
The Serial Port
&

P.C.Arnold Technical Services
Present

The
PCATS

Graphics
Enhancer

Release 1 00

The Serial Port
Burcott Manor, Wells, Somerset BA5 1NH
Tel: 0243 531194 Fax: 0243 531196

The Serial Port Copyright Policy

At The Serial Port we believe that whenever possible our software should

NOT be copy protected, thus allowing you to easily make back-up copies of
the software or run it from a hard disk. We do sometimes have to make
exceptions to this rule but the decision to protect a program is not taken
without a great deal of thought going into finding alternative methods to
protect our copyright.

This means we are placing a great deal of trust, and our future as a software
supplier, in your hands. We ask you not to abuse your position - by all means
recommend and demonstrate our software to friends, but please do not give
them a copy. If you do you will be doing harm to everybody, including
yourself, as we will no longer be able to supply improved versions of our
software at low cost to present users such as yourself or invest in new projects
which will help increase the Archimedes user base - you wouldn't want to
force us to go and program IBM PC's, would you?

We have every faith in our users and believe that we can safely supply our
software in this unprotected form. Help us to help you - Spread the word, not
the disk!

Hardware © 1990/1991 Patrick Arnold
Software © 1990/1991 Patrick Amold/Hugo Fiennes/The Serial Port

VL86C310 data sheet © VLSI Technology [nc., San Jose, California, USA. Reprint by permission.

PLEASE NOTE: The ColourTrans V0.70 module supplied with this product Is based upon original
code licensed from Acorn Computers Ltd. [t has been tested and found to work with a large majority
of the commercial software available at the time of printing of this manual, but cannot be absolutely
guaranteed to work with all software which will be written for RISC OS. [f and when new versions of
RISC OS are released, the version of ColourTrans supplied with them should be used in place of the
version supplied on the Graphics Enhancer utilities disk.

N0 part of this manual (except for brief passages qu0ted f0r critical purp0ses) or 0f the c0mputer pr0grams t0 which
it relates, may be reproduced, transmitted or translated in any f0rm 0r by any means, electronic, mechanical 0r
0therwise, without the pri0r c0nsent 0f the copyright owner.

The Graphics Enhancer is a complex product which is under continu0us devel0pment and, while every eff0rt is
made t0 ensure it functions as detailed, neither The Serial P0rt n0r Acom can accept any liability f0r any l0ss 0r
damage resulting from the use The Graphics Enhancer 0r the inf0rmati0n in this manual.

All trademarks used in this manual are ackn0wledged

Page II

Contents

Introduction 1
Why you need a Graphics Enhancer 3
* Commands 5
Graphics Enhancer SWI calls 35
APPENDIX A: CLEAR file format 74
APPENDIX B: Class P TIFF file format 75
APPENDIX C: Using the 12 BPP & 16 BPP modes 78
APPENDIX D: Mode Description Language 80
APPENDIX E: Error Messages 83
APPENDIX F: Installation of Graphics Enhancer 85
Installation procedure for 300 series, 400 & 400/1 series, and 540 85
Installation procedure for A3000 86
Configuration of Graphics Enhancer after Installation 86
APPENDIX G: Currently defined screen modes 87
APPENDIX H: VL86C310 data sheet 92
Index 113

Page III

Page IV

Introduction

The PCATS Graphics Enhancer, marketed by The Serial Port, is an expansion card for the Acorn
Archimedes range of microcomputers. It is designed as a low-cost, high performance upgrade for
significantly improving the graphics performance of these machines. Coupled with the high speed
and versatile architecture of the Archimedes, it can produce results as good as, if not better than,
some professional CAD type workstations, at a far lower cost.

The Graphics Enhancer will work with any machine in the Archimedes range, from an A3000 to a
540. On the 310, 400 & 400/1 series, and the 540, it plugs into the podule expansion backplane,
inside the machine. On the A3000, it fits externally onto the rear expansion connector, and requires
a small adaptor board which fits over the VIDC chip inside the computer case.

The enhancements provided by the board can be grouped into five main areas, as follows:

(1) A 24-bit palette, giving 256 colours on screen simultaneously, selectable from 16,777,216
available colours. This feature allows modes with resolutions of up to 768 x 288 on a standard
monitor, and resolutions of 832 x 328, 512 x 512, 640 x 480, & others on a multisync monitor.
These modes all work correctly with the Desktop, and the new version of the ColourTrans module
supplied will allow any properly written Desktop application to work in them.

(2) 12 bpp direct DAC modes, giving 4096 simultaneous colours, at resolutions of up to 512 x 288
on a standard monitor, and up to 554 x 328 on a multisync monitor. These modes are not Desktop
compatible.

(3) 16 bpp direct DAC modes, giving 65536 simultaneous colours, at resolutions of up to 384 x
288 on a standard monitor, and up to 416 x 328 on a multisync monitor. These modes are not
Desktop compatible.

(4) A set of up to seven VIDC clocks, software selectable by * commands or SWI calls. The clocks
installed as standard are 24 MHz, 25.175 MHz, 32 MHz, & 36 MHz. There are 3 empty sockets on
the Graphics Enhancer board, which can have user-supplied oscillators plugged into them. The
Serial Port can supply oscillator modules for any frequency required. VLSI specifications give the
maximum operating speed of the VIDC as 36 MHz, but we have found that most will work to 40
MHz, and some to as high as 48 MHz. However, we cannot guarantee that any particular VIDC
will work above 36 MHz. We can supply oscillators of any frequency required, and we also
produce a Mode Booster upgrade board, which is necessary for the Graphics Enhancer itself to run
faster than 36 MHz. Contact The Serial Port for prices.

(5) The ability to define new modes as text files, using the Mode Description Language compiler
supplied with the Graphics Enhancer. This will allow the user to make new modes at will, utilising
all the extra video facilities that are provided by the hardware.

The Graphics Enhancer also adds many other new modes, including all those provided by the
Computer Concepts mode module (supplied with Impression), all those provided by the Atomwide
VIDC enhancer, and the new Super VGA modes as used on the 540. See Appendix G for a full list
of defined modes.

Page 1

Software support for the various features of the Graphics Enhancer is quite extensive, with many
SWI calls and * commands. Several major software houses are now, or will soon be, adding features
to their graphics-based programs to take full advantage of the new modes added to the standard
Archimedes.

A Professional version of the Graphics Enhancer will soon be available, which will add full genlock
capability to the other features supported by the standard version, allowing any of the 256 Desktop
colours to have up to 24 bits of overlay keying, independently of the rest. Please contact The Serial
Port for pricing and availability.

Page 2

Why you need a Graphics Enhancer
The Acorn Archimedes computers are probably the fastest, easiest to use, and most programmable
microcomputers available in their price range, or anywhere close to it. However, in one key area
they lag behind other machines, such as the Apple Macintosh. That area is the quality of onscreen
pictures. The graphics of the Archimedes are very fast, and much better than many machines can
produce at two or three times the price. but have some fairly severe limitations, notably in the
number and range of colours that are available.

In 256 colour modes, the Archimedes is quoted as having a palette of 4096 colours, implying that
any 256 of these can be used at any one time. In fact, due to the somewhat peculiar way the video
hardware is designed, colours can only be chosen in blocks of 16, which almost inevitably gives one
colour that is very nearly, but not quite, the one required, and 15 others that are nowhere near it.
Even given these limitations, the results that can be obtained are amazing. However, it would be
nice to have a true palette, with any of the 256 colours independently seleetable from a larger range
than in normally available.

This is precisely what the Graphics Enhancer does.

It allows 256 totally independent colours to be selected from a range of over 16.7 million, thus
ensuring that whatever colour is wanted can be obtained. In most applications, 256 colours are
sufficient, given that there is a large enough selection to pick from. Even so, there are times when
more colours are needed onscreen simultaneously. In these cases, the Graphics Enhancer can also
help, as it has 12 and 16 bpp modes, giving up to 65536 colours at once. Unfortunately, the current
version of RISC OS cannot handle more than 8 bits per pixel, so these modes can only be used by
programs written specifically for them.

The extended palette modes are fully supported by the operating system. Simple BASIC programs
can easily take advantage of the extended range of available colours, thus allowing anyone with a
modicum of programming knowledge to obtain spectacular results. For non-programmers, the
Graphics Enhancer is being supported by several software houses, who are adding support for it to
their RISC OS applications.

In addition to adding the facility of more and better colours, the Graphics Enhancer also allows the
VIDC to be run at different frequencies than the default 24 MHz, thus allowing higher resolution
modes, although only in 16 colours. It is fully compatible with the Atomwide VIDC enhancer,
which means that people who have written programs using the various Atomwide modes can
continue to use them when the Graphics Enhancer is installed. It also adds all the modes that are
supported by the Computer Concepts Impression mode module, and those that are new to the A540.
A full list of the modes that are supported as standard by the Graphics Enhancer can be found in
Appendix G. In addition, new modes can be defined as text files, which are then compiled using the
supplied program !MDLcomp to a 200 byte mode descriptor data block. Up to 36 of these data
blocks can be loaded at once, taking up a mere 7400 bytes of RMA.

Page 3

The Graphics Enhancer is totally transparent in operation, needing no special commands to turn it
on or off. Any program that uses its extended graphics facilities will use it, and any program that
does not use it will simply ignore it. As a result, there is very little in the way of user instructions
needed, except for programming information for those who wish to write programs for the extended
palette modes, etc. The manual that follows lists all the new * commands and SWI's that the
Graphics Enhancer software provides, along with information on using the 12 & 16 bpp modes, on
the CLEAR & TIFF file formats that are used for saving extended palette screens, and technical
information on the VIDC chip itself. If the user does not wish to write programs using the new
graphics facilities, much of this manual can simply be ignored. The section on configuration
commands, at the end of the * command list, should be read by all users, as it can help if there are
problems in the operation of the Graphics Enhancer. Such problems are almost inevitably due to one
or more of the *Configure options being set wrongly.

Any comments or suggestions for changes to this manual or the Graphics Enhancer software are
welcomed, and should be sent to The Serial Port. If you have any special project that requires
technical information not given in this manual, please let us know and we will try to help.

Page 4

* Commands
*VIDC Programs VIDC registers directly.

*Clock Sets or reads the VIDC clock rate.

*Dac Enables 12 or 16 bpp direct DAC mode.

*ExtPal Enables 24-bit extended palette mode.

*Default Restores default Graphics Enhancer settings.

*NormalVideo Restores default Archimedes video output.

*Pmask Programs pixel mask.

*Palette Programs extended palette.

*Mode Sets screen mode.

*PalSet Sets red scale/restores default palette.

*DeskPal Sets Desktop equivalent palette in extended palette modes.

*PalSave Saves the current extended palette.

*PalLoad Loads an extended palette file.

*ClearSave Saves the current extended palette mode screen as a CLEAR file.

*ClearLoad Loads a CLEAR file to the screen.

*GreyScale Sets the extended palette to a linear greyscale.

*Gcol Sets graphics colour in extended palette modes.

*Colour Sets text colour in extended palette modes.

*LinkMode Loads a mode definition file and links it in as a screen mode.

*LinkModeClear Clears all linked modes.

*DeLinkMode Delinks an individual linked mode.

Page 5

*Configure CrystalSlots Configures occupied VIDC oscillator sockets.

*Configure DefaultCrystal Configures default VIDC clock.

*Configure ProcessorType Configures installed processor type.

*Configure MonitorGroup Configures group of attached monitor.

*Configure IREThreshold Configures blanking level of monitor.

*Configure TurboModes Configures optional mode booster enable/disable.

Page 6

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*VIDC

Programs VIDC registers directly

*VIDC <register> <value>

<register> is a valid VIDC register
<value> is a number within the range allowed for the VIDC register

*VIDC allows direct programming of VIDC registers from the command
line. This can be useful for experimenting with new values for creating
new modes, without having to create a mode definition module.
However, Risc-OS will not know about the new values, so the VDU
drivers will not correctly handle the changes. See Appendix H for more
details of register numbers and allowed values.

Warning! Use this command with caution, as programming
the VIDC with the wrong values could damage your monitor.

*VIDC &A0 312 Sets the VCR to 312 rasters

None

Enhancer_VIDC (SWI &42A55)

None

Page 7

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 8

*Clock

Sets or reads the VIDC clock rate

*Clock [<n>]

[<n>] is a number between 0 and 7

*Clock connects the oscillator in socket <n> to the VIDC. The
default clock frequencies and the socket numbers are as follows:

Socket 0: 24 MHz
1: 25.175 MHz
2: 32 MHz
3: 36 MHz
4: empty (for user-supplied oscillator)
5: empty (for user-supplied oscillator)
6: empty (for user-supplied oscillator)
7: 24 MHz

Only sockets that have been marked as occupied by *Configure
CrystalSockets can be selected. *Clock with no parameter will
return the current setting.

*Clock 2 Sets the VIDC clock rate to 32 MHz

*Configure CrystalSockets

Enhancer_Clock (SWI &42A4C)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Dac

Enables 12 or 16 bpp direct DAC mode

*Dac <bpp>

<bpp> is either 12 or 16

*Dac is used to force the Graphics Enhancer to either 12 or 16 bpp direct
DAC mode. The Graphics Enhancer software transparently does this when
displaying 12 or 16 bpp modes.

*Dac 12 Sets 12 bpp mode

*ExtPal

Enhancer_Dac (SWI &42A4B)
Enhancer_ExtPalette (SWI &42A4A)

None

Page 9

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 10

*ExtPal

Enables 24-bit extended palette mode

*ExtPal

None

*ExtPal is used to force the Graphics Enhancer to 24-bit extended
palette mode. The Graphics Enhancer software transparently does this
when in extended palette modes.

*ExtPal Enables extended palette

*Dac

Enhancer_Dac (SWI &42A4B)
Enhancer_ExtPalette (SWI &42A4A)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Default

Restores default Graphics Enhancer settings

*Default

None

*Default is used to reset the Graphics Enhancer to normal Archimedes
video output and 24 MHz VIDC clock rate.

*Default Reset Graphics Enhancer

*Normal Video

Enhancer_Default (SWI &42A46)
Enhancer_NormalVideo (SWI &42A47)

None

Page 11

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 12

*NormalVideo

Restores default Archimedes video output

*NormalVideo

None

*NormalVideo is used to reset the Graphics Enhancer to normal
Archimedes video output, without affecting the VIDC clock rate.

*NormalVideo Restore normal Archimedes video output

*Default

Enhancer_Default (SWI &42A46)
Enhancer_NormalVideo (SWI &42A47)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Pmask

Programs pixel mask

*Pmask [<n>]

[<n>] is a number between 0 and 255

*Pmask is used to write the pixel mask. *Pmask with no
parameter prints the current pixel mask.

*Pmask 255 Set the pixel mask off

None

Enhancer_PixelMaskWrite (SWI &42A44)
Enhancer_PixelMaskRead (SWI &42A45)

None

Page 13

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 14

*Palette

Programs extended palette

*Palette <C> <R> <G>

<C> is an 8-bit colour number
<R> is an 8-bit red component value
<G> is an 8-bit green component value
 is an 8-bit blue component value

*Palette is used to program individual extended palette entries.
Please note that colour 0 cannot be programmed to other than black,
for various hardware-related reasons.

*Palette 100 255 0 0 Sets colour 100 to full red, no green, and
no blue

None

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer_PaletteBlockRead (SWI &42A41)
Enhancer_PaletteWrite (SWI &42A42)
Enhancer_PaletteRead (SWI &42A43)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Mode

Sets screen mode

*Mode [<n>]

[<n>] is any valid mode number

*Mode is an exact equivalent of the BASIC MODE command. *Mode
with no parameter prints the current mode.

*Mode 12 Sets mode 12

None

None

None

Page 15

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 16

*PalSet

Sets red scale/restores default palette

*PalSet <0|1>

<0|1> is 0 for default Archimedes palette, or 1 for red scale

*PalSet is used to set a linear red scale in 4 bpp modes, or to restore the
default palette. If <n> is 1, the palette is set to a red scale, and if it is 0
the default palette is restored.

*PalSet 1 Sets linear red scale

None

Enhancer_PalSet (SWI &42A49)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*DeskPal

Sets Desktop equivalent palette in extended palette modes

*DeskPal

None

*DeskPal is used to set the palette in extended palette modes to an
equivalent of the standard desktop one.

*DeskPal Sets standard desktop palette

None

Enhancer_SetDesktopPalette (SWI &42A4E)

None

Page 17

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 18

*PalSave

Saves the current extended palette

*PalSave <filename>

<filename> is any valid filename

*PalSave is used to save the current extended palette as a palette file
with the filetype of &C8A.

*PalSave palfile Saves current palette as "palfile"

*PalLoad

Enhancer_PaletteSave (SWI &42A52)
Enhancer_PaletteLoad (SW! &42A53)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*PalLoad

Loads an extended palette file

*PalLoad <filename>

<filename> is any valid filename

*PalLoad is used to load an extended palette file and make it the
current extended palette.

*PalLoad palfile Loads extended palette file "palfile"

*PalSave

Enhancer_PaletteSave (SWI &42A52)
Enhancer_PaletteLoad (SWI &42A53)

None

Page 19

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 20

*ClearSave

Saves current extended palette mode screen as a CLEAR file

*ClearSave <filename>

<filename> is any valid filename

*ClearSave is used to save the current extended palette mode screen
as a CLEAR file, using the file format used by the graphics utility !
Translator, by John Kortink, public domain versions of which are
available from a number of sources. The filetype of CLEAR files is
&690. See Appendix A for details of the file format

*ClearSave screenfile Saves the current screen as "screenfile"

*ClearLoad

Enhancer_ClearSave (SWI &42A54)
Enhancer_ClearLoad (SWI &42A5C)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*ClearLoad

Loads CLEAR file to the screen

*ClearLoad <filename>

<filename> is any valid filename

*Clearload is used to load a CLEAR file to the screen. It will change to the
correct mode, program the extended palette, and load the image into screen
memory. If the X & Y resolution of the CLEAR file image does not match
that of any known mode, or the file does not use a palette, an error will be
given.

*ClearLoad screenfile Loads "screenfile" as image

*ClearS ave

Enhancer_ClearSave (SWI &42A54)
Enhancer_ClearLoad (SWI &42A5C)

None

Page 21

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 22

*GreyScale

Sets extended palette to linear greyscale

*GreyScale <0|1>

<0|1> is 0 for normal greyscale, 1 for reversed greyscale

*GreyScale is used to set the extended palette to a linear greyscale,
either from black to white (normal,<n>=0), or from white to black (
reversed,<n>=1).

*GreyScale 0 Sets extended palette to normal greyscale

None

Enhancer_GreyScale (SWI &42A59)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Gcol

Sets graphics colour in extended palette modes.

*Gcol <colour> [<0|1>] [<action]

<colour> is an 8-bit number
[<0|1>] is 0 for foreground or 1 for background
[<action>] is the standard GCOL action (see Archimedes BASIC
manual for details)

*Gcol is used to set the foreground or background graphics colour in
extended palette modes. It is the equivalent of the BASIC GCOL
command.

*Gcol 100 0 Sets foreground graphics colour to 100

None

Enhancer_Colour (SWI &42A56)
Enhancer_Gcol (SWI &42A57)

None

Page 23

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 24

*Colour

Sets text colour in extended palette modes.

*Colour <colour> [<0|1>]

<colour> is an 8-bit number
[<0|l>] is 0 for foreground or I for background

*Colour is used to set the foreground or background text colour in
extended palette modes. It is the equivalent of the BASIC COLOUR
command.

*Colour 200 0 Sets background text colour to 200

None

Enhancer_Colour (SWI &42A56)
Enhancer_Gcol (SWI &42A57)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*LinkMode

Loads mode description file and links it in as a screen mode.

*LinkMode [<filename>]

[<filename>] is any valid filename.

*LinkMode is used to load a compiled MDL file, and to link it in so that it
can be used as a normal screen mode. If the MDL file does not have a valid
header, is the wrong size, or is the wrong filetype, an error will be given.
*LinkMode with no parameter will list the currently linked modes, giving
info on each. See Appendix D for details of the MDL mode block format.

*LinkMode mode22 Links file "mode22" as a screen mode.

*LinkModeClear
*DeLinkMode

Enhancer LinkMode (SWI &42A5D)
Enhancer_LinkModeClear (SWI &42A5E)
Enhancer_DeLinkMode (SWI &42A5F)

None

Page 25

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 26

*LinkModeClear

Deletes all currently linked modes

*LinkModeClear

None

*LinkModeClear is used to delete all currently linked MDL modes.

*LinkModeClear Clears all linked modes from memory.

*LinkMode
*DeLinkMode

Enhancer_LinkMode (SWI &42A5D)
Enhancer_LinkModeClear (SWI &42A5E)
Enhancer_DeLinkMode (SWI &42A5F)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*DeLinkMode

Deletes individual linked mode

*DeLinkMode <val>

<val> is the number of a linked mode.

*DeLinkMode is used to delink a named linked MDL mode.

*DeLinkMode 40 Removes mode 40 from memory.

*LinkMode
*LinkModeClear

Enhancer_LinkMode (SWI &42A5D)
Enhancer_LinkModeClear (SWI &42A5E)
Enhancer DeLinkMode (SWI &42A5F)

None

Page 27

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 28

*TiffSave

Saves current extended palette mode screen as a class P TIFF file

*TiffSave <filename>

<filename> is any valid filename

*TiffSave is used to save the current extended palette mode screen as a
Class P TIFF file. The filetype of TIFF files is &FF0. See Appendix B,
and the Aldus/Microsoft technical documentation on TIFF files, for
details of the file format.

*TiffSave screenfile Saves the current screen as "screenfile"

None

Enhancer_TiffSave (SWI &42A61)

None

Syntax

Parameters

Use

Example

Related command:

Related SWIs

Related vectors

*Configure CrystalSlots

Configures occupied oscillator sockets

*Configure CrystalSlots <n>

<n> is an 8-bit number

*Configure CrystalSlots is used to tell the system which of the available
oscillator sockets have oscillator modules in them. The 8-bit parameter is
treated in a bitwise fashion, ie. each bit represents a socket. If a bit is set to
1, it has an oscillator. The sockets which are always occupied, 0-3 & 7, are
masked out in software and cannot be changed. *Status shows the
configured sockets as a bit pattern. A socket which does not have an
oscillator in it should not be configured as occupied, as selecting it will
remove all clock signals from the VIDC, which will usually crash the
machine.

*Configure CrystalSockets 2_10011111 Marks socket 4 as
occupied

*Clock
*Configure DefaultCrystal

Enhancer Clock (SWI &42A4C)

None

Page 29

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 30

*Configure DefaultCrystal

Configures default VIDC clock

*Configure DefaultCrystal <n>

<n> is a number between 0 and 7

*Configure DefaultCrystal is used to tell the system which of the
available oscillator sockets is to be used as the default one. The default
crystal will be used for modes which run at 24 MHz on a standard
machine, hence a default crystal of 1 will run all 24 MHz modes at 25.
175 MHz. This setting is ignored if the monitor type is 0. A socket which
is not marked as occupied cannot be set as the default.

*Configure DefaultCrystal 1 Sets socket 1 as the default one

*Clock
*Configure CrystalSlots

Enhancer_Clock (SWI &42A4C)

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Configure ProcessorType

Configures installed processor type

*Configure ProcessorType <n>

<n> is a number between 0 and 3

*Configure ProcessorType is used to tell the system which of the
various processor options is installed in the system. This is to keep
internal timing loops running at the correct speed. The available
processor types are as follows:

0 An ARM2 running at 8 MHz, as in standard 300, 400, & .
400/1 series machines, and the A3000.

1 An ARM3 running at 8 MHz with a 20 MHz cache.

2 An ARM3 running at 8 MHz with a 30 MHz cache.

3 An ARM3 running at 12 MHz with a 30MHz cache. This is
currently only the 540.

*Configure ProcessorType 2 ARM3 upgrade at 30 MHz.

None

None

None

Page 31

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 32

*Configure MonitorGroup

Configures group of attached monitor

*Configure MonitorGroup <n>

<n> is a number between 0 and 7

*Configure MonitorGroup is used to tell the system which of the various
monitor groups is attached. This is so that the VIDC can be programmed
with the correct parameters to keep the picture centrally on the screen.
The currently available monitor groups are:

0 Philips type monitors.

1 Taxan type monitors.

2 Eizo type monitors.

*Configure MonitorGroup 1 Taxan monitor attached.

None

None

None

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

*Configure IREThreshold

Configures blanking level of monitor

*Configure IREThreshold <0|1>

<0|1> is 0 for a blanking level of 0 IRE, & 1 for a level of 7.5 IRE

*Configure IREThreshold is used to set the blanking level of the Graphics
Enhancer video signal, when in non-Archimedes video output modes. The
two levels available are 0 IRE and 7.5 IRE. On most makes of monitor, the
difference is not noticable, but on some it can make a large difference to the
picture.

*Configure IREThreshold 1 Set blanking level of 7.5 IRE.

None

None

None

Page 33

Syntax

Parameters

Use

Example

Related commands

Related SWIs

Related vectors

Page 34

*Configure TurboModes

Enables/disables optional mode booster board

*Configure TurboModes <0|1>

<0|1> is 0 for off, 1 for on.

*Configure TurboModes is used to turn on or off the optional mode
booster board. When it is on, the VGA modes 103 & 126 are run at 40
MHz, giving a refresh rate of about 52 Hz. In addition, mode 127 (640 x
512 extended palette) is enabled. This requires a mode booster board to
be installed, and a 40 MHz oscillator to be plugged into socket OSC4.
This upgrade is not absolutely guaranteed, as VLSI specifcations give
the maximun operating speed of the VIDC as 36 MHz, but in practice we
have found that most VIDCs will run at 40 MHz correctly.

*Configure TurboModes 0 Disable mode booster (
default).

None

None

None

Graphics Enhancer SWI calls
&42A40 Enhancer_PaletteBlockWrite
Writes block of 24-bit palette entries.

&42A41 Enhancer_PaletteBlockRead
Reads current 24-bit palette entry table.

&42A42 Enhancer_PaletteWrite
Writes individual palette entries.

&42A43 Enhancer_PaletteRead
Reads individual palette entries.

&42A44 Enhancer_PixelMaskWrite
Writes pixel mask.

&42A45 Enhancer_PixelMaskRead
Reads pixel mask.

&42A46 Enhancer_Default
Resets Graphics Enhancer board.

&42A47 Enhancer_NormalVideo
Restores normal Archimedes video output.

&42A48 Enhancer_BorderOff
Turns screen border off.

&42A49 Enhancer_PalSet
Sets Archimedes palette to red scale.

&42A4A Enhancer_ExtPalette
Enables 24-bit palette mode.

&42A4B Enhancer_Dac
Enables direct DAC mode.

&42A4C Enhancer_Clock
Sets or reads VIDC clock rate.

&42A4D Enhancer_HardwarePresent
Checks for presence of Graphics Enhancer.

Page 35

&42A4E Enhancer_SetDesktopPalette
Sets standard desktop palette in extended palette modes.

&42A4F Enhancer_Pointer
Enables/disables mouse pointer X-coordinate correction factor

&42A50 Enhancer_VsyncUpdatePalette
Enables/disables extended palette vsync handler.

&42A51 Enhancer_ModeValid Checks
for a valid extended palette mode.

&42A52 Enhancer_PaletteSave
Saves current extended palette.

&42A53 Enhancer_PaletteLoad
Loads extended palette file.

&42A54 Enhancer_ClearSave
Saves screen as CLEAR file.

&42A55 Enhancer_VIDC
Programs VIDC registers.

&42A56 Enhancer_Colour
Sets text colour in extended palette modes.

&42A57 Enhancer_Gcol
Sets graphics colour in extended palette modes.

&42A58 Enhancer_CurrentModeValid
Checks if current mode is extended palette mode.

&42A59 Enhancer_GreyScale Sets
256 level linear greyscale.

&42A5A Enhancer_PaletteReadPointer Reads
pointer to current 24-bit palette table.

&42A5B Enhancer_SpriteOp
Does various sprite operations in extended palette modes.

&42A5C Enhancer_ClearLoad Loads
CLEAR file to the screen.

Page 36

&42A5D Enhancer_LinkMode
Loads mode definition file and links in as screen mode.

&42A5E Enhancer_LinkModeClear
Deletes all linked modes.

&42A5F Enhancer_DeLinkMode
Delinks individual linked modes.

&42A60 Enhancer_HardwareBaseAddress
Returns the base address of the Graphics Enhancer MEMC interface.

&42A61 Enhancer_TiffSave
Saves extended palette screen as a TIFF class P file.

Page 37

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 38

Enhancer_PaletteBlockWrite
(SWI &42A40)

Write block of 24-bit palette entries

R0 = pointer to block of palette entry words
R1 = number of words to process

R0 = pointer to word after last one processed
R1 = number of words processed

Processor is in SVC mode

This call allows updating of more than one palette entry at a time. Up to
the full 256 entries can be written at once. Note that colour 0 cannot be
programmed to other than black, for various hardware-related reasons.

The format of the palette table is as follows:

Base +0: BBGGRRCC
Base +4: BBGGRRCC
 . .
 . .
 . .
Base +n: BBGGRRCC

Where: BB = 8-bit blue value
GG = 8-bit green value
RR = 8-bit red value
CC = 8-bit colour value

Enhancer_PaletteWrite (SWI &42A42)
Enhancer_PaletteBlockRead (SWI &42A41)
Enhancer_PaletteRead (SWI &42A43)
Enhancer_PaletteReadPointer (SWI &42A5A)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_PaletteBlockRead
(SWI &42A41)

Read current 24-bit palette entry table

R0 = pointer to 1024 byte buffer for table copy

R0 preserved

Processor is in SVC mode

This call copies the current palette table to the buffer given in R0. See
Enhancer_PaletteBlockWrite description for table format.

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer_PaletteWrite (SWI &42A42)
Enhancer_PaletteRead (SWI &42A43)
Enhancer_PaletteReadPointer (SWI &42A5A)

None

Page 39

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 40

Enhancer_PaletteWrite
(SWI &42A42)

Write individual palette entry

R0 = Colour number
R1 = 8-bit red component
R2 = 8-bit green component
R.3 = 8-bit blue component

R0 - R3 preserved

Processor is in SVC mode

This call writes a single 24-bit palette entry.Note that for various
hardware-related reasons colour 0 cannot be programmed, and is
always black.

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer_PaletteBlockRead (SWI &42A41)
Enhancer_PaletteRead (SWI &42A43)
Enhancer_PaletteReadPointer (SWI &42A5A)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_PaletteRead
(SWI &42A43)

Read individual palette entry

R0 = Colour number

R0 preserved
R1 = 8-bit red component
R2 = 8-bit green component
R3 = 8-bit blue component

Processor is in SVC mode

This call reads a single 24-bit palette entry.

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer_PaletteBlockRead (SWI &42A41)
Enhancer_PaletteRead (SWI &42A43)
Enhancer_PaletteReadPointer (SWI &42A5A)

None

Page 41

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 42

Enhancer_PixelMaskWrite
(SWI &42A44)

Write pixel mask

R0 = 8-bit pixel mask value

R0 preserved

Processor is in SVC mode

This call allows writing of the pixel mask. The pixel mask is used to mask
the colour address before it is send to the the palette. A '1' in a location in
the pixel mask leaves the corresponding bit in the colour address intact,
while a '0' will mask out the bit. For example, a pixel mask of 126 (
%01111110) and colour 149 (%10010101) would actually send colour 20
(%00010100) to the palette.

Enhancer_PixelMaskRead (SWI &42A45)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_PixelMaskRead
(SWI &42A45)

Read pixel mask

R0 = current pixel mask

Processor is in SVC mode

This call reads the current pixel mask.

Enhancer_PixelMaskWrite (SWI &42A44)

None

Page 43

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 44

Enhancer_Default
(SWI &42A46)

Restore default Graphics Enhancer settings

Processor is in SVC mode

This call resets the Graphics Enhancer to give standard Archimedes
video output and 24 MHz VIDC clock.

Enhancer_NormalVideo (SWI &42A47)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_NormalVideo
(SWI &42A47)

Restore normal Archimedes video

Processor is in SVC mode

This call resets the Graphics Enhancer to give standard Archimedes
video output, but does not affect the currently set VIDC clock rate.

Enhancer Default (SWI &42A46)

None

Page 45

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 46

Enhancer_BorderOff
(SWI &42A48)

Turn border off

Processor is in SVC mode

This call turns the screen border off by setting it to black. It is used
internally by the Graphics Enhancer software.

None

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_PalSet
(SWI &42A49)

Set Archimedes palette

Processor is in SVC mode

This call sets the Archimedes palette to a linear red scale, in 4 bpp
modes. It is used internally by the Graphics Enhancer software.

None

None

Page 47

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 48

Enhancer_ExtPalette
(SWI &42A4A)

Enable 24-bit palette mode

Processor is in SVC mode

This call enables the 24-bit extended palette mode. It is
transparently used whenever an extended palette mode is selected, and
would not normally be used otherwise. To get correct output when
forcing the Graphics Enhancer to extended palette mode, a screen mode
that is synchronous with the VIDC clock must be used (ie. modes 16 &
24, or modes based upon them).

Enhancer_Dac (SWI &42A4B)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_Dac
(SWI &42A4B)

Enable direct 8, 12 or 16 bit DAC mode

R0 = 2 for 8-bit DAC mode
R0 = 3 for 12-bit DAC mode
R0 = 4 for 16-bit DAC mode

R0 preserved

Processor is in SVC mode

This call enables the direct DAC mode. It is transparently used whenever a
12 or 16 bpp mode is selected, and would not normally be used otherwise.
To get correct output when forcing the Graphics Enhancer to DAC mode, a
screen mode that is synchronous with the VIDC clock must be used (ie.
modes 16 & 24, or modes based upon them). 8-bit DAC mode is available
in hardware, but not used.

Enhancer_ExtPalette (SWI &42A4A)

None

Page 49

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 50

Enhancer_Clock
(SWI &42A4C)

Set or read VIDC clock rate

R0 = socket number of desired oscillator (0-7)
R0 = 8 for information on currently selected clock

If R0 on entry is 0-7, R0 corrupted
If R0 on entry is 8, R0 returns currently selected clock

Processor is in SVC mode

This call will connect the oscillator in the requested socket to the VIDC,
or return the currently selected oscillator socket. The default clock
frequencies and their socket numbers are as follows:

Socket 0: 24 MHz
1: 25.175 MHz
2: 32 MHz
3: 36 MHz
4: empty (for user-supplied oscillator)
5: empty (for user-supplied oscillator)
6: empty (for user-supplied oscillator)
7: 24 MHz

This call is transparently used whenever a mode requiring a non-
standard VIDC clock rate is selected. Only sockets that have been
marked as occupied by *Configure CrystalSockets can be selected. If
an empty socket is asked for, the SWI call will not change the current
VIDC rate. See the documentation on the Graphics Enhancer
*Configure commands for further details.

None

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_HardwarePresent
(SWI &42A4D)

Check for presence of Graphics Enhancer

Processor is in SVC mode

This call is used internally to check for the presence of the Graphics
Enhancer hardware. The 'X' form of the SWI will return with the V flag
clear if the hardware is present, and set if it is not.

None

None

Page 51

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 52

Enhancer_SetDesktopPalette
(SWI &42A4E)

Set standard desktop palette in extended palette modes

Processor is in SVC mode

This call sets the extended palette colours used for the desktop to give
the standard desktop look.

None

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_Pointer
(SWI &42A4F)

Enable/disable mouse pointer X-coordinate correction factor

R0 = 0 for normal pointer X-coordinates
R0 = 1 for corrected pointer X-coordinates

R0 preserved

Processor is in SVC mode

This call is used internally to correct mouse pointer X-coordinate errors in
extended palette modes. It should not be used otherwise, as it can have some
very odd effects on the desktop.

None

None

Page 53

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 54

Enhancer_VsyncUpdatePalette
(SWI &42A50)

Enable/disable extended palette vsync handler

R0 = 0 for vsync handler disable
R0 = 1 for vsync handler enable

R0 preserved

Processor is in SVC mode

This call is used internally to enable or disable the extended palette
vsync handler. If the vsync handler is turned off, the extended palette
cannot be updated.

None

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_ModeValid
(SWI &42A51)

Check for valid extended palette mode

R0 = mode to check

R0 = 0 if the mode is not an extended palette one R0
= 1 if the mode is an extended palette one

Processor is in SVC mode

This call is used to check if a mode is one that uses the extended
palette.

None

None

Page 55

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 56

Enhancer_PaletteSave
(SWI &42A52)

Save current extended palette

R0 = pointer to filename

R0 corrupted

Processor is in SVC mode

This call is used to save the current extended palette. The filetype of the
palette file is &C8A. The format of the extended palette file is as follows:

Word 0: &314C4150 header="PAL1"
Word 1: Current pixel mask
Word 2: BBGGRRCC

. .

. .

. .
Word 1028: BBGGRRCC

The palette file uses the Enhancer_PaletteBlockWrite SWI format, with
the addition of a file identification header, and the current pixel mask.

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer_PaletteBlockRead (SWI &42A41)
Enhancer_PaletteLoad (SWI &42A53)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_PaletteLoad
(SWI &42A53)

Load extended palette file

R0 = pointer to filename

R0 corrupted

Processor is in SVC mode

This call loads an extended palette file, and programs the palette and the
pixel mask from it.

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer_PaletteBlockRead (SWI &42A41)
Enhancer_PaletteSave (SWI &42A52)

None

Page 57

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 58

Enhancer_ClearSave
(SWI &42A54)

Save screen as CLEAR file

R0 = pointer to filename

R0 corrupted

Processor is in SVC mode

This call saves a Graphics Enhancer extended palette mode screen as a
CLEAR file, using the file format used by the graphics utility !
Translator, by John Kortink, public domain versions of which are
available from a number of sources. The filetype of CLEAR files is
&690. See Appendix A for details of the file format.

Enhancer_ClearLoad (SWI &42A5C)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_VIDC
(SWI &42A55)

Program VIDC registers

R0 = VIDC register number

R1 = value to program register with

R0, R1 preserved

Processor is in SVC mode

This call allows direct programming of the VIDC registers connected with
screen modes, without having to write a screen definition module. Risc-OS
will not know about the new values, so the VDU drivers will not correctly
handle the changes, but it can be useful for getting a rough idea of what a new
screen mode will look like, etc. See Appendix H for more details of register
numbers and allowed values.

Warning! Use this call with caution, as programming the VIDC with
the wrong values could damage your monitor.

None

None

Page 59

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 60

Enhancer_Colour
(SWI&42A56)

Set text colour in extended palette modes

R0 = 8-bit colour number
R1 = 0 for foreground colour, 1 for background colour

R0, R1 preserved

Processor is in SVC mode

This call sets the foreground or background text colour in extended
palette modes. It is equivalent to the BASIC COLOUR command, but
works from any language.

Enhancer_Gcol (SWI &42A57)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_Gcol
(SWI &42A57)

Set graphics colour in extended palette modes

R0 = 8-bit colour number
R1 = 0 for foreground colour, 1 for background colour
R2 = GCOL action (See Archimedes manual)

R0-R2 preserved

Processor is in SVC mode

This call sets the foreground or background graphics colour in extended palette
modes. It is equivalent to the BASIC GCOL command, but works from any
language. See the Archimedes BASIC manual for details of the GCOL
parameters.

Enhancer_Colour (SWI &42A56)

None

Page 61

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 62

Enhancer_CurrentModeValid
(SWI &42A58)

Check if current mode is extended palette mode

R0 = 0 if the current mode is not an extended palette one
R0 = 1 if the current mode is an extended palette one

Processor is in SVC mode

This call checks if the current mode is one that uses the extended
palette.

Enhancer_ModeValid (SWI &42A51)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_GreyScale
(SWI &42A59)

Set 256 level linear greyscale

R0 = 0 for black to white greyscale
R0 = 1 for white to black greyscale

R0 preserved

Processor is in SVC mode

This call sets the extended palette to a 256 level linear greyscale, either from
black (colour 0) to white (colour 255), or from white (colour 0) to black (
colour 255).

Enhancer_ SetDesktopPalette (SWI &42A4E)

None

Page 63

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 64

Enhancer_PaletteReadPointer
(SWI &42A5A)

Read current 24-bit palette entry table

R0 = pointer to start of palette table

Processor is in SVC mode

This call returns the base address of the current palette table. See
Enhancer_PaletteBlockWrite description for table format.

Enhancer_PaletteBlockWrite (SWI &42A40)
Enhancer PaletteBlockRead (SWI &42A41)
Enhancer PaletteWrite (SWI &42A42)
Enhancer_PaletteRead (SWI &42A43)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_SpriteOp
(SWI &42A5B)

Do various sprite operations

R0 = reason code
Other registers are parameters

R0 preserved
Other registers depend on reason code

Processor is in SVC mode

This call provides equivalents to some of the OS_SpriteOp calls, for use
in the extended palette modes.

R0 Meaning
41 Read pixel colour
42 Write pixel colour

None

None

Page 65

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 66

Enhancer_SpriteOp 41
(SWI &42A5B)

Read pixel colour

R0 = 41 (&29)
R1 = pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)

R0 - R4 preserved
RS = 8-bit colour number

Processor is in SVC mode

This call does the equivalent of the OS_SpriteOp 41 call, but
returns an 8-bit colour number for use in the extended palette
modes.

Enhancer_SpriteOp 42 (SWI &42A5B)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Relted SWIs

Related vectors

Enhancer_SpriteOp 42
(SWI &42A5B)

Write pixel colour

R0 = 42 (&2A)
R1 = pointer to control block of sprite area
R2 = sprite pointer
R3 = x coordinate (in pixels)
R4 = y coordinate (in pixels)
R5 = 8-bit colour number

R0 - R5 preserved

Processor is in SVC mode

This call does the equivalent of the OS_SpriteOp 42 call, but takes an 8-bit
colour number for use in the extended palette modes.

Enhancer_SpriteOp 41 (SWI &42A5B)

None

Page 67

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 68

Enhancer_ClearLoad
(SWI &42A5C)

Load CLEAR file to screen

R0 = pointer to filename

R0 corrupted

Processor is in SVC mode

This call loads a CLEAR file to the screen and programs the palette
accordingly. If the X & Y resolution of the CLEAR file image does not
match that of any known mode, or the image uses more than 8 bpp, an
error is given, and the call aborts.

Enhancer_ClearSave (SWI &42A54)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_LinkMode
(SWI &42A5D)

Load & link compiled MDL file

R0 = pointer to filename

R0 = number of modes now linked

Processor is in SVC mode

This call loads a compiled MDL file and links it in as a screen mode. If the
file has an invalid header, is the wrong size, or is the wrong filetype, an error
is given and the call aborts. It will also abort with an error if the maximum
number of modes (36) are already linked. See Appendix D for details of the
MDL mode block format.

Enhancer_LinkModeClear (SWI &42A5E)
Enhancer_DeLinkMode (SWI &42A5F)

None

Page 69

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 70

Enhancer_LinkModeClear
(SWI &42A5E)

Delete all linked modes

Processor is in SVC mode

This call removes all linked modes from memory.

Enhancer_LinkMode (SWI &42A5D)
Enhancer_DeLinkMode (SWI &42A5F)

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_DeLinkMode
(SWI &42A5F)

Delete individual linked mode

R0 = linked mode number

R0 = if mode requested exists, the new number of modes now linked
R0 = -1 if no modes linked

Processor is in SVC mode

This call removes a specified linked mode from memory, and returns with
the new number of linked modes in R0. If there are no linked modes, it
returns with -1 in R0. If the linked mode specified does not exist, the call
aborts with an error.

Enhancer_LinkMode (SWI &42A5D)
Enhancer_LinkModeClear (SWI &42A5E)

None

Page 71

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Page 72

Enhancer_HardwareBaseAddress
(SWI &42A60)

Return MEMC base address of Graphics Enhancer hardware

R0 = hardware MEMC base address + &2000

Processor is in SVC mode

This call returns in R0 the base address of the Graphics Enhancer
MEMC interface + &2000.

None

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Enhancer_TiffSave
(SWI &42A61)

Saves the current extended palette screen as class P TIFF file

R0 = pointer to filename

R0 corrupted

Processor is in SVC mode

This call saves a Graphics Enhancer extended palette mode screen as a class
P TIFF file. The filetype of TIFF files is &FF0. See Appendix B, and the
Aldus/Microsoft technical documentation on TIFF files for more details of
the file format.

None

None

Page 73

APPENDIX A: CLEAR file format

The CLEAR file format that the Graphics Enhancer uses was designed by John Kortink for his
graphics utility !Translator, as a very simple but versatile format for storing high-resolution images,
with or without a palette. Basically, the CLEAR format is an uncompressed image file, which has a
palette definition in it for images that have up to 8 bpp, and is simply raw RGB data for images
above 8 bpp. The format will handle images up to the full 24 bpp that is the maximum usually used.
A full definition of the CLEAR file format is as follows:

File start +0: A string containing the name of the program that created the file, n
bytes long.

+n: A null byte as the string terminator.

+(n+1): A word containing the version number of the creating program. The
lower 2 digits of this number are to the right of an implied decimal
point, the rest are to the left. (ie. A version number of 1.45 would be
stored as 145)

+(n+5): A word containing the X resolution of the image in pixels.

+(n+9): A word containing the Y resolution of the image in pixels.

+(n+13): A word containing the number of bits per pixel of the image. If the bpp
is between 1 and 8, then a 24-bit wide palette table for all the available
colours follows this entry. If the image has more than 8 bpp, the raw
image data follows, stored as 1 byte each of R, G, & B for each pixel in
the image.

+(n+17): If the image has 8 bpp or less, the next ((2^bpp)*3) bytes contain a 24-
bit palette entry for each colour, stored as the 8-bit colour definitions
for R, G, & B. If the image has more than 8 bpp, the next ((X*Y)*3)
bytes contain the raw image data, stored as 1 byte per R, G, & B for
each pixel. If the raw data is for less than full 24 bpp, the data is shifted
to the top of the byte, and the lower bits are set to 0. For example, 12
bpp image data would be stored as the top 4 bits of each byte.

+(n+17+((2^bpp)*3)): This is only if the image has 8 or less bpp. In this case, the next (X*Y)
bytes contain 1-byte colour numbers, which are used as pointers to the
appropriate palette entry in the table preceding this section.

Page 74

APPENDIX B: Class P TIFF file format

A full description of the TIFF file format goes on for some 38 pages, and is very technical. For those
people wanting full details on the TIFF specification, the Aldus/Microsoft TIFF 5.0 technical
documentation is recommended. The following is a brief description of the subset of the full TIFF
specification that is used to store 8-bit palette images, such as those made by the Graphics Enhancer.
These are primarily intended for exporting images to other computers.

A TIFF (Tagged Image File Format) file consists of a number of fields, some mandatory and some
optional, each of which has a unique identification number, or tag. The TIFF file starts with an 8
byte file header that points to one or more image file directories, of IFDs. Each IFD contains
information about the image it is attached to, and also has pointers to the image itself.

The first 2 bytes of the file contain a number specifying the order of the bytes that make up the rest
of the file. There are two options, &4949 (least significant to most significant), and &4D4D (most
significant to least significant). The Graphics Enhancer uses &4949. The next 2 bytes contain
&002A, which is used as a TIFF file identifier, in conjunction with the byte order specifier. The next
4 bytes contain a 32-bit pointer to the start of the first IFD. The IFD must be aligned to 2-byte
boundaries, but may be anywhere in the file. All pointers used are referenced to the start of the file,
which is offset 0. The Graphics Enhancer puts 8 in this field, signifying that the first IFD
immediately follows the file header.

An IFD consists of a number of IFD entries, with a 32-bit pointer to the next IFD, which is 0 if this
IFD is the last in the file. The first 2 bytes of an IFD contains the number of entries in it. Each IFD
entry is 12 bytes long, and has a format as follows;

Bytes 0-1 Tag
Bytes 2-3 Field type
Bytes 4-7 Field length
Bytes 8-11 Value offset

The tags must be in numerically ascending order. The field types are as follows;

1 Byte 8-bit unsigned integer
2 ASCI1 0 terminated ASCII string
3 Short 16-bit unsigned integer
4 Long 32-bit unsigned integer
5 Rational 2 32-bit integers, the first being the numerator

of a fraction, the second being the
denominator

Page 75

The length of a field is given in units of the field type, ie. a single Long is 1, five Bytes is 5, etc.
The length of a string includes the terminating 0, but not any pad bytes.

If a field value is 4 bytes or less, the value offset is the value itself, otherwise it is a pointer to the
actual value.

A list of the tags used by the Graphics Enhancer, and the values used, is given below.

ImageWidth, Tag &100, Short, Length 1
X resolution of screen

ImageLength, Tag &101, Short, Length 1
Y resolution of screen

BitsPerSample, Tag &102, Short, Length 1
8

Compression, Tag &103, Short, Length 1
1 (no compression)

PhotometricInterpretation, Tag &106, Short, Length 1
3 (palette used)

FillOrder, Tag &10A, Short, Length 1
1 (normal order)

Make, Tag &10F, ASCII, optional
Pointer to information string 1

Model, Tag &110, ASCII, optional
Pointer to information string 2

StripOffsets, Tag &111, Long, Length Y resolution/16
Pointer to table of 16-line image strip pointers

SamplesPerPixel, Tag &115, Short, Length 1
1 (1 byte per pixel)

RowsPerStrip, Tag &116, Long, Length 1
16 (16 lines per strip)

StripByteCounts, Tag &117, Long,Length 1
X resolution*16 (bytes per strip)

Page 76

XResolution, Tag &11A, Rational, Length 1
Pointer to 64-bit value (&0000004000000000, 40 pixels/cm)

YResolution, Tag &11B, Rational, Length 1
Pointer to 64-bit value (&0000004000000000, 40 pixels/cm)

ResolutionUnit, Tag &128, Short, Length 1
3 (measure in cm)

Software, Tag &131, ASCII, optional
Pointer to information string 3

HostComputer, Tag &13C, ASCII, optional
Pointer to information string 4

ColourMap, &140, Short, Length 768
Pointer to palette data

The actual image is referenced by the StripOffsets field, which contains a pointer to the beginning of
a table of pointers which point to the beginning of a number of strips of image data. Each strip is 16
lines deep, and (X resolution) pixels wide. The strips can be anywhere in the file, but in the case of
the Graphics Enhancer files, are in a contiguous block. Strictly speaking, the StripByteCount field
should have one entry for each image strip, but as they are all the same length, only one value is
actually needed.

The palette data, referenced by the ColourMap field, is laid out in a rather strange manner. Each
palette entry is a 16-bit value, with 0 as black and 65535 as white. The 256 red values are in a single
block, followed by 256 green values and 256 blue values. The Graphics Enhancer software scales
the 8-bit palette values to 16 bits by shifting them 8 bits left. This method does not quite give peak
values, but is very fast.

The various information strings are optional, but used to distinguish Graphics Enhancer TIFF files
from those created by other means.

The tags that must be used, according to the above mentioned Aldus/Microsoft for class P TIFF
files documentation, are:

&100 ImageWidth &115 SamplesPerPixel
&101 ImageLength &117 StripByteCounts
&102 BitsPerSample &11A XResolution
&103 Compression &11B YResolution
& 106PhotometricInterpretation & 128 ResolutionUnit
&111S tripOffsets &140 ColourMap

Page 77

APPENDIX C: Using the 12 BPP & 16 BPP modes

The use of the 12 & 16 bpp modes can be quite complex, and warrants a detailed explanation. The
main difficulty is that Risc-OS does not handle more than 8 bpp, so you have to go around it. The
Graphics Enhancer works by adding several 4 bpp pixels together to make larger pixels, and reduces
the X resolution of the screen correspondingly. In 12 bpp modes, 3 pixels are added together to get
one 12 bpp pixel , which is 3 time as wide as the individual sub-pixels that make it up. In 16 bpp
modes, 4 pixels are added together, etc.

This means that the VDU drivers think that they are plotting 4 bpp pixels, and the colour range for
each sub-pixel is 0 to 15. In the 12 bpp modes, the first 2 sub-pixels on each line must be skipped, as
the Graphics Enhancer hardware, for various reasons, does not correctly use them. This effectively
reduces the X resolution of that 12 bpp modes by one 12 bpp pixel.

To drive the 12 bpp modes from BASIC, you must write to each sub-pixel in turn, for each larger
pixel. The screen is arranged as follows:

Start of line: NNRGBRGB etc. to the end of each line.

The sub-pixels marked N are not used and must be skipped. Each of the R, G, & B pixels is one 4
bpp sub-pixel. For example, to set the lower left pixel in a 12 bpp mode, such as mode 119, to white,
you must do the following:

GCOL 15
POINT 4,0
POINT 6,0
POINT 8,0

This sets each of the individual sub-pixels to full intensity, giving the overall effect of a full
intensity 12 bpp pixel.

In some respects, writing to the screen in assembler is easier. The bit pattern of a 12 bpp pixel is this:

B3B2B1B0G3G2G1 G0R3R2R1R0

As in BASIC, the first byte on each line must be skipped. It is usually easier to caleulate the 12 bpp
values for the first 2 pixels, giving a 3 byte value, and to write this to the screen. This prevents
having to write 2 bytes, read the second one back, add 4 bits of the next 12 bit value to it, and write
it to the screen again.

Page 78

The 16 bpp modes are similar, but do not need to have any pixels skipped at the beginning of the
line. The extra 4 bits are arranged as IB4G4R4. The I bit is connected to the fifth bit of each of R, G,
& B, and acts as an intensity bit. Therefore, the bit pattern of a 16 bpp pixel is as follows:

IB4G4R4B3B2B1B0G3G2G2G0B3B2B1R0

To set the lower left pixel in a 16 bpp mode to white, ignoring the I bit, from BASIC, would
require the following code:

GCOL 7
POINT 0,0 This sets bit 4 of RGB without setting the I bit.
GCOL 15
POINT 2,0
POINT 4,0
POINT 6,0

In assembler, the lower 4 bits of each of the RGB components can be assembled into a 12 bit value,
and the upper bit of each component, plus the I bit if needed, can be shifted 12 bits left and added
to the calculated 12 bit value. This complete 16 bit pixel value can now be written to the screen as 2
bytes. Again, it can often be quicker to calculate 2 successive 16 bit pixel values and combine them
together into one 32 bit word, which can be written to the screen using STR.

There are some example programs showing the above techniques on the utilities disk supplied with
the Graphics Enhancer.

Page 79

APPENDIX D: Mode Description Language

The Graphics Enhancer software has a powerful and versatile way of creating new modes, which
uses much less memory than the usual way of creating a relocatable module for the mode definition.
It is the Mode Description Language, or MDL. This is a simple language, which uses standard text
files, created with !Edit, which are then compiled to a standard mode definition block by the
Graphics Enhancer utility !Mdlcomp. The compiled MDL files are only 200 bytes long, and take up
very little disk space, or memory. The source code for the mode block can be altered and recompiled
at any time, without having to start again from scratch. There are 3 SWI's, with their associated
*commands, which are used to load and delete the MDL modes to and from memory. They are;

Enhancer_LinkMode & *LinkMode
Enhancer_LinkModeClear & *LinkModeClear
Enhancer_DeLinkMode & *DeLinkMode

See the appropriate sections of this manual for details of these commands.

The !Mdlcomp utility is used in the following manner:

Create a MDL source file using !Edit, and save it as a text file. Run the !Mdlcomp program by
double-clicking on it. Drag the text file you have created to the !Mdlcomp icon, on the icon bar. A
save window will appear, with a default save filename. If you wish to change this filename, select it
by clicking on it, and type in a new filename. Now you can drag the icon for the compiled MDL file
to the directory viewer where you want to save it. The compiler will now load the source file, if it is
a text file, and attempt to compile it. It first scans the source file looking for syntax errors. If it finds
any, a standard error window will be opened, and the line number of the offending statement will be
given, along with the text of the line itself. At this point, any syntax errors can be corrected. If the
compiler can find no syntax errors, it next checks for the presence of the few mandatory statements
that form the file header. If these are present, it will then compile the source file, and save the
compiled MDL file.

It is possible for a MDL file to eompile correctly, and still not apparently work as a new mode. This
is invariably because the source file gave silly parameters for the VIDC registers, or the RISC-OS
variables. See Appendix H for details of the VIDC registers, and the entry for the
OS_ReadModeVariable SWI (&35) on page 350 of the Archimedes Programmers Reference
Manual for full information on allowed values.

Some example MDL souree files are included on the Graphics Enhancer utility disk.

A RISC OS compliant mode generator that produces MDL text files will be available shortly.

Page 80

A list of the MDL keywords is given below, along with their descriptions, ranges,
and whether they are optional or mandatory.

hcr horizontal cycle register 0-1023 optional
hswr horizontal sync width register 0-1023 optional
hbsr horizontal border start register 0-1023 optional
hdsr horizontal display start register 0-1023 optional
hder horizontal display end register 0-1023 optional
hber horizontal border end register 0-1023 optional
hcsn horizontal cursor start register 0-1023 optional
hir horizontal interlace register 0-1023 optional

vcr vertical cycle register 0-1023 optional
vswr vertical sync width register 0-1023 optional
vbsr vertical border start register 0-1023 optional
vdsr vertical display start register 0-1023 optional
vder vertical display end register 0-1023 optional
vber vertical border end register 0-1023 optional
vcsr vertical cursor start register 0-1023 optional
vcer vertical cursor end register 0-1023 optional

cr control register 9 bits (bitwise) optional

maxcol maximum column number -1 127 optional
maxrow maximum row number -1 127 optional
logcol maximum logical colour (either 1,3,15, or 63) 63 optional
xeig x-coordinate bit shift value 31 optional
yeig y-coordinate bit shift value 31 optional
linelen bytes per pixel row (chars • bpp • pixels per char)/8 2048 optional
screen bytes per screen (must be multiple of 256 bytes) 491520 (480K) optional
log2bpp LOG base 2 bpp 3 optional
log2bpc LOG base 2 bytes per char 3 optional
xmax maximum x pixel -1 2047 optional
ymax maximum y pixel -1 2047 optional

montype monitor type of new mode 7 mandatory
mode mode number of new mode 127 mandatory
vbasemode vide list base mode 127 mandatory
wbasemode workspace list base mode 127 mandatory
vformat vide list format (0 for RISCOS 2) 1 mandatory
wformat workspace format (0 for RISCOS 2) 1 mandatory
crystal slot of oscillator for new mode 7 mandatory
video video type (0=normal. 1=extended palate, 2=12 bpp DAC. 3=16 bpp DAC) 3 mandatory

comment line (ignored) - optional

 Notes

(1) The syntax of an MDL source code line is <keyword>;<value>.
(2) There must only be one statement per line.
(3) A line beginning with \ is ignored, and is used for comments on the source file.
(4) Each mode defined must be in a separate file.
(5) Any optional parameter which is left out will use the default value of the base mode.
(6) In RISC-OS 2, both the vidc list format and the workspace format have the same
number, which is 0. RISC-OS 2.01, as in the A540, can also have the format number 1.
This format is currently not fully supported by the Graphics Enhancer software, for
hardware reasons.
(7) With multisync monitors, the setting of the DefaultCrystal *Configure command is
used for all modes that normally run at 24 MHz, ie. crystal 0. To force a mode to run at 24
MHz, regardless of the DefaultCrystal setting, use crystal 7 instead.

Page 81

A definition of the MDL mode block is given below;

word offset description

word 0 header (&45444F4D • "MODE")
word 1 definition mode number
word 2 crystal slot for definition
word 3 monitor type of definition
word 4 video type
word 5 vidc list format
word 6 vidc list base mode
word 7 vidc parameter 1
word 8 vidc parameter 2
word 9 vidc parameter 3
word 10 vidc parameter 4
word 11 vidc parameter 5
word 12 vidc parameter 6
word 13 vidc parameter 7
word 14 vidc parameter 8
word 15 vidc parameter 9
word 16 vidc parameter 10
word 17 vidc parameter 11
word 18 vidc parameter 12
word 19 vidc parameter 13
word 20 vidc parameter 14
word 21 vidc parameter 15
word 22 vidc parameter 16
word 23 vidc parameter 17
word 24 &FFFFFFFF
word 25 workspace list format
word 26 workspace base mode
word 27 mode variable index 1
word 28 mode variable value 1
word 29 mode variable index 2
word 30 mode variable value 2
word 31 mode variable index 3
word 32 mode variable value 3
word 33 mode variable index 4
word 34 mode variable value 4
word 35 mode variable index 5
word 36 mode variable value 5
word 37 mode variable index 6
word 38 mode variable value 6
word 39 mode variable index 7
word 40 mode variable value 7
word 41 mode variable index 8
word 42 mode variable value 8
word 43 mode variable index 9
word 44 mode variable value 9
word 45 mode variable index 10
word 46 mode variable value 10
word 47 mode variable index 11
word 48 mode variable value 11
word 49 &FFFFFFFF

Page 82

APPENDIX E: Error Messages
&804900 Invalid VIDC Register
Occurs when the VIDC register given in the *VIDC command or the Enhancer VIDC SWI is not
one of the screen registers, or the control register.

&804901 VIDC parameter out of range
Occurs when the VIDC parameter given in the *VIDC command or the Enhancer VIDC SWI is
greater than the register can accept.

&804902 This is not an extended palette file
Occurs when the file requested by the *PalLoad command or the Enhancer_PaletteLoad SWI has
the wrong filetype or header.

&804903 The current mode is not an extended palette mode
Occurs when the *ClearSave or *TiffSave commands, or the Enhancer ClearSave or
Enhancer_TiffSave SWIs are used from a non-extended palette mode.

&804904 *Clock value out of range
Occurs when the *Clock command is given a number greater than 7.

&804905 *Dac value out of range
Occurs when the *Dac command is given a number other than 12 or 16.

&804906 *Pmask value out of range
Occurs when the *Pmask command is given a number greater than 255.

&804907 *Palette value out of range
Occurs when one of the parameters given to the *Palette command is greater than 255.

&804908 Named socket is empty
Occurs when a VIDC oscillator socket requested of the *Configure DefaultCrystal or *Clock
commands, or the Enhancer Clock SWI, is marked as empty.

&804909 This is not a CLEAR file
Occurs when the file requested by the *ClearLoad command or the Enhancer_ClearLoad SWI
has the wrong filetype.

&80490A CLEAR file does not match extended palette mode
Occurs when the XY resolution of the CLEAR file requested by the *ClearLoad command or the
Enhancer_ClearLoad SWI does not match any of the defined extended palette modes.

&80490B CLEAR file has no palette
Occurs when the CLEAR file is more than 8 bpp, and hence does not use a palette.

Page 83

&80490C This is not a valid mode file
Occurs when the *LinkMode command attempts to load a file which does not have a valid file
header, size, or file type.

&80490D The maximum number of new modes are already linked
Occurs if the *LinkMode command is used when there are 36 modes already linked.

&80490E Cannot delink non-existent mode
Occurs when the *DeLinkMode command is used with a mode number that is not linked.

Page 84

APPENDIX F: Installation of Graphics Enhancer
This information is provided mainly for reference, as the Graphics Enhancer would normally be
installed by an authorised Acorn dealer. However, an experienced user may find it useful to know
the installation procedure.

The complete Graphics Enhancer kit includes the following items:

(1) This manual.

(2) The Graphics Enhancer card itself.

(3) A 5x2 header block, which is soldered onto the motherboard of the computer to
complete the genlock connector. (This is only needed for 300 series, old style
400 series, and earlier issues of the new 400/1 series, and must be done by an
authorised Acorn service centre to avoid voiding the warranty.)

(4) A short length of ribbon cable with 16-way IDC connectors on each end.

(5) A cable with 9-way D-type connectors on each end.

(6) A 3.5" floppy disk containing utility programs.

(7) For the A3000 only, a small adaptor board for the VIDC.

(8) A conductive plastic bag.

Installation procedure for 300 series, 400 & 400/1 series, and 540

The Graphics Enhancer is installed in one of the available podule slots, preferably slot 0 (looking at
the back of the machine, this is the one on the top left-hand side). The ribbon cable plugs onto the
genlock connector on the computer motherboard, with the red stripe on the cable going to pin 1 of
the connector block. On the old series 400, and series 300 machines, this connector is labeled PL3,
on the new 400/1 series it is labeled PL4, and on the 540 it is labeled LK15. (The earlier machines
had only the first two rows of this connector fitted, and the supplied 5x2 way IDC header must be
soldered into the remaining holes.) One end of the ribbon cable has a short loop of wire connecting
pins 3 & 4, and this is the end that connects to the computer. The other end connects to the 16-way
IDC header on the edge of the Graphics Enhancer card. The first two rows of the genlock connector
will have jumpers connecting pins 1 & 2, and 3 & 4. These jumpers must be removed, and carefully
retained, as they must be replaced should the Graphics Enhancer ever be removed.

Page 85

The other cable connects the RGB out socket on the computer to the RGB in plug on the
Graphics Enhancer. The RGB out socket on the Graphics Enhancer is connected to the monitor
by the standard monitor cable.

Should you ever need to remove the Graphics Enhancer card, disconnect the ribbon cable from the
motherboard, and replace the two links on the genlock connector, one linking pins 1 & 2, and the
other linking pins 3 & 4. The Graphics Enhancer should be stored in an antistatic bag, which is
supplied with it.

Installation procedure for A3000

The ribbon cable is connected to the small adaptor board which clips over the VIDC chip, under the
disk drive, which requires the disk drive to be removed. The adaptor board should be carefully
positioned over the VIDC, with the IDC plug facing the read of the computer. By pushing down
firmly and evenly, the adaptor will snap onto the VIDC. Make sure that it is pressed down evenly on
all sides, not tilted to one side. The ribbon cable is connected to the IDC plug, and the other end is
trailed out the back of the computer. Make sure that there is some slack in the cable, so that when
the top of the case is refitted it does not come off the connector. Next, the jumper on link LK28,
which is situated under the keyboard at the right front of the PCB, should be removed and carefully
retained. It will be needed if the Graphics Enhancer is removed. Reassemble the case, and plug the
Graphics Enhancer into the rear expansion slot. Connect the other end of the ribbon cable to the 16-
way IDC plug on the board, with the red stripe going to pin 1. The other cable connects the RGB out
socked on the computer to the RGB in plug on the Graphics Enhancer. The monitor cable is
connected to the RGB out socket on the Graphics Enhancer. Ideally, the board should be housed in
an expansion box, which The Serial Port, among others, can supply.

Should you ever need to remove the board, carefully unplug the ribbon cable from the adaptor
board, and replace the jumper on LK28. The adaptor board can be left in place on the VIDC.

Configuration of Graphics Enhancer after Installation
After The Graphics Enhancer has been installed, the software must be configured. Assuming that the
optional mode booster board is not installed, the following commands should be entered at the
command line;

*Configure Crystalslots 0 (sets default occupied crystal slots)
*Configure Defaultcrystal 0 (use 24 MHz crystal as default)
*Configure Turbomodes 0 (no mode booster)

If the machine is not an ARM 2 based one, or if the monitor is a multisync type, the appropriate
configuration commands must be used. See the section on * Command for the correct configuration
options.

Page 86

APPENDIX G: Currently defined screen modes

The following is a list of all screen modes that
are currently defined, when the Graphics

Enhancer is installed.

Page 87

Page 88

Page 89

Page 90

Page 91

APPENDIX H: VL86C310 data sheet

The following pages are reprinted here by kind
permission of VLSI Technology Inc., San Jose,

California, USA.

Page 92

VL86C310
RISC VIDEO CONTROLLER (VIDC)

FEATURES
•Pixel rate selectable as 8, 12, 16, or

24 MHz

•Serializes data t0 1-, 2-, 4-, 0r 8- bits
per pixel

•16 x 13-bit w0rds - 4096 color l0okup
palette

•Three 4-bit DACs (one for each CRT
gun)

•Fully pr0grammable screen parame-
ters

•Screen border in any of the 4096
possible col0rs

•Flexible cursor sprite
•Support f0r interlaced display f0rmat
•External synchronizati0n capability
•Very high resolution monochr0me

mode supp0rt
•High quality stereo s0und generati0n

DESCRIPTION
The Video C0ntroller (VIDC) accepts
video data fr0m DRAM under DMA
c0ntr0l, serializes and passes it
thr0ugh a col0r l00k-up palette, and
c0nverts it t0 analog signals f0r driving
the CRT guns. The chip also contr0ls
all the display timing parameters plus
the p0siti0n and pattern 0f the curs0r
sprite. In additi0n, the VIDC includes
an exp0nential DAC and stereo Image
table f0r the generati0n 0f high quality
sound fr0m data in the DRAM.
The VIDC requests data fr0m the RAM
when required, and buffers it In 0ne 0f
three first-in, first-out mem0ries (
FIFOs)- N0te that the addressing of the
data in RAM is c0ntr0lled elsewhere In
the system (usually in the VL86C110
Memory Controller, MEMC). Data Is
requested in bl0cks 0f four 32-bit
w0rds, all0wing efficient use 0f page-
mode DRAM with0ut locking up the
system data bus f0r l0ng peri0ds.
The VIDC is a highly pr0grammable de-
vice, 0ffering a very wide ch0ice 0f dis-
play formats. The pixel rate can be se-

lected in a range between 8 and 24
MHz and the data can be serialized t0
either 8-, 4-, 2-, or 1-bit per pixel. The
horiz0ntal timing parameters can be
contr0lled to units of 2 pixels, and the
vertical timing parameters can be
c0ntr0lled in units 0f a raster. The
c0l0r l00kup palette which drives the
three 0n-chip DACs is 13 bits wide,
offering ch0ice fr0m 4096 colors 0r an
external vide0 s0urce.
Extensive use is made 0f pipelining
thr0ugh0ut the device.

The cursor sprite Is 32 pixels wide,
and any number 0f rasters high.
Three simultane0us c0l0rs (fr0m the
4096 possible) are supp0rted, and
any pixel can be defined as
transparent, making p0ssible curs0rs
0f many shapes. The curs0r can be
p0siti0ned anywhere on the screen.
The sound system implemented 0n
the device can supp0rt up to eight
channels, each with a separate
stere0 p0siti0n.

Page 93

VL86C310

Page 94

VL86C310

CKIN 19 Cl0ck In (TTL level input); Master 24 MHz system cl0ck input. - Usually this is the same signal as the
VL86C110 Mem0ry C0ntr0ller (MEMC) uses t0 generate system timing. Since VIDC resyn-
chr0nizes all its inputs t0 this cl0ck reference, these tw0 cl0cks are n0t required t0 be the same fre-
quency, all0wing the display frequency t0 be independent 0f the pr0cess0r.

–VIDW 27 Register Write Str0be (TTL level input). - An active low 0n this line writes data int0 0ne of the VIDC
registers. The address 0f the register is supplied 0n the upper bits, and the data t0 be written 0n the
lower bits 0f the data bus. N0rmally, this signal is generated by MEMC as it is the device that decodes
the mem0ry address map in the system.

D31 - D0 44-68,1-7 Data Bus (TTL level inputs). - This 32-bit bus carries data f0r register writes, vide0 DMA. cursor DMA,
and sound DMA, acc0rding t0 which type 0f data str0be is present.

–VDRQ 23 Video Data Request (CMOS level 0utput). This signal is driven active (low) when the VIDC requires
an0ther bl0ck 0f 16 bytes 0f video data (when –HSYC is high) 0r cursor data (when –HSYC is low). It is
driven high again by the first valid vide0 data ackn0wledge, –VDAK.

–VDAK 8 Vide0 Data Ackn0wledge (TTL level input). - An active l0w on this signal str0bes a data w0rd int0 the
vide0 0r curs0r FIFO depending 0n the state 0f HSYNC when the request was made. Note that a l0w 0n
–VDRQ signifies a request f0r f0ur w0rds 0f data, and s0 –VDAK must g0 low f0ur times t0 service each
request.

–SDRQ 24 Sound Data Request (CMOS level 0utput). - This signal is driven l0w when the VIDC requires another
block 0f 16 bytes 0f s0und data. It is driven high again by the first valid –SDAK.

–SDAK 9 S0und Data Acknowledge (TTL level input). - An active low 0n this signal strobes a data w0rd int0 the
sound FIFO. N0te that a l0w 0n –SDRQ signifies a request f0r f0ur w0rds 0f data, and s0 –SDAK must
g0 low f0ur times to service each request.

FLBK 22 Vertical Flyback (CMOS level 0utput). - This signal is driven high when the display is in vertical flyback (
retrace). Specifically, it is set high at the start 0f the first raster which is n0t display data, although this
may be b0rder, (at the bott0m 0f the screen), and is cleared d0wn at the start of the first raster which is
display data (at the t0p 0f the screen).

SINK 20 External Synchr0nizati0n pulse (TTL level input). - A high 0n this signal resets the vertical timing c0unter,
and if interlaced display f0rmat is being used, the odd field is selected. The horiz0ntal timing counter, and
all 0ther registers are unaffected by this signal.

–HI 21 Horiz0ntal Interlace Marker (Test pin - CMOS level 0utput). - When an interlaced display f0rmat is
selected this signal is driven l0w had way al0ng the raster and stays l0w until the end of each raster. If
n0n-interlaced displays are used, this pin may be used as a pr0grammable timer 0n each raster.

–SD3 - –SD0 37-34 Multiplexed Sound Data (Test pins - CMOS level outputs). - These pins are used for testing the digital
data paths thr0ugh the chip. N0rmally, depending on the state 0f NSEL, they 0utput the inverse 0f 0ne of
the two nibbles 0f the data byte being fed to the s0und DAC, but in test m0de three, they 0utput the
inverse 0f the data being fed t0 the green or blue DACs, again depending 0n the state 0f NSEL. F0r
m0re inf0rmati0n 0n test m0de three, refer t0 the c0ntr0l register secti0n.

NSEL 33 S0und Data Ouput Select0r (Test pin - TTL level Input). - When this signal Is l0w, the s0und data bus
p0rt 0utputs the l0w nibble 0f the s0und data, 0r the green DAC data. When NSEL is high, the s0und
data bus p0rt 0utputs the high nibble 0f the s0und data, 0r the blue DAC data.

–L/R 17 Left/Right (Test pin - TTL level 0utput). - This signal is driven l0w when the s0und 0utput is steered t0 the
left 0utput p0rt, and is high when the s0und 0utput is steered t0 the right 0utput p0rt. In test m0de three,
the pin changes its functi0n, and 0utputs the s0und sampling clock instead.

REFV 43 Vide0 DAC Reference Current (Anal0g input). - A current must be fed int0 this pin t0 set the 0utput
current of the vide0 DACs. The full scale 0utput current is 15 times this current. In m0st applicati0ns a
resistor fr0m VDD t0 this pin is sufficient to set the current.

ROUT 39 Red Anal0g 0utput (Analog 0utput). - The 0utput t0 the CRT guns is in the f0rm of a current sink.
Maximum brightness is defined as 15 times the reference current, and 'black' is defined as zer0 current.
Level shifting and buffering is n0rmally required to drive the CRT inputs.

Page 95

VL86C310

GOUT 40 Green Analog 0utput (Anal0g 0utput). - Same description as f0r ROUT.

BOUT 41 Blue Anal0g output (Anal0g 0utput). - Same descripti0n as f0r ROUT.

–SUP 28 Supremacy 0utput signal (CMOS level output). - This signal is used t0 c0ntr0l a multiplexer between the 0utput 0f
VIDC and an external s0urce when vide0 mixing Is required. If bit 12 of the vide0 0r curs0r palette f0r any l0gical c0l0r
Is set, –SUP is driven l0w when that l0gical col0r is displayed. In this way any l0gical color can be defined as being
supreme 0r n0t, 0n a pixel-bypixel basis.

–HSYC 25 H0riz0ntal Synchr0nizati0n pulse (CMOS level 0utput). - This signal is required by s0me
m0nit0rs. It is als0 used by the MEMC t0 discriminate between cursor and vide0 data requests. The pulse Is
active l0w, and the pulse width is pr0grammable in units 0f tw0 pixels, th0ugh there are certain system-related
restricti0ns. See secti0n Restrictr0ns On Parameters.

–V/CS 28 Vertical/C0mp0site Synchr0nizati0n pulse (CMOS level 0utput). - Depending 0n bit seven in
the c0ntr0l register, this pin can be either the vertical sync pulse, 0r a f0rm 0f c0mp0site sync pulse. The vertical sync
pulse width is programmable in units 0f a raster and, If selected, Is active l0w. The c0mp0site sync pulse is the
XNOR 0f –HSYC and –VSYC.

–VED3 - 32-39 Video External Data 0utput (CMOS level 0utput). - The inverse 0f the f0ur bits of data which are
–VED0 fed t0 the red DAC are 0utput 0n these pins. With an external serializes, this data can be used to pr0duce very

high res0luti0n mon0chr0me displays.

REFS 12 Sound DAC Reference Current (Analog Input). - A current must be fed int0 this pin to set the
0utput current 0f the sound DAC. The full scale 0utput current is appr0ximately 32 times this current. In most
applicati0ns a resist0r fr0m VDD t0 this pin is sufficient t0 set the current.

LCH 13 Left Channel Positive S0und output (Anal0g 0utput). - The s0und 0utput is the f0rm of a current sink which is
switched t0 0ne 0f f0ur pins (pins 13-16). The left channel signal Is pr0duced by externally integrating and
subtracting the tw0 signals. LCH and –LCH. Similarly, the right channel signal is produced by externally Integrating
and subtracting the tw0 signals RCH and –RCH.

–LCH 14 Left Channel Negative S0und 0utput (Anal0g output).- See description 0f LCH.

RCH 15 Right Channel Positive S0und 0utput (Analog 0utput).- See descripti0n 0f LCH.

–RCH 16 Right Channel Negative S0und 0utput (Anal0g 0utput). - See description 0f LCH.

VSSD 18 P0wer (Digital ground). - This pin is the ground supply to the digital circuits in the device.

VSSS 10 Power (S0und ground). - This pin is the gr0und supply t0 the s0und DAC in the device. It must be connected t0
the pin VSSD 0utside the chip.

VSSV 42 P0wer (Video gr0und). - This pin is the gr0und supply t0 the vide0 DACs in the device. It must be c0nnected t0
the pin VSSD outside the chip.

VDDD 38 P0wer (Digital +5 V ±5% supply). - This pin is the p0sitive supply t0 the digital circuits in the device.

VDDS 11 P0wer (Sound +5 V ±5% supply). - This pin is the p0sitive supply t0 the sound DAC in the devrce. It must be at the
same p0tential as VDDD, and sh0uld be dec0upled t0 VSSS. N0te that the sound reference current input and the
s0und anal0g 0utput currents are all referenced t0 this signal.

Page 96

VL86C310

FUNCTIONAL DESCRIPTION
Apart from the three 32-bit wide FIFOs (
video, cursor, and sound), the VIDC
contains 46 write-only registers of up to
13 bits each. In all cases the address of
the register is contained in the top six
bits (31-28) of the data field. Bits 25 and
24 are not used. The actual data bits are
distributed among the remaining 24 bits
of the data field according to the register
in question. The encoding format is
shown In Figure 1.
Treating bit 24 as the least significant
address bit, the register map is sh0wn in
Table 1 on the following page. Note that
there are 18 undefined locations. These

locations should never be written to as
they may actually c0ntain other regis-
ters. (Some registers are dual-mapped
within the device.)
In order to define the display format,
eleven registers must be programmed.
Screen parameter definiti0ns are sh0wn
in Figure 2 on the foll0wing page.
Video Palette Logical Colors 0-FH:
Addresses 00-3CH
In one, two, and four bits per pixel
mode, data bits D12 - D0 define the
physical color corresponding to that
logical color. The data bus encoding is
sh0wn in Figure 3. Figure 4 shows the
physical color field specification.

D3 -D0 define the red amplitude (
D0 least significant)

D7 - D4 define the green amplitude (
D4 least significant)

D11 - D8 define blue amplitude (
D8 least significant)

D12 defines the supremacy bit
for that col0r

in eight bits per pixel mode, only nine
bits are defined as shown in Figure 5.
The palette outputs define the least sig-
nificant bits of each col0r. The m0st
significant bits for each color now come
directly from the upper tour bits 0f the
logical color field, giving the physical
data field as shown in Figure 6.
In four and eight bits per pixel m0de, all
18 locations sh0uld be programmed. In
two bits per pixel mode only colors zero.
one, two, and three need to be defined.
In one bit per pixel mode only col0rs
zero and one need to be programmed..
Border Color RegIster: Address 40H In
all m0des this register defines the border
physical color. The data bus encoding is
shown in Figure 7.

D3 - D0 define the red amplitude
(D0 least significant)

D7 - D4 define the green amplitude
(D4 least significant)

D11 - D8 define the blue
amplitude (D8 least
significant)

D12 defines the supremacy
bit for the border

Page 97

VL86C31 0

TABLE 1. REGISTER ADDRESS ASSIGNMENTS
Address
(Hex) Register Function

Address
(Hex) Register Function

Address
(Hex) Register Function

00 Video Palette Logical Color 0 44 Cursor Palette Logical Color 1 94 Horizontal Border End Register

04 Video Palette Logical Color 1 48 Cursor Palette Logical Color 2 96 Horizontal Cursor Start Register

06 Video Palette Logical Color 2 4C Cursor Palette Logrcal Color 3 9C Horrzontal Interlace Register

0C Video Palette Logical Color 3 50 - 5C Reserved A0 Vertrcal Cycle Regrster

10 Video Palette Logical Color 4 60 Stereo Image Register 7 A4 Vertical Sync Width Regrster

14 Video Palette Logical Color 5 64 Stereo Image Register 0 A8 Vertrcal Border Start Regrster

18 Video Palette Logical Color 6 68 Stereo Image Regrster 1 AC Vertical Display Start Register

IC Video Palette Logical Color 7 6C Stereo Image Regrster 2 B0 Vertrcal Display End Register

20 Video Palette Logical Color 8 70 Stereo Image Regrster 3 B4 Vertrcal Border End Register

24 Vrdeo Palette Logical Color 9 74 Stereo Image Regrster 4 B8 Vertrcal Cursor Start Regrster

28 Video Palette Logrcal Color A 78 Stereo Image Regrster 5 BC Vertical Cursor End Register

2C Video Palette Logical Color B 7C Stereo Image Register 6 C0 Sound Frequency Regrster

30 Video Palette Logical Color C 80 Horizontal Cycle Register C4 - DC Reserved

34 Video Palette Logical Color D 84 Horizontal Sync Width Register E0 Control Register

38 Video Palette Logical Color E 88 Horizontal Border Start Register E4 - FC Reserved

3C Vrdeo Palette Logrcal Color F 8C Horizontal Display Start Register

40 Border Color Regrster 90 Horizontal Display End Register

Page 98

VL86C310
TABLE 2. STEREO IMAGE
REGISTER VALUES

Value Stereo Image Position

0 Undefined

1 100% Left Channel

2 83% Left Channel

3 67% Left Channel

4 Center

5 87% Right Channel

8 83% Right Channel

7 100% Right Channel

Cursor Palette Logical Colors 1.3:
Address 44-4CH
In all modes these registers define the
physical cursor colors corresponding to the
logical colors. Note that cursor logical color
00 is transparent (i.e., no cursor display),
and this location is used for the Border
Color Register. Figure 8 illustrates the data
bus encoding for this register.
D3 - D0 define the red amplitude (

D0 least significant)
D7 - D4 define the green amplitude (

D4 least significant)
D11 - D8 define the blue amplitude (

D8 least significant)

D12 defines the supremacy bit for
that cursor color

Stereo Image Registers, Channels 0-
7: Addresses 60H-7CH
These eight registers define the stereo
image position for each of the eight
possible channels as shown in Table 1.

When only four channels are used,
registers 4, 5, 6, 7 should be programmed
to the same values as registers 0, 1, 2, 3
respectively. if only two channels are
used, registers 0, 2, 4, and 8 pertain to
one channel, and so should be
programmed to the same value, and
registers 1, 3, 5, and 7 pertain to the

other channel. When only one channel is
used, all eight registers should be
programmed with the same value. The 3-bit
value is defined In Table 2 and data bus
encoding is shown in Figure 9.

Horizontal Cycle Register (HCR):
Address 80H
This register defines the period, in units of
two pixels, of the horizontal scan - i.e.,
display time + horizontal retrace time. If N
pixels are required in the horizontal scan
period, then a value of (N-2)/2 should be
programmed into the HCR (N must be
even). If interlace display is selected, N/2
must also be even. This is a 10-bit register,
with bit 14 the least significant. Data bus
encoding is shown In Figure 10.

Horizontal Sync Width Register (
HSWR): Address 84H
This register defines the width, in units of
two pixel periods, of the horizontal sync
pulse. Encoding of the data bus is shown in
Figure 11. If N pixels are required in the
horizontal sync pulse, then value (N-2)/2
should be programmed into the HSWR. (N
must be even.) The minimum value
programmed may be 0, but system
constraints Impose a larger minimum value.
See section Restriction On Parameters.
This Is a ten-bit register, with bit 14 the least
significant.

Horizontal Border Start Register (
HBSR): Address 88H
This register defines the time, in units of two
pixel periods, from the start of –HSYC pulse
to the start of the border display. If M pixels
are required in this time, then value (M-1)/2
should be programmed into the HBSR. (M
must be odd.) Note that this register must

Page 99

VL86C310

always be programmed, even when a
border is not required. If a border is not
required, then the value in the HBSR must
be such as to start the border in the same
place as the display start - i.e, M[HBSR] =
M(HDSR]. This is a 10-bit register with bit
14 the least significant. Data bus encoding
is shown in Figure 12.

Horizontal Display Start Register (
HDSR): Address 8CH
This register defines the time, in units of two
pixel periods, from the start of the –HSYC
pulse to the beginning of the video display.
The value programmed here depends on
the screen mode in use. If M pixels are
required in this time, then: In eight bits per
pixel mode, the value (M-5)/2 should be
programmed Into the HDSR; in four bits per
pixel mode, value (M-7)/2 should be
programmed into the HDSR; in two bits per
pixel mode, value (M-11)/2 should be
programmed into the HDSR; in one bit per
pixel mode, value (M-19)/2 should be
programmed Into the HDSR.

Page 100

 M must be odd in all cases. This is a 10-
bit register, with bit 14 the least sig-
nificant. Data bus encoding for this
register is shown in Figure 13.

Horizontal Display End Register (
HDER): Address 90H
This register defines the time, in units of two
pixel periods, from the start of the horizontal
sync pulse to the end of the video display (i.
e., the first pixel which is not displayed). The
value programmed here depends on the
screen mode used. If M pixels are required
in this time, then: in eight bits per pixel
mode, value (M-5)/2 should be programmed
into the HDSR; in four bits per pixel mode,
value (M-7)/2 should be programmed into
the HDSR; in two bits per pixel mode, value
(M-11)/2 should be programmed into the
HDSR; in one bit per pixel mode, value (M-
19)/2 should be programmed into the
HDSR. M must be odd in all cases. This is a
10-bit register, with bit 14 the least
significant. Figure 14 shows data bus
encoding of register values.

Horizontal Border End Register
(HBER): Address 94H
This register defines the time, in units of two
pixel periods, from the start of –HSYC pulse
to the end of the border display (i.e., the first
pixel which is not border). If M pixels are
required in this time, then value (M-1)/2
should be programmed into the HBER. [M
must be odd.) Again, if no border is
required, this register must still be
programmed such that M[HBER] = M[
HDER]. This is a ten bit register, with bit 14
the least significant. Data bus encoding for
this register is shown in Figure 15.

Horizontal Cursor Start Register (
HCSR): Address 98H
This register defines the time, in units of
single pixel periods, from the start of the –
HSYC pulse to the start of the cursor
display. If M pixels are required in this time,
then value (M-6) should be programmed
into the HCSR. This is normally an 11-bit
register, with bit 13 the least significant. Bits
11 and 12 must be zero except in the High
Resolution mode.

In this mode, where each 24 MHz pixel Is
further divided into four pixels, the cursor
sub-position can be defined by
programming bits 11 and 12 of the HCSR,
which will move the cursor position within
the 24 MHz pixel. Refer to the High
Resolution Mode section.

Note that only the cursor stall positon needs
to be defined, as the cursor is automatically
disabled after 32 pixels. If a cursor smaller
than this is required, then the remaining bits
in the cursor pattern should be programmed
to logical color 00 (transparent). Figure 16
shows the data bus encoding scheme.

Horizontal Interlace Register (Hill):
Address 9CH
This register must be programmed if an
interlaced sync display is required.
Otherwise, it may be ignored. II value L is
written into the HCR, the value (L+1)/2
should be written into the HIR. [L is odd.]
This is a 10-bit register with bit 14 the least
significant. Data bus encoding is shown in
Figure 17.

Vertical Cycle Register (VCR):
Address A0H
This register defines the period, in units of
a raster, of the vertical scan, i.e., display
time + flyback time. If N rasters

VL86C310

are required In a complete frame, then
value (N-1) should be programmed into
the VCR. If Interlaced display is used, (
N-3)/2 must be programmed into the
VCR. (N is odd.) Here N is still the
number of rasters in a complete frame,
not a field. This is a 10- bit register, with
bit 14 the least significant. Figure 18
shows the data bus encoding scheme.
Vertical Sync Width Register
(VSWR): Address A4H
This register defines the width, in units of a
raster, of the –V/CS pulse. If N rasters are
required in the vertical sync pulse, then
value (N-1) should be programmed into the
VSWR. The minimum value allowed for N is
1. This is a 10-bit register, with bit 14 the
least significant. Data bus encoding is
shown in Figure 19.

Vertical Border Start Register (
VBSR): Address A8H
This register defines the time, In units of a
raster, from the start of the vertical sync
pulse to the start of the border display. If N
rasters are required in this time, then value (
N-1) should be programmed Into the VBSR.
If no border is required, then this register
must still be programmed, in this case to the
same value as the VDSR. This is a 10- bit
register, with bit 14 the least significant.
Figure 20 shows the data bus encoding.

Vertical Display Start Register (
VDSR): Address ACH
This register defines the time, in units of a
raster, from the start of the vertical sync
pulse to the start of the video display. If N
rasters are required In this

time, then value (N-1) should be pro-
grammed in the VDSR. This Is a 10 bit
register, with bit 14 the least significant.
The data bus encoding is shown in Figure
21.
Vertical Display End Register
(VDER): Address B0H
This register defines the time, in units of a
raster, from the start of the vertical sync
pulse to the end of the video display (I.e.,
the first raster on which the display is not
present). If N rasters are required in this
time, then the value (N-1) should be
programmed into the VDER. This is a 10-
bit register, with bit 14 the least significant.
Figure 22 Illustrates the data bus encoding.

Vertical Border End Register (VBER):
Address B4H
This register defines the time, In units of a
raster, from the start of the vertical sync
pulse to the end of the border display (i.e.,
the first raster on which the border Is not
present). If N rasters are required in this
time, then the value (N-1) should be
programmed into the VBER. if no border is
required, then this register must be
programmed to the same value as the
VDER. This is a 10-bit register, with bit 14
the least significant. Data bus encoding for
this register is shown in Figure 23.
Vertical Cursor Start Register
(VCSR): Address B8H
This register defines the time, in units of a
raster, from the start of the vertical sync
pulse to the start of the cursor display. If N
rasters are required in this time, then value
(N-1) should be programmed into the
VCSR. This is a 10-bit register, with bit 14
being the least significant. Figure 24 shows
the data bus encoding for this register.

Vertical Cursor End Register (VCER):
Address BCH
This register defines the time, in units of a
raster, from the start of the vertical sync
pulse to the end of the cursor display (i.e.,
the first raster on which the cursor is not
present). If N rasters are required in this
time, then value (N-1) should be
programmed into the VCER. This Is a 10-
bit register, with bit 14 the least significant.
Data bus encoding is shown In Figure 25.

Page 101

VL86C310

Sound Frequency Register (SFR):
Address C0H
This register defines the byte sample rate
of the sound data. It Is defined in units of 1
µs. If a sample period of N µs Is required,
then (N-1) should be programmed into the
SFR. N may take any value between three
and 256. This is a 9- bit register with bit 0
the least significant. Bit 8 in the SFR is
used as a test bit, and should always be
set to one. When this bit is set to zero, all
the internal timing signals are cleared.
Figure 26 shows the data bus encoding.

Control Register (CR): Address E0H
This register contains the operating mode
controls: a total of 11 bits are defined, and
three of these are for test

purposes only. Note that bit eight in the
SFR must also be set before the device
can operate correctly.

The two bit-pairs for the pixel rate and the
bits per pixel selects are defined In Figure
27. The bit-pair to define the point at which
the DMA request flag Is set is further
explained in the Restriction On Parameters
section.

To select interlaced sync displays, D[6] in
this register must be set as well as setting
the correct values In the vertical and
horizontal timing registers.

The –V/CS pin on the device can be
programmed to output either the vertical
sync pulse or the composite sync pulse

which is the X-NOR of vertical and hori-
zontal sync. Selection is made by D[7].

The remaining three bits are for testing the
device and are of little interest to the user,
but their action is as follows.

In test mode zero (D[14] high, D[15] low),
the upper five bits of the horizontal counter
are clocked by a derivative of the pixel
clock.

In test mode one (D[14] low, D[15] high)
the lower five bits of the vertical counter
are clocked by a derivative of the pixel
clock.
In test mode two (D[14] high, D[15] high),
the upper five bits of the vertical counter
are clocked by a derivative of the pixel
clock.

In test mode three (D[8] set), the pin –L/R
outputs a signal which is eight times the
frequency of the sound byte sampling
clock, and the pins SD3 - SD0 output the
inverse of the data which is fed to the
green DAC [NSEL low] or the blue DAC [
NSEL high].

Note that the device cannot function
properly in test modes zero, one, and two,
but test mode three has no effect on the
normal operation.

Page 102

VL86C310
USING THE VIDC
The DMA Interface
The VIDC has three FIFOs into which DMA
data is written. The sound FIFO is four 32-
bit words deep, and works Independently
from the the other two FIFOs. The video
FIFO is eight 32-bit words deep, and the
cursor FIFO is again four 32-bit words
deep.

Sound FIFO
Each word of data is strobed into the FIFO
on the rising edge of –SDAK. Data is read
out of the FIFO into a byte wide latch which
then drives the DAC. When the last byte in
the FIFO is read into the latch, the signal –
SDRQ is driven low, requesting another 16
bytes of data. The signal –SDRQ is driven
high when the first –SDAK is received.

The time available to service this data
request is dependent on the sound data
rate. The minimum value of the SFR is
three, which defines a byte-rate of 3µs.
Therefore, the first word must be loaded
into the FIFO less than 3 µs after the –
SDRQ signal is generated.

Cursor FIFO
The cursor FIFO contains 16 bytes of data,
which is enough for two rasters of cursor
display. When the VIDC is programmed to
display a cursor, –VDRQ is driven low at
the same time as –HSYC goes low on the
first raster on which the cursor is to appear.
Data is loaded into the FIFO on the rising
edge of –VDAK. The load cycle must be
complete before the –HSYC pulse has
ended.

–VDRQ is driven high again when the first
–VDAK is received. The cursor may be any
number of rasters high, and the cursor
FIFO requests data during the –HSYC of
every alternate raster on which it is
displayed.

Video FIFO
The video FIFO is eight 32-bit words
deep, and it is arranged as a circluar
buffer. Data must always be loaded into it
in blocks of four words, and this FIFO
shares the same –VDRQ and –VDAK
signals as the cursor FIFO.

To accommodate the vastly different rates
at which video data is required in the
different modes, and to accommodate
different DRAM speeds, the point at which
more data is requested can be varied. This
is done by bits 4 and 5 in the Control
Register.

During the vertical sync pulse, the FIFO is
cleared, and the signal –VDRQ is high.
After the –HSYC pulse of the first displayed
raster, –VDRQ is driven low. Eight words
must now be written into the FIFO by
driving –VDAK low eight times. This fills the
FIFO. –VDRQ is set high again when the
fifth –VDAK Is received.

Thereafter, the –VDRQ signal is set low
whenever the FIFO empties to the point
predetermined by bits 4 and 5 in the
Control Register. The –VDRQ signal is
normally set high when the first –VDAK
signal is received. However, if the data
request is not serviced quickly, and the
FIFO has emptied to the point where
another four words have been read out
when the first new data word arrives, then
the –VDRQ signal will stay low, requesting
another four words of data.

The Video DMA Interface
As noted above, the cursor and video
FIFOs share the same DMA interface
signals. Normally, a –VDRQ low during the
–HSYC pulse is a request for cursor data,
and –VDRQ low at any other times is a
request for video data. Figure 28 shows
the relationships graphically.

However, often a video request happens
just before the end of a raster

requesting data for the next raster. The load
cycle for this video request is allowed to
overlap the –HSYC pulse, even if a cursor
request happens during the –HSYC pulse.
Note that in this case the –VDRQ signal may
not be driven high between these two
cycles. The first cycle must be video data
and the second cycle must be cursor data.
The cursor load cycle must still be complete
before the end of the –HSYC pulse. This is
shown in Figure 29.

Figure 30 shows the situation where a
cursor is displayed on the first raster of the
frame. Note the double video load cyde.
The cursor load cycle must not overlap the
end of the –HSYC pulse (otherwise data
will be loaded into the wrong FIFO), and
the first word of video data must be present
in the FIFO before the display starts.

RestrIctIons On Parameters
It Is clear from the above that certain
restrictions must be applied to the screen
parameters, most of which are system
dependent. The following paragraphs
assume the VIDC is being used in a
system with the ARM and MEMC and
two/one clock page mode DRAM memory.
In this system DRAM cycles consist of an
N-cyde (two RCLK clocks) followed by up
to three sequential S-cycles (one RCLK
clock). Hence

Page 103

VL86C310

a VIDC FIFO load cycle consists of 1N + 3S
requiring five RCLK clocks (625 ns at 8
MHz).

FIFO Request Pointer Values (Control
Register Bits [4:5])
The video FIFO is a circular buffer, although
the core Is asynchronous, with a ripple-
through time of 150 ns from the top to the
bottom. Data Is loaded in blocks of four
words, and is read out in bytes, starting with
byte 0 of word zero and so on. –VDRQ can
be set low half way through reading the last
bye of any of word 0 - 3 (and
correspondingly 7 - 4) according to bits 5 - 4
in the Control Register. In the high
resolution video modes where the bytes are
being consumed quickly, the request signal
must be set at an earlier point than in the
low resolution modes. Selections are
defined in Table 3.

The request signal –VDRQ should be
brought low as soon as the FIFO can accept
the four words of data when they arrive. The
minimum time between setting the request
and receiving the last word of data is 187 ns
+ 625 ns = 812 ns (at 8 MHz). [The 187 ns
figure

TABLE 3. FIFO POINTER
SETTINGS

Control Register
–VDRQ Set At
End Of WordsBit 5 Bit 4

0 0 0, 4

0 1 1, 5

1 0 2, 6

1 1 3. 7

Depending on the video mode In use, data
can be read from the FIFO at 1.5, 2, 3, 4,
6, 8, 12, or 16M bytes/second.
Figure 31 shows the case for the 16M
bytes/second mode. The request must be
set at the end of words one and five.

Figure 32 shows the case for the 12M
bytes/second mode. The request must be
set at the end of words two and six.

Figure 33 shows 8M bytes per second
mode. Again, the request must be set at
the end of words two and six.

In all other modes, the request should be
set at the end of words three and seven.

Horizontal Sync Pulse Width
The --HSYC pulse width must be long
enough to allow a complete load of the
cursor FIFO. This is made up as follows:

2*[N+3S] (current + cursor cycles) +
syncmax + 2*Tprop.
I.e. 2*625 + 312+ 100 = 1662 ns.

Syncmax Is the maximum time MEMC
can take to recognize the DMA request.

is the minimum time in which MEMC can
start a DMA cycle]. If the FIFO is full at the
start, then it will have four words spare 150
ns alter the start of word 4. [150 ns is the
ripple-through time of the FIFO.] Hence the
request should be made at the first
opportunity after (812 ns - 150 ns = 652 ns)
before the start of word four. The request
can be made halfway through the last byte
of any of words 0-3 by programming the
Control Register.

Page 104

VL86C310
TABLE 4. SCREEN MODE SUPPORT
Pixel Rate Bits/Pixel FIFO Data Rate Pixel Rate Bits/Pixel FIFO Data Rate
24 MHz

8 Not Supported 8 12M bytes / Second

4 12M bytes / Second 4 6M bytes / Second

2 6M bytes / Second
12 MHz 2 3M bytes / Second

1 3M bytes / Second 1 1.5M bytes / Second

16 MHz

8 16M bytes / Second 8 8M bytes / Second

4 8M bytes / Second 4 4M bytes / Second

2
M 4M bytes / Second
8 MHz 2 2M bytes / Second

1 2M bytes / Second 1 Not Supported

Tprop is the time taken for the –VDRQ
signal to reach MEMC, or the time taken
for –VDAK to reach VIDC.

The pulse must also be long enough to
allow the processor to write to the DMA
address generator (DAG) in the MEMC to
reset the screen pointer. This may be as
follows:

3*[N+3S] (current + cursor + sound
cycles) + DAG write.
i.e. 3*625 + 250 . 2125 ns. Since both
these parameters must be met, this larger
value must therefore be used.

Horizontal Front Porch Width
The front porch may be zero length. The
total time from the end of display to the end
of the –HSYC pulse must be more than
1912 ns. As the –HSYC pulse width has to
be at least 2125 ns, this does not impose a
restriction on the value of the back porch.

Horizontal Front Porch Width
The back porch must be long enough to
allow the load of at least one word into the
video FIFO before the data is read out
again. This is Important at the start of the
frame because data is required in the
bottom of the FIFQ at least four pixel-times
before the start of display, due to the
pipeline delays. Hence the back porch
must be greater than:

N+3S+N (current cycle + video N cycle) +
syncmax + 2*Tprop + FIFO-ripple + 4
pixels.

I.e. 250 + 375 + 250 + 312 + 100 + 150 +
4*83 . 1769 ns for 12 MHz displays.

or 250 +375+250+312 +100+150+ 4*125
1937 ns for 8 MHz displays.

Vertical Sync Pulse and Porch Width
There are no restricitons on the values of
the vertical front porch, back porch, or sync
width. The Vertical Sync Width Register (
VSWR) may be programmed to a value of
0 which gives a vertical sync width of one
raster.

Horizontal Display Width
The number of bits in the pixels of each
raster must be a multiple of 128.

Border
The border cannot be disabled. If no
border is required, then it should be
programmed to start and finish in exactly
the same place as the display (both
vertically and horizontally).

Cursor Position
The cursor should not be programmed to
be outside the display area vertically, but it
may be programmed to start or end outside
the display area horizontally. Note that the
cursor will not be displayed outside the
border area either vertically or horizontally.
DISPLAY FORMATS
Screen Modes
14 of the possible 18 display modes are
supported as shown in Table 4.

Data Display
Pixels are displayed starting at the top left
hand corner of the screen, with the least
significant end of the first word loaded into
the FIFO. In eight bits per pixel mode, bits
0.7 of word zero are the first displayed
pixel. In four bits per pixel mode, bits 0-3 of
word zero are the first displayed pixel. In
two bits per pixel mode, bits 0-1 of word
zero are the first displayed pixel. In one bit
per pixel mode, bit zero of word zero is the
first displayed pixel.
Logical Data Fields
In one bit per pixel mode, the data field
selects the palette at location zero or one.
The other 14 locations need not be
programmed. In two bits per pixel mode,
the data field addresses the palette at
locations zero through three. The other 12
locations need not be

programmed. In four bits/pixel mode, the
data field addresses the palette at all 16
locations. In eight bits per pixel mode, the
least significant four bits drive the palate as
in four bits per pixel mode, and the most
significant four bits drive the most
significant bits of the RGB DACs directly.
Physical Data Fields
In one, two, and four bits per pixel mode,
the physical data field is shown in Figure
34. In eight bits par pixel mode, the
physical data field is shown in Figure 35.
The Dn bits come from the palette field
and the Ln bits come from the logical
field.

Cursor Format
The cursor, in all video modes, is defined to
be 32 pixels wide and any number of rasters
high. Any pixel may be defined as being
transparent, enabling cursors of any shape
to be constructed within the 32 pixel horizon-
tal limit. It Is always two bits per pixel, with
bits zero, one in the first word to be loaded
into the cursor FIFO representing the first
pixel, etc. The logical cursor pixel bit-pairs
are defined in Table 5.

The cursor physical field is exactly as the
video physical field In one, two, or four
bits per pixel modes.

Page 105

VL86C310
TABLE 5. CURSOR LOGI-
CAL COLORS

Cursor Bit

ColorMSB LSB

0 0 Transparent

Logical Color 10 1

1 0 Logical Color 2

1 1 Logical Color 3

Border Field
The border physical field Is exactly as the
video physical field in one, two, and four bits
per pixel modes.
Controlling the Screen
Screen On / Off
The simplest method of turning the screen
off is to program the Vertical Display End
Register (VDER) to be less than the VDSR.
This will not generate any video requests,
but will display the border color over the
whole screen. The border can be turned off
either by programming it to physical color
black, or by programming the VBSR to be
greater than the VBER. Doing the latter will
also disable the cursor, though cursor data
requests will still be generated. Turning the
screen back on should only be done during
vertical flyback.

Cursor On/Off
The cursor should be turned off by setting
the VCER to be less than VCSR. [Value 0 is
suggested.] This will also disable cursor
data requests. Turning the cursor on, and
moving It around should only be done
during vertical flyback to prevent flash.

Page 106

Writing to the Palettes And Other
Registers
The palettes may be programmed reliably at
any time, but are best programmed during
vertical flyback. Changing the values of
other registers should only be done during
vertical flyback. The signal FLBK is set high
from the start of the first raster after the end
of display (though it may still be border),
until the start of the first raster which is
display.
Video DAC Outputs
The video DAC outputs are in the form of
current sinks. Each DAC has a resolution
of four bits, giving a linear transfer
characteristic with 16 values.

A digital Input value of four zeros gives
zero current sink, and a digital input value
of four ones gives the maximum current
sink. The magnitude of the output is a
function of the video reference input
current, with the maximum current sink
being 15 times the reference Input current.
High ResolutIon Modes
The four bits of digital data which normally
drive the red DAC are available to the user
on pins –VED3 through –VED0. This pixel
rate bit-stream can be externally serialized
to a single bit-stream of four times the VIDC
pixel rate. With the VIDC operating at 24
MHz, four bits per pixel mode, 96 MHz bit
rates are generated giving very high
resolution monochrome displays. Alter-
natively, with an external DAC, 48 MHz
grey-level displays are possible.

Refering to the block diagram, it will be
noted that the data passes through the High
Res. Shifter block before reaching the pins
—VED3 - —VED0. This block enables the
cursor to be positioned to any (96 MHz)
pixel. Note that this block also inverts the
data from the red DAC.

When used in this mode, the VIDC must be
programmed to a different set of values. But
note that the "normal" analog modes of
VIDC are still available simply by
reprogramming: the addition of the shifter
hardware will not affect the other modes,
and the sound system is totally Independent
from this.

(1) Four bits per pixel should always be
selected.

(2) The programmed VIDC pixel rate is
one quarter of the external pixel

rate. The vertical timing parameters
are unaffected by this as they are
defined in units of a raster, but the
horizontal timing parameters which are
defined In units of two (24 MHz) pixels
can only be programmed in units of
eight (96 MHz) pixels. There are now
four times as many pixels on a line as
are actually programmed. For
example, If a display of 1024 * 1024 is
required, the VIDC should be
programmed to generate a display of
256 (horizontal) by 1024 (vertical).

(3) All 16 locations of the video palette
should be programmed to a 1:1 logical
to physical mapping. Only D[0:3] (red
DAC values) need to be programmed,
as D[4:11] are ignored. The supremacy
bit (D[12]) may be used if required.

(4) D[4,5] in the Border Color Register
must be set to zero. D[0:3] and D[12]
may also be programmed if a border is
required.

(5) The cursor palette should be
programmed to the following values:
cursor color 1 : 10H cursor color 2 :
20H cursor color 3 : 30H Supremacy
may also be used.

Then the two bits which define each
cursor pixel are defined in Table 6.

Note that the cursor can only be defined
horizontally in units of four (96 MHz) pixels,
though it can be positioned anywhere on
the screen to within one (96 MHz] pixel.
See the section on Horizontal Cursor Start
Register for more detail. The hardware
should be arranged so that –VED0 is the
first bit to be serialized.

TABLE 6. CURSOR COLOR
IN HIGH-RESOLUTION
MODE

Cursor Bits

DefintionMSB LSB

0 0 Transparent

Cursor Black0 1

1 0 Do Not Use

1 1 Cursor White

VL86C310

External Synchronization and Mixing
The VIDC has two signals assoicated with
external synchronization applications: SUP
and SINK. SUP is an output which can be
used to control an external multiplexer for
mixing the VIDC output with that from an
external source. All video and cursor logical
colours from the palettes and the border
color can control SUP. When D[12] in any of
the above registers is set and that color Is
being displayed, SUP is driven low. The
output is pipelined and is synchronous with
the DAC outputs and the –VED3 - –VED0
signals.

The signal SINK is an input which when
driven high resets the vertical counters to
the first raster. If an Interlaced sync display
is being generated, then SINK will reset the
counters to the first raster of the odd field.
The pulse applied to this pin must be
shorter than a raster time. The horizontal
counters are not affected by this signal. The
horizontal synchronization must be done by

phase-locking (or In simple applications,
by interrupting) the input clock CKIN.
Remember that the sound system is also
driven from a derivative of CKIN.
Composite Sync
According to the setting of D[7] In the
Control Register, the –V/CS can output a
composite sync pulse. This is syn-
thesized from the X-NOR of vertical and
horizontal syncs as shown in Figure 38.

Interlaced Displays
The VIDC can generate an interlaced
sync display. An example of interlace
timing Is shown In Figure 39. Normally
the video data in each field is the same.
The VIDC Vertical Cycle Register is set
to a value (N-3)/2, where N Is the total
number of rasters in a frame. There are
N/2 raster in the even and odd fields. On
raster (N+1)/2, the vertical sync pulse Is
output and the cycle repeats, but this is
now the odd field, so the vertical sync
pulse is delayed by half a raster time as
defined by the value in

the HIR. On the first raster in the odd
field which is not vertical sync, a dummy
raster Is inserted. This makes the odd
field N/2 rasters long as well.
Sound System
The sound system consists of a four
word FIFO and byte wide latch which
drive a 7-bit exponential DAC. The
eighth bit steers the DAC output to one
of two pairs of output pins, one pair
designated "+" and the other pair
designated "-". The sound signal is
generated externally by integrating and
then subtracting these two pairs of
signals. An example circuit is shown in
Figure 40. The integration is performed
by the capacitor C.

Stereo Image is synthesized by time-
division multiplexing the output between
the 'left' and 'right' pair of output signals
as shown in Figure 41. The first quarter
of each sample is muted to allow for
DAC settling and deglitching. The
stereo Image is specified for each
channel by programming the corre-
sponding Stereo Image Register.

The system can operate in 1, 2, 4, or 8
channel modes. In 8 channel mode, the
channels are sampled sequentially,
starting with the first byte of data, which
is channel 0; the second byte of data is
channel 1 and so on. The external
Integrating time constant must be long
enough to Integrate over a complete
sample cycle. In 4 channel mode, the
fifth byte to be sampled Is again channel
0, so Stereo Image Register 4 must be
programmed to the same value as
Stereo Image Register 0, and so on. In 2
channel mode, Stereo Image Registers
0, 2, 4, and 6 correspond to channel 0
and Stereo Image Registers 1, 3, 5, and
7 correspond to channel 1. In single
channel mode, all eight Stereo Image
Registers should contain the same
value.

Page 107

VL86C310

The sample rate is selectable by the SFR in
units of 1µs, with a minimum value of 3 µs.
Clearly. in eight channel mode the bytes for
each channel are sampled with one-eighth
of the frequency of single channel mode for
a given value in the SFR.

The DAC transfer characteristic consists of
eight linear segments (chords). Each chord
consists of 18 steps, and the step size In
one chord is twice the step In the preceding
chord. This gives an approximation to the "
µ255 law". The sound data field format Is
shown in Figure 42.

The outputs are in the form of current sinks.
The magnitude of the output is a function of
the sound reference input current. The
reference current is equal to the step size in
the highest chord, which is 8I in Figure 43.

Page 108

VL86C310

TIMING CHARACTERISTICS: TA = 0°C to +70°C, VCC .= +5 V ±5%

Symbol Parameter Min Typ Max Unite Condition.

t1 CKIN High – 20 – ns

t2 CKIN Low – 20 – ns

t3 CKIN Frequency – - 24 MHz

t4 Data Setup Time To –VDAK, –SDAK 10 – – ns

t5 Data Hold lime To –VDAK, –SDAK 5 – – ns

t6 –VDAK, –SDAK Pulse Width 20 62 – ns

t7 Data Setup Time To –VIDW 10 – – ns See Note 1

t8 Data Hold Time To –VIDW 10 – – ns

t9 –VIDW Pulse Width 20 83 – ns

t10 CKIN To –SD3 - –SD0 Delay 40 – ns See Notes 2, 3

t11 CKIN To –VED3 - –VED0, –SUP Delay – 40 – ns See Note 2

t12 CKIN To –HSYC, –V/CS, FLBK – 40 – ns

t13 CKIN To –HI Delay – 30 – ns

t14 CKIN To ROUT, GOUT, BOUT – 30 – ns See Note 2

t15 Analog Qutput Rise/Fall Time – 10 – ns See Note 4

t16 NIBSEL T0 –SD3 - –SD0 – 10 – ns

t17 Acknowledge To
Request Delay

–SDAK To –SDRQ – 40 – ns See Note 5

–VDAK To –VDRQ – 40 – ns See Note 5

Notes: 1. The data must be setup before –VIDW goes active (low) because the data also contains the register address.
2. For pixel rates of 12 and 24 MHz, the outputs are referenced to the rising edge of CKIN. For pixel rates of 8 and 16MHz,

 the outputs are alternately referenced to either edge of CKIN.
3. The –SD3 - –SD0 signals are output one pixel time before the corresponding –VED3 - –VED0 due to pipeline

differences.
4. Assumes a 5 pF external load.
5. –VDRQ or –SDRQ are cleared by the first –VDAK or –SDAK respectively, as tong as no request is pending.

Page 109

Page 110

Page 111

VL86C310
ABSOLUTE MAXIMUM RATINGS
Ambient Operating
Temperature -10°C to +80°C
Storage Temperature -65°C to +150°C
Supply Voltage to
Ground Potential -0.5 V to VCC +0.3 V
Applied Output
Voltage -0.5 V to VCC+0.3V
Applied Input
Voltage -0.5 V to +7.0 V
Power Dissipation 2.0 W

Stresses above those listed may cause
permanent damage to the device. These
are stress ratings only. Functional operation
of this device at these or any other
conditions above those

Indicated in this data sheet is not implied.
Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS: TA = 0°C to +70°C, VCC = +5 V ±5%

Symbol Parameter Min Typ Max Units Conditions

VOH Output High Voltage VCC - 0.5 - VCC V IOH . 10.0 mA

VOL Output Low Voltage - 0.4 V IOL = - 3.0 mA

VIH Input High Voltage 2.4 - - V

VIL Input Low Voltage 0.0 - 0.8 V

ILI Input Leakage Current - - 10
µ µA VIN = 0 V - VCC

ILO Output Leakage Current - - 10
µ µA VOUT= 0 V - VCC

ICC Operating Supply Current - 20 - mA See Note 1

IOS Output Short Circuit Current - 25 - mA See Note 2

IVOUT Output Current Video DACs - - - 2.0 mA

ISOUT Output Current Sound DAC - - - 2.0 mA

ADVOL RVDAC, RSDAC Voltage - VCC -1.3 - V See Note 3

ILATCH Input/Output Latchup Current 200 - - mA See Note 4

Vcomp Voltage
Compliance

Video DACs - VCC -1.7 - V IVOUT = - 2.0 mA

Sound DAC - VCC -1.5 - V ISOUT = - 2.0 mA

CCOMP Current
Compliance

Video DACs - 4.5 - mA VOUT . VCC - 0.7

Sound DAC - 3 - mA VOUT . VCC - 0.7

Notes: 1. Measured at 24 MHz pixel rate. This value does not include any current output by the video DACs.
2. Not more than one output should be shorted to either rail and for no longer than one second.
3. This assumes 10 kOhm resistors to VDD.
4. This value is the current that Inputs or outputs can tolerate before the chip latches up. This condition should be avoided

to prevent device damage.

Page 112

Index
!Mdlcomp 80
!Translator 20
*ClearLoad 5, 21
*ClearSave 3, 20
*Clock 5, 8
*Colour 5, 24
*Configure CrystalSlots 6, 29
*Configure DefaultCrystal 6, 30
*Configure IREThreshold 6, 33
*Configure MonitorGroup 6, 32
*Configure ProcessorType 6, 31
*Configure TurboModes 6, 34
*Dac 5, 9
*Default 5, 11
*DeLinkMode 5, 27
*DeskPal 5, 17
*ExtPal 5, 10
*Gcol 5, 23
*GreyScale 5, 22
*LinkMode 5, 25
*LinkModeClear 5. 26
*Mode 5, 15
*NormalVideo 5, 12
*Palette 5, 14
*PalLoad 5, 19
*PalSave 5, 18
*PalSet 5, 16
*Pmask 5, 13
*TiffSave 28
*VIDC 5, 7
12 bpp 78
16 bpp 78-79
24 MHz 44, 50, 81
25.175 MHz 50
32 MHz 50
36 MHz 50
A
Adaptor 86
Aldus/Microsoft 28, 73, 75, 77
ARM3 31
ASCII 75
B
Base address 72
BitsPerSample 76
Blanking level 33
Byte 75
C
CLEAR 20-21, 58, 68, 74
COLOUR 60
ColourMap 77
Compression 76
Crystal 81
Current mode 62
D
DAC mode 49
Default 44
Desktop 17
E
Enhancer_BorderOff (SWI &42A48) 35,46
Enhancer_CearLoad (SWI &42A5C) 36, 58,.68
Enhancer_ClearSave (SWI &42A54) 36, 58, 68
Enhancer_Clock (SWI &42A4C) 35, 50
Enhancer_Colour (SWI &42A56) 36, 60, 61
Enhancer_ CurrentModeValid (SWI &42A58) 36, 62
Enhancer_Dac (SWI &42A4B) 35, 48, 49
Enhancer_Default (SWI &42A46) 35, 44, 45
Enhancer_DeLinkMode (SWI &42A5F) 37, 69, 70, 71
Enhancer_ExtPalette (SWI &42A4A) 35, 48, 49
Enhancer_Gcol (SWI &42A57) 36, 60, 61
Enhancer_GreyScale (SWI &42A59) 36, 63
Enhancer_HardwareBaseAddress (SWI &42A60) 37, 72
Enhancer_HardwarePresent (SWI &42A4D) 35, 51
Enhancer_LinkMode (SWI &42A5D) 37, 69, 70, 71
Enhancer_LinkModeClear (SWI &42A5E) 37. 69, 70. 71

Enhancer_ModeValid (SWI &42A51) 36, 55, 62
Enhancer_NormalVideo (SWI &42A47) 35, 44, 45
Enhancer_PalatteBlockRead (SWI &42A41) 35, 38, 39, 41, 56, 57, 64
Enhancer_PaletteBlockWtite (SWI &42A40) 35, 38, 39, 41, 54, 57, 64
Enhancer_PaletteLoad (SWI &42A53) 36, 56, 57
Enhancer_PaletteRead (SWI &42A43) 35, 38, 39, 41, 64
Enhancer_PaletteReadPointer (SWI &42A5A) 36, 31, 39, 41, 64
Enhancer_PaletteSave (SWI &42A52) 36, 56, 57
Enhancer_PaletteWrite (SWI &42A42) 35, 38, 39, 40, 64
Enhancer_PalSet (SWI &42A49) 35, 47
Enhancer_PixelMaskRead (SWI &42A45) 35, 42, 43
Enhancer_PixelMaskWrite (SWI &42A44) 35, 42, 43
Enhancer_Pointer (SWI &42A4F) 36, 53
Enhancer_SetDesktopPalette (SWI &42A4E) 36, 52, 63
Enhancer_SpriteOp (SWI &42A5B) 36, 65
Enhancer_SpriteOp 41 (SWI &42A5B) 66, 67
Enhancer_SpriteOp 42 (SWI &42A5B) 66, 67
Enhancer_TiffSave (SWI &42A61) 37, 73
Enhancer_VIDC (SWI &42A55) 36, 59
Enhancer_VsyncUpdatePalette (SWI &42A50) 36, 54
Expansion box 86
Extended palette 48, 52, 54-56, 60-63, 73
Extended palette file 57
F
Field length 75
Field type 75
Filetype 56, 58, 73
FillOrder 76
G
GCOL 61
Graphics colour 61
Greyscale 63
H
HostComputer 77
I
IFD 75
IFD entry 75
ImageLength 76
ImageWidth 76
L
Linked modes 70.71
Long 75
M
Make 76
MDL 25-27, 69, 80
MDL keywords 81
MDL mode block 82
MEMC 72
Mode booster 34
Mode Description Language 80
Model 76
Mouse pointer 33
O
Oscillator 8, 29-30, 34
P
Palette 14, 38, 40-41
palette table 39, 64
Philips 32
PhotormetricInterpretation 76
Pixel 78
Pixel colour 65-67
Pixel mask 13, 42-43, 56
R
Rational 75
ResolutionUnit 77
Ribbon cable 86
RowsPerStrip 76
S
SamplesPerPixel 76
Screen border 46
Screen mode 15, 25
Short 75
Software 77

Page 113

Sprite 65
StripByteCounts 76
StripOffsets 76
T
Tag 75
Tagged Image File Format 75
Taxan 32
Text colour 60
TIFF 29, 73
TIFF file format 75
U
User-supplied oscillator 50
V
Value offset 75
VDU 7
VDU drivers 59
VGA 34
VIDC 7, 48, 50, 59, 86
Video output 44, 45
Vsync handler 54
X
XResolution 77
Y
YResolution 77

Page 114

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120

