image again double click Adjust over
this window. Note that when loading video images into the podule
ram, the ram is automatically put into 'freeze' mode.

Digitising to produce a Sprite Image

There are two ways to start the Digitising process which
generates a sprite image. Double clicking with Select over the
Source window will start the process and after a short while a
second window, the 'Digi Digitised' window will appear. This
will initially be about a quarter screen size, but the actual
digitising process will have created a full screen size sprite,
and the window may be sorolled or expanded to full size to show
the whole image.

Another important concept here is that this image is
produced according to whatever parameters have been set up by
the Menu options. This Sprite image will not be lost if the
Source window is 'unfrozen', - it may still be saved as a
Sprite file, but no more analysis may be performed on this
particular image once the Source window contains a new
image. (Unless it has been saved as a video file which can then
be reloaded into the podule ram).

10-2

Menu Options - Saving Images

Clicking with Menu over the Source or Digitised windows
will produce a list of options.

One of these options is 'Digitise' which is the second
method of starting the Digitise operation and may be more
convenient than double clicking when the menu options are
displayed.

The-first option is 'Save' and works in the normal
RiscOS manner. If you have just digitised an image then the
default file type will have been set to 'Sprite'. To save
the Sprite image simply drag the Sprite Icon to a directory
viewer or to another multitasking application. If the Sprite
name is a full file specification then it is possible to
just olick on the 'OK' box.

The second option is 'FileType' and this gives four sub-
options for saving the image in Sprite, Video,
ChangeFSl, or AIM format. ChangeFSl and AIM options are to
allow saving the image in a raw format suitable for use by
these programs.

The video format has further options available desoribed
fully in section 6-20.

Apart from the options for scaling the Sprite image, and
the Sequence option, all of the other menu items are
desoribed in section 6 of this handbook under their
respective '*' command.

Scaling and Zooming the Image

One of the most powerful features of the Digitiser software
is the ability to scale and zoom any portion of the image to any
required size.

To digitise an area of image which is less than the full
source window a box may be dragged in the Source window
using the Select button. Once the box size has been set, it
may be moved around the window by dragging with Adjust.

To remove the box simply drag a box to the full size of
the Source window or just drag a tiny box. The box produced in
this way may not be exactly 5:4 aspect ratio but when Digitised,
the resulting sprite will be produced to the same aspect ratio,
so that the image is undistorted. In this case the largest
of the X or Y dimensions is used to set the Sprite size.

If the 'Distort' option is selected from the menu, then

10-3

the chosen video area will digitise into a 5:4 Sprite and
thus the aspect ratio may be deliberately distorted.

The final Sprite size may be set using the 'Image Size'
setting which is a sub-menu from 'Options'. This allows a Sprite
of any size to be generated and the apsect ratio may either be
locked to 5:4, or set to any desired value.

A further method of setting the Sprite size is available
by cropping the image once it has been digitised. This is
achieved by dragging out a box over the 'Digitised' window in
a similar manner to that used for the Video Area. Once the
image has been oropped it is not possible to restore the full
area other than by re-digitising the image. Note that a cropped
image is saved as a sprite in the current screen mode. All
unoropped Sprites are saved as Mode 15 images.

Sequences

One new option available with the !DIGI software is the
ability to save a sequence of frames from a video input signal.
It is not possible to grab every single frame of an image, but
if the smallest image size is ohosen, then even with an Arm2
processor it is possible to grab approximately every third
frame. For speed, colour resolution is limited to 8 bits. (256
colours).

The size of image may be set to Small, Medium, or Large
and the number of images which can be grabbed into available
memory, and the speed with which they can be grabbed, will depend
to a large extent on the size chosen. Even with a 1Mb computer
you can grab up to 33 small images.

The amount of memory that will be used by the resulting
Sprite is shown, (and limited by available memory), so that if
you only have floppy discs you can restrict your files to less
than 800k!

The amount of time between grabs may be set by
specifying the number of frames. The minimum setting allowed
will depend on the size of image chosen. If the time
specified is greater than 25 frames then multitasking operation
is possible allowing, say, time lapse images to be grabbed while
performing other tasks.

When the complete group of frames has been grabbed a new
window will display as many of the images as possible.
Clicking Menu over any of the images will allow the complete
sequence to be saved as a Sprite. Individual frame nos. will
also be displayed and individual frames may be deleted from
the set. Double clicking Select will display that particular
frame full size in the 'Digitised' window. This may then be saved
as a single Sprite if required.

10-4

Using !DIGI with PAINT

It is worthwhile running the Paint application alongside
the Digitiser as the ease of transferring Sprites into Paint
by dragging them from one window to another enables many images
to be visible at the same time. The name of each successive
Sprite saved will automatically be appended with increasing
letters of the Alphabet to avoid having to type a new name each
time a new Sprite is appended into the Paint window.

Note that the !DIGI software allows direct memory
transfer to suitable receiving applications if sufficient memory
is available. If not, then a WimpScrap file is set up on the
current diso to allow image transfer. Floppy users note that a
disc with sufficient space available must be present in the
drive if insufficient memory is available for the transfer.

!PINEAPPLE

This application is produced by Ace Computing and is also
fully RiscOS based.The main difference is in the way scaling
and zooming are achieved.

The size of the saved Sprite is determined by the Sprite
save box which enables the size to be set using numeric
entry.

The size of the Digitised window may be reduced to show
just a certain part of the Sprite, and if the option to save a
'visible window' is used, then this portion of the image will
be scaled to fit the Sprite size requested to obtain the
final image. This allows 'zooming in' to be performed.

!MICCI

This non-multitasking application is produced by
Chessfield Software and is particularly easy to use.

An enhanced version of this program is available
directly from Chessfield Software which has the added
ability to add anti-aliased text to the images, edit the video
ram, and produce an audio-visual type display where mixing
between a series of images can be performed. Details of this
are available from:-
Chessfield Software, 61 Chessfield Park, Little Chalfont,

Bucks, HP6 6RU.

Instructions are supplied on the ReadMe file which can
be loaded into Edit and printed out if required.

10-5

MAINKEYS

This program is particularly useful if you are planning
to write your own software as the effects of the various '*'
commands can be easily seen. By examining the BASIC program
file the BASIC programming techniques used can be studied.

When first started, the program should display a moving
image in the centre of the screen, (this assumes that the
Digitiser controls have been set as described in the '
Getting Started' section and a video signal is present).

Pressing the 'D' key will remove the moving image and
display it full size on the computer screen. Pressing SPACE
will go back to showing a moving image in the centre of the
screen again.

All the various features can be tested by using certain
keys on the keyboard to set them up, followed by the 'D' key
to Digitise the current settings.

As an example, if the 'P' key is pressed, a box appears
showing the current settings of the 'PRIMARY' parameters. New
parameters can be entered and then 'D' pressed to show the
results.

Two of the most useful keys are the 'C' and 'V' keys. 'C'
allows you to set up the area of screen which will be used to
display the image when digitised, and 'V' allows the area of
the picture to be set which will be displayed. The areas are
set using the mouse by simply moving the mouse around to move
the area, holding the left mouse button depressed to change the
size of the area in a fixed aspect ratio, and holding the centre
mouse button to ohange the area in a variable aspect ratio.
Pressing the right hand mouse button will exit the routine
and set up the area, or pressing ESCAPE will exit the
routine leaving the area unchanged.

The 'V' key selects a 'shadow screen' to set the video area,
and if the shadow screen does not already contain the full
image of the podule ram, then there will be a short wait
while this loads. Once loaded, you can switch instantly from a
full size picture to the actual soreen you are using to
display your images.

The 'HELP' screen selected with the 'H' key also uses the
shadow screen, so this may be selected without destroying any
images you may be building up on the main screen. The help
screen shows which keys perform which functions, and also
shows the current settings. Settings may also be changed
from this screen in the usual way.

10-6

The best way to use this program to build up different
images on screen, is to use the 'G' key to 'grab' an image at
the appropriate moment from the moving image. Then set up the
screen area you want to display it in, (and video area if
required), and then press 'D' to actually perform the
digitising. You can of course set up any of the other
options before doing this if you wish. In fact you can put lots
of different copies of the same image on screen at the same
time with different option settings to see the
differences!

A summary of the keys used is given at the end of this
section.

MULTIPICS

This is a very simple demo program which stores multiple
images on screen either from a key press or automatically. This
is also quite useful to show how a simple BASIC program can be
written to utilise the Digitiser features.

After starting the program by double clicking on the !
MULTIPICS Icon you will be asked how many pictures across the
screen you require. Start by entering 4 <RETURN> then also
enter 4 for pictures down the screen. Next you will be asked if
you want continuous display. Answer 'Y' and then enter '0' for
seconds between frames.

You should now get a continuous display of 16 pictures on
screen which update every couple of seconds. You can enter values
to get as many as 100 pictures on screen at a time if you
wish. The other option for non-continuous display lets you grab
pictures when you wish by pressing the SPACE BAR.

10-7

Key Summary for MAINKEYS

Use the HELP soreen ('H' key) for latest key funotions.

A AVERAGE
B BITS
C SETSCREEN
D DIGITISE
E SCREENAREA
F FLIP
G FREEZE
H Help Screen
I IMAGE
J VIDEOAREA
L LOADSCREEN
SHIFT/L LOADSPRITE
CTRL/L LOADVIDEO
M MONO
N NEGATIVE
O OUTLINE
P PRIMARY
Q Quit R DEFAULT (Default
settings)
S SAVESCREEN
SHIFT/S SAVESPRITE
CTRL/S SAVEVIDEO
ALT/S SAVEAIM
SHIFT/ALT/S SAVEFSI
T DIGITISE (Test)
U SMOOTH
3 SETVIDEO
W NOISE
X DIGITISE P (Default Palette)
Y FOCUS
Z Clear Soreen
* Enter * commands
SPACE MOVING

10-8

HARDWARE BLOCK SCHEMATIC

This simplified block schematic shows the main parts of
the Digitiser hardware. The input video signal is adjusted
for gain and saturation and decoded into it's R,G & B
components. At this point a video switch enables either these
decoded R,G,B signals or external R,G,B inputs to be fed into
an R,G,B clamp circuit. The point at which these signals are
clamped is adjusted with the Lift (Brightness) control.

The three clamped signals are then fed into separate high
speed 6 bit analogue to digital converters. The least significant
bits of the red and blue images are discarded leaving a total of
16 bits available for storing in the dynamic ram.

The ram is organised as 512 * 256 * 16 bits, and the data
lines are fed bi-directionally to and from the computer podule
interface.

Control signals to feed addresses to the ram circuitry
and the A/D converters are generated in the most complex
part of the Digitser hardware. This is too complex to
describe in detail here, suffice it to say that line and
field synchronising signals derived from the PAL decoder are
used to synchronise the ram addresses during video writing
cycles, and computer address timing signals are used during
computer ram accesses.

A description of the internal hardware adjustments and
their effects on the Digitiser performance can be found under
the section 'Hardware Adjustments'

11-1

HARDWARE ADJUSTMENTS

Although the Digitiser is very carefully lined up and tested
before leaving Pineapple it is possible that the user may
want to make his own adjustments. Only the adjustments that
can be made without the use of an oscilloscope will be described
here, those that require special test equipment are beyond
the scope of this manual and you should refer to Pineapple
Software if you require help in this direction. If you do
inadvertantly misadjust any of the settings and can't return
them to their correct positions, then if you return the
Digitiser to us we will realign it for you at no charge.

Two preset potentiometers are available to set the
horizontal and vertical shift positions of the picture. By
shift positions we are referring to the part of the picture
that is actually stored in the 512 * 256 pixel podule ram.
Clearly the picture could be shifted around using the software
commands, but all these hardware controls set the part of the
picture that is actually stored in the podule ram. The
vertical shift pot (VR5) sets which 255 lines of the
picture are stored in ram. Each frame of video
information actually consists of 625 lines divided into two
fields each with 312.5 lines. About 24 of these 312.5 lines
are not actually used to store picture information and this
leaves 288 lines per field which actually contain the
picture.

For convenience in organising the podule memory only 255
of these lines are actually stored and VR5 determines which
line will be first to be stored. The range of adjustment is
such that any consecutive 255 lines out of the 288 may be
stored. The setting of this pot is initially arranged so
that the 255 lines stored are those nearer the top part of the
picture as this is more acceptable in terms of not losing
the tops of peoples heads! In practice the height control
setting of a normal TV set is usually arranged so that not all
288 lines are visible to prevent black areas at the top and
bottom of the picture, and broadcasters allow for this when
composing camera shots so that very little (if any) is lost by
only storing 255 lines.

VR6 performs a similar adjustment in the horizontal direction
and this is initially set so that there is equal loss of
information on each side of the picture. Another adjustment, L6,
is available which has a similar function to the 'width' on a
normal TV set. Adjustment of this would allow the whole of
the width of the picture to be stored in the 512 pixels
available horizontally. However, for similar reasons to the
reduced height setting (i.e. broadcasters allowing for
overscanning on TV sets), this is initially set to complement
the height value and give circular circles on pictures digitised
with the default H/V scale settings.

12-1

L6 is also adjusted to minimise any patterning effects
caused by the Digitiser clock oscillator beating with the
PAL subcarrier oscillator and so this should be set carefully
to ensure that no patterning results from it's adjustment.

All the above three adjustments can be made while viewing
the picture in *Moving mode, but it should be repeated that
they are unlikely to drift, and should really only be
adjusted if you have a particular need to see the very top,
bottom or edges of the picture.

The other five coils, C19 and VR4 can really only be adjusted
with a colour bar input signal and an oscilloscope to view
the results, so should only be attempted by someone who has
experience at lining up a PAL decoder. For those who feel it
necessary and need some guidance, a brief description
of the function of each component is now given.

L2 is the subcarrier trap coil, it should be adjusted for
minimum subcarrier while monitoring the right hand end of
R19. L1 is a subcarrier bandpass coil and should be adjusted
for maximum subcarrier while monitoring at the right hand
end of R7. L3,4 & 5 and VR4 are controls for setting the balance
and delay equalisation of the PAL delay line. They are
adjusted for minimum 'twitter' while monitoring the red,green
and blue decoder output signals. C19 adjusts the PAL
subcarrier oscillator frequency and is best adjusted to reduce '
twitter' at the top of frame, i.e. adjsut this while looking at
blue output in a frame sense on the 'scope.

The only other adjustments on the board are provided by
the four DIL switches. These switches allow the coded video
and R,G,B inputs to be terminated if required. For those not
familiar with the word 'termination', these switches simply
connect a 75 ohm resistor between the input signal and
earth. This is necessary with video circuits anywhere where
the video is sent over long cables (longer than about 6
feet), to prevent reflections occuring in the cable. It also
has the effect of halving the level of the input signal, usually
from 2 volts peak to peak to 1 volt peak to peak.

The digitiser is quite happy working with PAL input
signals from about 0.75 volts up to 2.5 volts pk to pk, as
adjustment can be made with the gain control to allow for
different input levels. Whenever possible though, it is
recommended that a short video cable is used and the input signal
is left unterminated, as the noise performance of the Digitiser
is slightly better with a larger input signal.

12-2

When using the R,G,B inputs available on the 9 way 'D' type
connector, sync pulses should still be fed into the PAL video
input. The switch waveform to switch from the PAL video
input to the R,G,B input can either be a simple +5v, or it
can be a video speed switching waveform. This allows video
switching between any two synchronised video signals where one is
coded and the other R,G,B. Note that the gain control is not
effective on the R,G,B inputs and external attenuators (probably
just resistors in the 'D' type shell) must be used to set the
R,G,B inputs to about .4v pk to pk.

12-3

HARDWARE SPECIFICATION

Coded Video I/P Composite PAL video I/P via BNC connector.
Min level 0.75 volts pk to pk.
Max level 2.5 Volts pk to pk.
High Z or 75 ohms switchable
Wide range auto chroma control with manual
adjustment from 0 to +15% normal.

R,G,B I/P's

Storage System

Inputs via 9 way 'D' type connector.
Pin 1 - Red
Pin 2 - Green
Pin 3 - Blue
Pin 4 - Switch I/P (+5v)
Pin 5 - Ext 12v input
Pin 6 - 0v
Pin 7 - 0v
Pin 8 - 0v
Pin 9 - 0v
R,G,B I/P's 0.4 volts pk to pk
(non-adjustable).
High Z or 75 ohm switchable
Sync I/P via BNC video I/P.
High speed video frequency switch I/P
switches between R,G,B and coded video.

Standard Version
512 * 256 pixel, 12 Bits per pixel.
Organised as 4 bits Red, 4 bits Green, 4
bits Blue.
Total podule memory 192k.

Extended Version
512 * 256 pixel, 16 Bits per pixel.
Organised as 5 bits Red, 6 bits Green, 5
bits Blue.
Total podule memory 256k.

12 volt supply Provision is made for an 'external 12 volts
power supply (250ma). This is fed via pin 5
of the 9 way 'D' type connector and
switched by means of a link on the podule.
This would allow the podule to operate on
an A3000 system if a suitable external podule
adapter box was available.

N.B. Pineapple have now produced their own
inexpensive adapter box for the A3000 which
is connected to the computer via a ribbon cable
and includes a 12 volt power supply. Please
contact Pineapple for details.

1 3-2

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 73

