
Programmers' Guide

TORCH COMPUTERS

Programmers' Guide TORCH
COMPUTERS
TORCH COMPUTERS LIMITED
Abberley House, Great Shelford, Cambridge CB2 5LQ

#1504, 50 Milk Street, Boston, Mass. 02109 USA

#212, 7240 Woodbine Avenue, Markham,
Ontario, CANADA

Preliminary issue

© 1982 Torch Computers Limited

TORCH PROGRAMMERS' GUIDE: SECTION 0

CONTENTS

2

Section Title 	 Page

0 	CONTENTS 	 2

1 	INTRODUCTION 	 4

2 	CPN 2.2 INTERFACE INFORMATION

3 	TORCH VDU CONTROL CODES 	 42

4 	USE OF THE TORCH BASE PROCESSOR 	 86

5 	MISCELLANEOUS INFORMATION 	 166

6 	INDEX 	 174

3

TORCH PROGRAMMERS' GUIDE: SECTION 1

INTRODUCTION

Section Title 	 Page

1.0 	System Overview and Guide Contents 	 6

5

1.0 	 System Overview and Guide Contents

This guide outlines the facilities available to the
programmer on the Torch Computer, especially the handling of
peripherals.

The Torch Computer consists of a Z80 processor coupled to
the input/output ports of the Torch Base peripheral processor.
Programs are run on the Z80 cards and all commands for peripheral
handling are sent to the Torch Base processor from the Z80.
Similarly, input is passed from the Torch Base processor to the
Z80. Facilities are provided for interfacing this communication
at a high level (i.e. from the Z80, using commands built in at
the same level as the program that is running) by the CPN
operating system. For the convenience of the user, this is fully
compatible with the CP/M operating system, allowing the majority
of Z80 business software to be run on the Torch with no
modification.

Full details of CPN, and its interfacing, are provided in
section 2. This information will be of most interest to systems
programmers, and compiler writers.. It is normally interfaced
using Z80 assembler, although some languages will also allow it
to be accessed. If you are programming using high level
languages, you need not concern yourself with Section 2, since
all interfacing to the system is already doe by the language
using CPN.

Extensive facilities for the use of graphics, and for a
multi page, multi window screen display (facilitating the
implementation of a full word processors and menu display) are
provided by Torch VDU Control Codes. These are a high level
interface, and may easily be called from any programming language
supported by the Torch. They are detailed in section 3, which
should be of interest to all programmers.

6

The Torch Base peripheral processor is based on the main
6502 p.c.b. of an Acorn B.B.C. microcomputer, and it handles the
following peripherals:

a keyboard,

a colour/monochrome high resolution monitor,

two 5 1/4 inch double sided floppy discs (80 tracks with 10
sectors/side of each track),

a printer port/

a bidirectional RS 423 port,

a three channel analogue to digital channel,

a bidirectional Econet port,

and a bidirectional Prestel port.

Section 4 (Use of the Torch Base Processor) outlines the use
of these facilities at a low level of interfacing. It should be
of interest to systems programmers only; most of the features are
accessed using Z80 assembler. Wherever possible, higher levels of
interfacing should be used (i.e. the CPN operating system/ and
Torch VDU control codes; see sections 2 and 3), since Torch
Computers Ltd. reserve the right to change the Torch Base
Processor to upgrade the machine.

Section 5 contains some miscellaneous information likely to
be of use to all programmers. This includes details of additional
CCCP commands, and of keyboard output codes.

There are, of course, a large number of languages available
for use on the Torch Computer. These include: Ada (TM), Algol 60,
APL, Basic, BCPL, C, Cobol, Corral, Cross assemblers, FPL, Forth,
Fortran, Imp 77, Lisp, Modula, Pascal, Pilot, PLM, PL/1, Prolog,
Ratfor, Stage 2, and Z80 assembler. Of these, BCPL, C, Pascal,
and Z80 assembler are languages that you are most likely to find
useful.. It is not the place of this manual to detail the
individual languages; books and manuals doing so are available
from your dealer.

TORCH PROGRAMMERS' GUIDE: SECTION 2

CPN 2.2 INTERFACE INFORMATION

8

2.0 	 CONTENTS

Section Title 	 Page

2.0 	CONTENTS 	 9

2.1 	INTRODUCTION 	 10

2.2 	CPN MEMORY LAYOUT 	 11
2.2.0 	Memory Map 	 11
2.2.1 	Low Memory 	 12
2.2.2 	TDOS Entry 	 12
2.2.3 	Running Programs in the PLA 	 13

2.3 	FILE STRUCTURE 	 14
2.3.0 	File Names 	 14
2.3.1 	Disc Layout 	 15

2.4 	FILE CONTROL BLOCKS 	 16

2.5 	OPERATING SYSTEM CALLS 	 18
2.5.0 	Accessing CPN Functions 	 18
2.5.1 	Function List 	 19
2.5.2 	Call Specifications 	 20

2.6 	THE BIOS VECTOR 	 40

9

2.1 	 INTRODUCTION

This section contains information for the programmer who
wishes to write programs to operate under the Torch CPN operating
system. It contains details of memory and system organisation,
and system entry points. It also contains information needed to
use the peripheral and disc I/O facilities of the Torch Computer.
It is most likely to be of interest to systems programmers, and
compiler writers.

Where a programmer has a choice between using CPN and using
Torch Base commands, CPN commands are preferable; indeed, in
general Torch Base commands should not be used.

There are four parts to memory when running under the CPN
operating system:

i> 	The Torch Control Kernel (TCK)

ii> The Basic Disc Operating System (BDOS)

iii> The Cambridge Central Command Processor (CCCP)

iv> The Program Load Area (PLA)

The TCK module resides on the the 6502 PCB, and controls
many of the I/O Functions. Its interface is effectively used as a
single module with BDOS, with a common entry address. Together,
they are referred to as the Torch Disc Operating System (TDOS).
TDOS is used by the CCCP module to give the user easy access
to all disc held information. The PLA is the area of memory used
to execute non-resident operating system command modules and user
programs.

There is a small area of memory (0000 hex to 0100 hex) below
the PLA which is reserved for systems information, and is
detailed in section 2.2.1 (Low Memory)

10

-, 2.2 --, 	 MEMORY LAYOUT

2.2.0 	 Memory Map

I 	A

I 	 TDOS (BDOS + TCK) 	 I 	I
TORBASE I 	 I Upper

I 	Memory
CCCP 	 I

COMBASE I 	 I
I
I

PLA 	 I
I

0100 hex 1 	 I
I

System parameters 	 I
0000 hex I 	 I

The exact memory addresses of COMBASE and TORBASE will vary,
depending on the CPN version being used, but the systems
parameters always run at the base of random access memory, from
0000 hex to 0100 hex. They contain the code (starting at 0000
hex) used to perform a warm start on the system. Each warm start
loads and initialises all CPN and CCCP code before returning
control to the CCCP. This means that to return to control of the
CPN commands: all that any program has to do is jump to location
0000 hex, at which point the system will be reinitialised. In
this case, memory from 0100 hex up to TORBASE - 1 is available
for programs to run in.

11

2.2.1 	 Low Memory

There are details given below of the locations of the
systems parameters in low memory:

0000 	JP BIOS + 3
0003 	0
0004 	Default drive number (initially zero)
0005 	JP TDOS
0008-2F 	Reserved for future expansion
0030 	JP ShortBdosEntry
0033-34 	Logged in drive vector (initially 0001)
0035-36 	Read/Only vector (initially 0)
0037 	Reserved for future CPN use
0038-3A 	Reserved for Debugger vector
003B-3C DMA address
003D-3E User stock save area
003F 	Reserved for future CPN use
0040-4F 	CBIOS scratchpad
0050-5B Reserved for future CPN use
005C-7C Default FCB
007D-7F 	Default FCB random record count
0080-FF 	Default DMA buffer
0100 	Start of Program Load Area

2.2.2 	 TDOS Entry

Entry to TDOS is made at location 0005 hex where a jump
instruction to TORBASE is found. (It follows that the address of
TORBASE may be found at 0006 hex. If the CCCP is to be overlayed
by user or operating system programs, it is therefore possible to
calculate the size of available user memory.)

12

2.2.3 	 Running Programs in the PLA

Once loaded into memory, programs are run in the following
manner:

The operator enters a command, optionally followed by a
string of characters. Where a command requires the passing of
filenames, the first string(s) of characters found that could be
filenames are used. As a convenience, the Dynamic Memory Address
buffer (DMA buffer; 0080 to DOFF hex by default; see section 2.4)
is set to the tail end of the command line (that part of the line
following the program name of the command). The first position of
the buffer is set to the number of characters, excluding the
final (carriage return). It is followed by the characters typed,
with lower case letters translated to upper case.Lastly, there is
a carriage return, followed by uninitialised memory. Thus if the
following were typed:

COPY DAHA to juss

the DMA would be set to:

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8Fhex
13 ' ' 'D"A"H"A' " 'T"O' " 'J"U"S"S' (cr>9"P?19

For those commands followed by filenames, a File Control
Block (FCB) will be set up by the CCCP in the area reserved for
default FCB use (005C - 007F hex). These are used for accessing
the files via TDOS. More detail is contained later in this
manual, in section 2.4 (File Control Blocks).

The command may be one of the standard CPN commands, in
which case it is executed immediately; or it may be a user
command (which will also be the name of a user program). If it is
the latter, the file <command>.COM will be loaded from disc into
the PLA starting at 0100 hex.

The CCCP gives control to the user program, which will then
be executed. Since the user program was entered from the CCCP,
control may be simply returned to it upon completion, using the
Z80 code 'RET'; in this case memory above the PLA cannot be used.
If required, control can be resumed at the CPN command level by
the use of a jump to 0000 hex; in this case, memory up to TORBASE
- 1 is available, 	since the system will be reloaded and
reinitialised.

1 3

2.3 	 FILE STRUCTURE

2.3.0 	 File Names

In CPN, a file is referred to by a disc file name. It has
three parts: one drive select letter, a file name consisting of
between one and eight non-blank characters, and a file type
consisting of between zero and three non-blank characters. If no
drive select letter is used, then the current default disc is
used; initially this is the logged on drive, but it may be
changed using CPN function 14 (Select Disc). The file name is
used to distinguish between different files of the same type. The
file type indicates the nature of the file, using a locally
agreed convention; some of the more commonly used conventions are
given below.

MAC Macro Assembler Source 	BPL BCPL Source File
PRN Printer Listing 	 PAS Pascal Source File
COM CCCP Command File 	 BAS Basic Source File
HEX Hex Machine Code 	 C 	C Source File
REL Relocatable Module 	 BAK Backup File
SUB Submit File 	 $$$ Temporary File

14

2.3.1 	 Disc Layout

Each disc contains a directory of the files on it, as well
as an area of file data. This format allows a disc to have a
variable number of records on it, and a file to be spread out
over parts of the data area of a disc that are not physically
contiguous.

The file itself is stored on the data area of the disc in up
to 64K records (numbered from 0 to 65535) of 128 bytes, giving a
maximum length of 8 Mbytes. A group of 128 records (16 Kbytes) is
known as an extent, and is a measure used when accessing files
sequentially. As will be shown in the next section, a maximum of
256 extents may be accessed on any one file, and so it is only
possible to access 4 Mbytes sequentially. If larger files are to
be used/ then they must be randomly accessed.

15

2.4 	 FILE CONTROL BLOCKS

All disc I/O is handled by file control blocks, which
consist of a representation of the disc file name being used, and
some system information. Most CPN functions from 15 upwards use
the register pair DE to address an FCB. An FCB is 33 bytes long
For sequential access of files, and 36 bytes long for random
access; there is a default FCB area reserved in memory by CPN at
005C hex, of length 36 bytes. The memory immediately above this,
from 0080 to 00FF hex (128 bytes, or 1 record in length) is the
default DMA, which is the region of memory normally used for
passing records to and from disc.

An FCB has the following structure:

00 01 02 08 09 10 11 12 13 14 15 16 17 31 32 33 34 35

idr|f1|f2|/ /|felt1|t2|t3lexlh1lh2|rcluOlu1|/ /lun|cr|r0lr1tr2|

dr 	Drive code (0-16)

0 implies that the current default drive is used.

Otherwise, the numbers 1 to 16 refer to drives A
to P respectively.

See Function 14 (Select Disc) for details of
selection of the default drive.

f1-f8 	Contains the file name in upper case ASCII code,
with the high bit set to 0.

See Function 30 (Set File Attributes) for details
of use of the high bits in user programs.

t1-t3 	Contains the file type in upper case ASCII code.
The high bits of tl, t2 and t3 are used as
follows: t1

: set to 1 for Read/Only file, otherwise to 0.

t2: set to 1 for a SYS file (no directory
listing), otherwise to 0.

t3: set to 1 for a file that is open, and in the
same state as when opened; otherwise to 0.

16

ex 	Contains the current extent number. This covers
the range 0 - 255 during file I/O, but is normally
set to 0 by the user.

For more information, see section 2.3.1 (Disc
Layout).

h1 	Used internally by the system.

h2 	Used internally by the system. This byte is set to
zero by the system on a call to OPEN, MAKE or
SEARCH functions.

rc 	Contains a record count for 'ex'l the current
extent number. The count is in the range 0 - 128.

u0-un 	Contains the user field. This is normally unused
by CPN, but see below for its use in the default
FCB area, with calls having two parameters.

It is also used in some CPN functions, as detailed
below.

cr 	Contains the current record of a file to use in a
sequential I/O operation. When reading all of a
file sequentially, it is set to 0 by the
programmer, since the system automatically
increments this value on each sequential read.

r0-r2 	Contains the current record to use in a random I/O
operation. The value is contained in registers r0
and r1, with r0 the low order byte. Overflow goes
to r2.

If a filename is passed with a command to CCCP, then an FCB
is set up (with the structure given above) in the default FCB
region (005C - 007F hex). If the command has two filenames, then
the second filename is made into an FCB in the user field of the
default FCB. Note that it is the responsibility of the programmer
to clear the cr and ex bytes of the user field before opening the
file.

1 7

2.5 	 OPERATING SYSTEM CALLS

2.5.0 	 Accessing CPN Functions

To communicate with the keyboard, the disc operating system,
and other external peripherals, the user program will use CPN I/O
facilities. To access the I/O system a function number must be
passed to CPN, commonly with some other passed values; e.g. to
delete a file, CPN must be passed function number 19 (Delete
File), and the address of an FCB which is used to identify the
file to delete. CPN often gives a returned value; in this case
indicating success or failure.

There are two ways of passing these values to CPN. The first
is by a jump to location 0005 hex. The function number is passed
in register C, and any other values are passed in register E, or
the double register DE. Results are returned in register A if of
single byte length, with L = A; or in registers HL if of double
byte length, with A = L and B = H for historical reasons. Thus
with single byte results, only registers A and L are affected;
but with double byte results A, B, C, H and L may be changed.

The second method is a call to location 0030 hex; the byte
following the call must be the function number. Thus the call may
be performed by the single byte instruction:

RST 0030H 	 ;followed by
DB 	<function number>

Values are passed to the call in register E, or in the double
register DE; results are returned in register A, or in registers
HL (with register A set to the value in L). Thus with single byte
results only register A is altered, but with double byte results
registers A, H and L are affected.

The differences between the above calls should be noted. The
first method is three byes longer in instructions. With single
byte results, it affects register L, and with double byte
results, it affects registers B and C; whereas the second method
does not. In general the second method is to be preferred, unless
software is being written to be compatible with operating systems
other than CPN.

18

2.5.1 	 Function List

Available CPN functions are given in a list below, and then
outlined in detail in the next section. Those functions marked
with an asterisk are provided for compatibility only.

	

0 	System Reset 	 20 	Read Sequential

	

1 	Keyboard Input 	 21 	Write Sequential

	

2 	Screen Output 	 22 	Make File

	

3 	Raw Keyboard Input 	 23 	Rename File

	

4 	Raw Screen Output 	 24 	Return Login Vector
	5 	Printer Output 	25 	Return Current Disc

	

6 	Direct Console I/O 	 26 	Set DMA Address

	

7 	* Get I/O Byte 	 27 * Get Address (Alloc)

	

8 	* Set I/O Byte 	 28 	Write Protect Disc

	

9 	Display String 	 29 	Get Read/Only Vector

	

10 	Read Keyboard Buffer 	 30 	Set File Attributes

	

11 	Get Keyboard Status 	 31 	Get Address (Disc Parms)

	

12 	Return Version Number 	 32 	Set/Get User Code

	

13 	Reset Disc System 	 33 	Read Random

	

14 	Select Disc 	 34 	Write Random

	

15 	Open File 	 35 	Compute File Size

	

16 	Close File 	 36 	Set Random Record

	

17 	Search For First 	 37 	Reset Drive

	

18 	Search For Next 	 40 	Write Random With Zero

	

19 	Delete File 	 Fill

19

2.5.2 	 Call Specifications

Function 0: System Reset

Passed Values 	 Returned Values

None 	 None

This function re-enters the CPN operating system via the
CCCP module. It has exactly the same effect as jumping to 0000
hex, namely, the disc system is reinitialised.

Function 1:Keyboard Input

Passed Values 	 Returned Values

None 	 Register A: ASCII character

This function reads a character from the keyboard to
register A. If no character has been typed, execution is
suspended until one is typed, and it is then read.

Characters are reflected to the screen, after treatment as
follows:

Graphics character 	 Reflected.
Carriage return 	 Reflected.
Line feed 	 Reflected.
New line 	 Reflected.
Tab 	 Expanded into a column of 8

spaces, then reflected.
Escape 	 Invokes Torch VDU controls;

see Section 3.
Other control characters 	Trapped and not reflected.

20

Function 2: Screen Output

Passed Values 	 Returned Values

Register E: ASCII character 	None

This function reads a character (in ASCII code) from
register El and reflects it to the screen. Control characters are
treated in the same way as in function 1 (Keyboard Input).

Function 3: Raw Keyboard Input

Passed Values 	 Returned Values

None 	 Register A: ASCII character

This function stores the next character typed at the
keyboard in register A. There is no interpretation of any of the
characters, including control characters. The function neither
requires that the terminal be attached, nor does it attach it.

(Since the Torch does not support a paper tape reader, this
function is not used for Reader Input.)

WARNING: Wherever possible, use of this function should be
avoided, since it avoids all normal interpretation of control
characters. It is available under CPN for specialist programming
only.

21

Function 4: Raw Screen Output

Passed Values 	 Returned Values

Register E: ASCII character 	None

This function outputs the character stored in register E to
the screen. There is no interpretation of the output character;
so, for instance, tabs are not expanded, and printer echo is not
checked for.

See Section 4.8 (Character Output) for full details.

(Since the Torch does not support a paper tape punch, this
function is not used for Punch Output.)

WARNING: Wherever possible, use of this function should be
avoided, since it avoids all normal interpretation of control
characters. It is available under CPN for specialist programming
only.

Function 5: Printer Output

Passed Values 	 Returned Values

Register E: ASCII character 	None

This function reads the character stored (in ASCII code)
in register El and outputs it to the printing device.

22

Function 6: Direct Console I/O

Passed Values 	 Returned Values

Register E: FF hex (input) 	 Register A: ASCII character or
or status (input)

or ASCII character 	 or No value (output)
(output)

This function provides facilities for unadorned console I/O.
Input is selected by setting register E to FF hex on entry; the
returned value in register A is either 00 (no character ready) or
the next character to have been typed. Output is selected by
passing any value other than FF hex in register E; the value is
treated as ASCII code for a character, and is sent to the screen.

Section 4.8 (Character Output) provides a full description
of direct console I/O on the Torch.

WARNING: Wherever possible, use of this function should be
avoided, since it avoids all normal interpretation of control
characters. It is available under CPN for specialist programming
only.

Function 7: Get I/O Byte

Passed Values 	 Returned Values

None 	 Register A: I/O Byte value

This function returns the current value of IOBYTE in
register A. It is provided for historical reasons only.

23

Function 8: Set I/O Byte

Passed Values 	 Returned Values

Register E: I/O Byte value 	 None

This function sets the value of IOBYTE to the value of
register E. It is provided for historical reasons only.

Function 9: Display String

Passed Values 	 Returned Values

Registers DE: String address 	None

This function reads a string, addressed by registers DE, and
reflects it to the screen. The string is terminated by the
character 'S', which is not reflected to the screen. Characters
are otherwise treated as in function 1 (Keyboard Input).

24

Function 10: Read Keyboard Buffer

Passed Values 	 Returned Values

Registers DE: Buffer address 	Characters in keyboard buffer

This function reads a line of keyboard input into a buffer,
addressed by registers DE.

The keyboard input may be edited as it is input, using the
following codes:

Rubout/Delete/ 	Remove last character to be entered on
Control-H 	 the line.

Control-C 	 Reboot (only when at start of line).

Control-E 	 Cause physical end of line.

Control-J (lf)/ 	End line of input.
Control-M (cr)

Control-R 	 Retype current line after 7 # <new line>,

Control-U 	 Remove current line after 7 # <new line>`

Control-X 	 Remove characters to start of line.

(Start of line is defined as the first character position
after the prompt. No editing code may move back beyond this.)

Input is ended either by the input buffer overflowing, or by
<newline> or <carriage return>. The buffer takes the form:

DE 	-> 	Buffer length, M (1 to 255 characters)
DE+1 	-> 	Number of characters read, N
DE+2 to
DE+1+M 	-> 	Rest of buffer.

The 'rest of buffer' consists of the characters typed at
the keyboard; if N < M, then all positions past the Nth character
are uninitialised.

25

Function 11: Get Keyboard Status

Passed Values 	 Returned Values

None 	 Register A: Console status

This function checks whether a character has been typed at
the keyboard. If a character is ready, FF hex is returned in
register A; otherwise, 00 hex is returned.

Function 12: Return Version Number

Passed Values 	 Returned Values

None 	 Registers HL: Version number

This function returns a code in registers HL for the version
of CPN implemented. H is set to 00 hex, and L returns a hex
representation of the version, e.g.

CPN 2.5 => 	25 hex, 	CPN 3.10 => 	3A hex.

This function is mainly useful for implementation dependent
software, e.g. producing an error message if an earlier operating
system does not implement a desired utility.

26

Function 13: Reset Disc System

Passed Values 	 Returned Values

None 	 None

This function resets the state of all discs in the filing
system to Read/Write (see functions 28,29), selects drive A and
sets the default DMA (see function 26 and section 2.4) to 0080
hex.

Function 14: Select Disc

Passed Values 	 Returned Values

Register E: Disc to select 	 None

This function sets the default disc for the system,
according to the code in register E. 00 hex represents drive A,
01 hex represents drive B, and so on up to a maximum of OF hex
for drive P on a full 16 user system, such as the Torch Net
system.

The default drive is used whenever an FCB specifies a drive
code of O. It can be overridden by direct selection of drives A -
P, using drive codes of 1 - 16.

27

Function 15: Open File

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function opens an already created file in the current
user's disc directory. TDOS will scan the relevant directory for
an FCB matching that addressed by registers DE in bytes 1-14; a
`?' will match any character in the scanned directory. (This is a
useful facility when using wild cards in the original command; if
it is used then the first match made is used). The system
automatically zeroes bytes ex, r1 and r2; if it is desired to
access a file sequentially from the first record, then byte cr
must be zeroed by the programmer.

If a match is made, then bytes 00-15 of the matched FCB in
the directory are copied into the user field of the FCB, and
register A is set to 00 hex. If no match could be made, then no
alteration is made to the user field of the FCB, and register A
is set to FF hex. In either case, the h2 byte of the FCB is
cleared.

Note that any existing file must not be accessed before it
has been opened.

Function 16: Close File

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function closes a file after it has been used; it is
not needed if a file has only been read, but is necessary if a
file has been written to. The FCB addressed by DE is matched in
the same way as in function 15 (Open File).

If a match is made, then 00 hex is returned in register A;
if in addition the file was originally Opened or Made, then the
new FCB is permanently recorded in the referenced disc directory.
If no match is made, then FF hex is returned in register A.

28

Function 17: Search For First

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function examines the file directory for the first
occurence of an FCB matching that addressed by registers DE. The
match is performed as in function 15 (Open File). If the dr byte
is set to '?' then the auto disc select function is disabled, and
the default disc is searched; the first match belonging to any
user, whether or not the s1 byte is set, is then returned. If the
dr byte is not set to '?', then the first match belonging to
either user 0 or to the current user is returned.

If a match is made, then 00 hex is returned in register A,
the dr byte of the FCB is set to the user number of the matched
file, and the record on the disc containing the matched directory
information is copied to the current DMA address. If there is no
match made, then FF hex is returned in register A. In either
case, the h2 byte of the FCB is cleared.

Function 18: Search For Next

Passed Values 	 Returned Values

None 	 Register A: Return Code

This function finds the next occurence of a file, following
a previous call of a Search function; it may be used
repetitively, but must have been preceeded by a usage of function
17 (Search For First), with no intervening file operations. The
scan will continue from the last matched entry. The results are
the same as with function 17.

29

Function 19: Delete File

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function removes all files whose FCB matches that
addressed by registers DE. The match is made in the same way as
in function 15 (Open File); the dr byte must not have the value

?7

If a match was made and file(s) were deleted, then 00 hex is
returned in register A. If no match was made, then FF hex is
returned in register A.

Function 20: Read Sequential

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function reads the next record (in sequential ordering)
from a file to the current DMA address. The FCB addressed by
registers DE is used to refer to the file, which must have
originally been Opened or Made. The cr byte is used to refer to
the record being copied from the current extent. It is
automatically incremented on each read; if it overflows, it is
set to 00 hex and the next extent is entered.

f the read was successful, then 00 hex is returned in
register A; if end of file occurs, then a non zero value is
returned in register A.

30

Function 21: Write Sequential

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function writes the record at the current DMA address
to a file. The FCB addressed by registers DE is used to refer to
the file, which must have originally been Opened or Made. The cr
byte is used to refer to the record of the current extent being
written to; as in function 20 (Read Sequential), it is
automatically incremented at each write. If it overflows, then
the next extent is entered, and the cr field is reset to 00 hex
(the first record of the new extent).

It should be noted that any records written to part of an
already existent file will overwrite the old records.

If the write operation is successful, then 00 hex is
returned in register A. If the operation is unsuccessful (e.g. a
full disc) then a non zero value is returned in register A.

Function 22: Make File

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function creates a new file, and Opens it. The FCB
addressed by DE is used to name the new file, and must therefore
not already exist in the referenced disc directory. Use of
function 19 (Delete File) before this function is adequate to
ensure that this does not occur. TDOS will initialise the file
directory and main memory value to indicate an empty file, create
the file, and activate the FCB.

IF the operation is successful, then 00 hex is returned in
register A. If it is unsuccessful (e.g. no more directory space
is available) then FF hex is returned in register A. In either
case, the h2 byte of the FCB is cleared.

31

Function 23: Rename File

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return Code

This function renames all occurences of the file referred to
by an FCB as the file named in the user field of the same FCB.
As usual, the FCB is addressed by registers DE. The drive code
for the user field is assumed to be 00 hex (default drive).

f the rename is successful, then 00 hex is returned in
register A. f the FCB had no matches in the disc directory (and
the rename was hence unsuccessful) then FF hex is returned in
register A.

Function 24: Return Login Vector

Passed Values 	 Returned Values

None 	 Registers HL: Login vector

This function determines which drives are on-line by
returning a login vector. The login vector value is a 16 bit
value returned in registers HL, with the least significant bit of
L referring to drive A, through to the most significant bit of H,
which refers to drive P.

A zero indicates a drive that is off-line, whilst a one
indicates that a drive is on-line, either as a result of being
directly selected, or else as a result of a file operation
specifying a non zero dr byte.

32

Function 25: Return Current Disc

Passed Values 	 Returned Values

None 	 Register A: Current Disc

This function returns the currently selected default disc in
register A. The values range from 00 hex, corresponding to drive
A, through to 0F hex, which corresponds to drive P.

Function 26: Set DMA Address

Passed Values 	 Returned Values

Registers DE: DMA address 	 None

This function is used to set the direct memory address
(commonly known as the DMA), which is the address used to store
records in, either after a read operation or before a write
operation. The default DMA for CPN is 0080 hex, and on a cold or
warm start, or a disc system reset, the DMA is set to this value.
The DMA buffer should be one record, or 128 bytes, long.

33

Function 27: Get Address (Alloc)

Passed Values 	 Returned Values

None 	 Registers HL: Alloc address

This function returns the base address of the allocation
vector for the currently selected disc drive. An allocation
vector is stored in main memory for each on-line disc drive, and
contains information useful for storage space calculations. Note
that this information is likely to be inaccurate in the case of a
read/only disc.

The allocation vector is a 32 byte long bit map, with each
bit representing 16k bytes of store. There are a series of set
bits, representing either space that is allocated, or space that
is non-existent on the disc (i.e. the disc is smaller than 4M
bytes). These are followed by a series of clear bits,
representing the available space on the disc.

Function 28: Write Protect Disc

Passed Values 	 Returned Values

None 	 None

This function gives temporary write protect status for the
currently selected disc, until the next cold or warm start. If an
attempt is made to write to the disc, then the following message
is output to the screen:

Disc d: Read Only!

34

Function 29: Get Read/Only Vector

Passed Values 	 Returned Values

None 	 Registers HL: R/O vector

This function returns a bit vector in registers HL, to
indicate drives which have the temporary read/only bit set. As in
function 24, the least significant bit of register L refers to
drive A, and the most significant bit of register H refers to
drive P. A one indicates read/only, a zero read/write.

Function 30: Set File Attributes

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return code

This function can be used to set the top bits of bytes f1-f8
and t1-t3 of an FCB; this is particularly useful for the
read/only and system bits (t1 and t2 top bits respectively). A
search is made for a match for the FCB addressed by DE (which
should be unambiguous), ignoring the values of the top bits; the
matched FCB is then changed to be that addressed by DE.

The top bits of bytes f1-f4 are available to the user; bytes
f5-f8 and t3 are reserved for future system expansion.

f a successful match is made in the search, 00 hex is
returned in register A; otherwise FF hex is returned in register
A.

35

Function 31: Get Address (Disc Parms)

Passed Values 	 Returned Values

None 	 DPB address

This function returns the base address of the TCK resident
disc parameter block in registers HL. It has two main uses: the
values in the block are of use for display and space computation
purposes; and when the disc environment changes, a transient
program can dynamically change these values.

The Disc Parameter Block for the Torch contains the
following values:

00 01 07 7F F 00 FF 00 FF 80 00 00 00 00 00

It is provided for CP/M compatibility only.

Function 32: Set/Get User Code

Passed Values 	 Returned Values

Register E: FF hex (get) 	 Register A: Current user code

or User code (set) 	 or None

This function can be used either to find the current user
code, or to change the user code. If register E has the value FF
hex on entry, then the value of the current user number is
returned in register A. Otherwise, the current user number is set
to the value of register E (modulo 32).

36

Function 33: Read Random

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return code

This function is used to read a random record, selected by
a 17 bit value held in the bytes r0-r2. Byte r0 is the least
significant, whilst byte r2 contains the most significant (17th)
bit. Normally, only bytes r0 and r1 are used, giving an index
from 0 to 65535; byte r2 is only used to compute file size for
function 35. Note that r2 must otherwise be zero, as a non zero
value is used to indicate overflow beyond the end of the file.

To use a file for random access, it must first be Opened.
The required record number is then entered into bytes r0 and r1,
and TDOS is called to read the record into the buffer starting at
the DMA. The record number, in contrast to sequential reading, is
not updated with each operation; however/ the ex and cr bytes are
set with each read to the values for the record . It is therefore
possible to read sequentially, commencing from a randomly
accessed record; but note that on a change from random to
sequential access, the same record will be read/written twice.

Upon successful completion of the operation, the value 00
hex is returned in register A. If the operation is not
successful, the following values are returned: 01 hex indicates
that an unwritten record has been accessed, and 06 hex indicates
that byte r2 is non zero (i.e. an attempt has been made to read
beyond the end of the disc).

Function 34: Write Random

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return code

This function writes a record of data from the DMA address
to the disc. As in function 33 (Read Random), the bytes r0-r2 are
not updated, but the ex and cr bytes are set. The returned values
are the same as in function 33.

37

Function 35: Compute File Size

Passed Values 	 Returned Values

Registers DE: FCB address 	 Random record field of FCB set

This function returns the record address immediately after
the end of a file, selected by the FCB addressed by registers DE.
This is known as the virtual size of the file; if it has been
written sequentially, it is the same as the physical size. If
instead it has been written randomly, with some sequential disc
space not allocated to the file, then the file may contain fewer
records than indicated (e.g. if a file only contained record
65535 written in random mode, the size of the file would be given
as 65536 records, although it only contained the one record).

The function searches for a match for the FCB addressed by
registers DE. f byte r2 is set to 01 hex, then the file
contained the maximum of 65536 records. Otherwise, bytes r0 and
r1 contain the file size as a 16 bit value, with r0 as the least
significant byte.

Function 36: Set Random Record

Passed Values 	 Returned Values

Registers DE: FCB address 	 Random record field of FCB set

This function returns the random record to which a file has
been sequentially read/written. This has two main uses: either to
produce a look-up table of the position of various keys in a
sequentially read file, or to change between random and
sequential reading. The file is identified by an FCB, addressed
by registers DE. Bytes r0 and r1 of this FCB are set to the
random record position last read/written.

38

Function 37: Reset Drive

Passed Values 	 Returned Values

Registers DE: Drive vector 	 Register A: Return code

This function resets specific disc drives, as indicated by a
bit map in registers DE. The least significant bit indicates
drive A, while the most significant bit corresponds to drive P. A
1 shows that a drive is to be reset.

A value of zero is returned in register A, unless a disc
which was specified has open files on it that have been modified;
in this case, a non zero result is returned.

Function 40: Write Random With Zero Fill

Passed Values 	 Returned Values

Registers DE: FCB address 	 Register A: Return code

This function is identical to function 34. It is provided
for compatibility with systems which allocate records in groups,
rather than singly.

39

THE BIOS VECTOR

High Memory in the Z80 is taken up by the BIOS vector, which
is a series of jumps to routines useful to the programmer. These
are:

FFC0 	JP USRIMM 	Calls Torch Base User command 	(see
section 4.4) given by byte following
call.

FFC3 	JP PUTIMM 	Sends byte following call to 6502 (see
section 4.3)

FFC6 	JP GETBYT 	Return with Z80 register A containing
byte received from 6502.

FFC9 	JP PUTBYT 	Transmit the byte in Z80 register C to
the 6502.

BIOSV= 	 (Start of CP/M compatible BIOS vector)
FFCC 	JP RESET 	System reboot

FFCF 	JP TWBOOT 	System warmboot

FFD2 	JP TGCONST 	Get console status

FFD5 	JP TGETKEY 	Read in console character

FFD8 	JP PCHARC 	Write out console character

FFDB 	JP TLSTCH 	Print out character

FFDE 	JP RETURN 	(Reader output)

FFE1 	JP RETURN 	(Reader input)

FFE4 	JP RETURN 	(Seek track 0)

FFE7 	JP SELDSK 	Select disc

FFEA 	JP RETURN 	(Set track)

FFED 	JP RETURN 	(Set sector)

FFF0 	JP SETDMA 	Set DMA

FFF3 	JP RETURN 	(Read sector)

40

FFF6 	JP RETURN 	(Write sector)

FFF9 	JP LISTST 	Printer status

FFFC 	JP RETURN 	(Translate sector)

FFFF 	DB VERSION 	Version number

JP RETURN is used above for functions that are not supported
by CPN. The equivalent CP/M functions are given in brackets
afterwards.

41

TORCH PROGRAMMERS' GUIDE: SECTION 3

TORCH VDU CONTROL CODES

42

3.0 	 CONTENTS

Section Title 	 Page

3.0 	CONTENTS 	 43

3.1 	INTRODUCTION 	 44
3.1.0 	Facilities 	 44
3.1.1 	Accessing Torch VDU Functions 	 45

3.2 	TORCH VDU FUNCTIONS: SUPER VDU STREAM 	 47
3.2.0 	Super VDU Stream: Overview 	 47
3.2.1 	Current Implementation 	 47
3.2.2 	Super VDU Stream: Function List 	 48
3.2.3 	Super VDU Stream: Function Specifications 	50

3.3 	TORCH VDU FUNCTIONS: GRAPHICS STREAM 	 71
3.3.0 	Graphics Stream: Overview 	 71
3.3.1 	Current Implementation 	 71
3.3.2 	Graphics Stream: Function List 	 72
3.3.3 	Graphics Stream: Function Specifications 	74

43

3.1 	 INTRODUCTION

Facilities

This is a guide to Torch VDU controls. They are intended for
calling from a program, and are used for changing modes of
Input/Output. They should always be used in preference to any of
the facilities outlined in Section 4 (Use of the Torch Base
Processor), since the Torch VDU controls will continue to be
supported on any future upgrades of the Torch Base processor.

There are several different streams of input/output
available, allowing for a choice of configuration. For the Torch,
the streams normally used will be Super VDU, graphics, and
printer, for text output to screen, graphics output, and printed
output respectively.

Facilities available include the following:

Super VDU Stream

1) Selection of different I/O streams (e.g. printer, vdu)
2) Positioning of the screen of output over a larger page of

display in vdu memory.
3) Window selection on a page of memory.
4> 	Cursor movement and editing, both by line and column.
5> 	Changing screen colour, mode and enhancement.
6> 	Definition of new character sets.

Graphics Stream

1> 	Selection of different I/O streams.
2> 	Positioning of the screen of output over a larger page of

display in vdu memory.
3> 	Cursor movement, line drawing and triangle filling.
4> 	Changing screen colour and mode.

Printer Stream

1> 	Selection of different I/O streams.

44

3.1.1 	 Accessing Torch VDU Functions

To use any of the facilities outlined in this section, the
Torch VDU program must first be loaded into the Torch from the
systems disc provided when you purchase your Torch. The file is
called 'SUPERVDU.COM' and is loaded in the same way as any .COM
file; i.e, you type:

SUPERVDU 	 if the disc is in the top drive, or

B:SUPERVDU 	 if the disc is in the bottom drive.

The program is loaded into the Torch's memory, so you may then
remove the disc.

Torch VDU functions are invoked, once the program is loaded,
by outputting the character <escape> from a program, followed by
a character to indicate the function, and possibly a set of
arguments in addition. For instance, to move the cursor left from
a BCPL program, whilst in Super VDU stream:

AND move.cursor.left () BE
$(LET ascii.esc = #x1B

wrch (ascii.esc)
wrch ('W')

$)

move.cursor.left ()

or in Z80 assembler, under CPN:

ESCAPE 	EQU 	1BH
SCROUT EQU

CURLEFT: LD 	E, ESCAPE
RST 	0030H
DB 	SCROUT
LD 	E, 'W'
RST 	0030H
DB 	SCROUT

45

Arguments passed to these functions are always numbers. In
the case of every function save 'Relative Cursor Address in
Window' (where the number is a signed sequence of ASCII numerals)
the number is a string of unsigned ASCII numerals. Numerals are
defined as the characters '0' to '9'.

Each argument after the first number must be preceeded by a
separator, this being a string of one or more non numeric
characters. Separators are swallowed. The last argument must be
followed by a terminator, this being a single non numeric
character. This character is swallowed; if it is a <carriage
return> then the next character is swallowed if it is a <line
feed>; otherwise it is output.

For instance, to clear a page and select the mode from BCPL:

AND clear.page.and.select.mode (page, mode) BE
$(wrch (ascii.esc)

writef ("& %n %non", page, mode)
$)

Invalid values of page and mode are ignored by the Torch VDU
control program, and so there is no need for error handling in
the user program.

Coordinates used for the Super VDU stream are measured in
characters, and are hence dependent on the mode the Torch's
display is set to. A screen can be 80, 40 or 20 units wide; and
32 or 25 units high. The origin of the page has coordinates
(1,1).

46

3.2 	 TORCH VDU FUNCTIONS: SUPER VDU STREAM

3.2.0 	 Super VDU Stream: Overview

A number of pages (at least 1) of a size depending on the
implementation (always at least one screenful) reside in memory.
The screen may be positioned on this page wherever it is desired,
and will always show all characters on the page in the area it
outlines. Windows (a rectangular area of text) may be defined
anywhere on the page that is desired, and may be of any size.

There is always a window selected as the current window, and
the cursor may not be moved out of it using these functions.
There is no need for the screen to display the current window or
the cursor, and the screen's movement is independent of the
cursor's movement. All editing is done inside the window; thus
only the portion of a line inside the current window may be
deleted, and so on. Whenever a new window is selected, the cursor
is moved to the last position it was at in that window (or the
top left hand corner of the window if it has not yet been used).

Windows may be designated as scrolling or non-scrolling.
With both types, if an attempt is made to move the cursor off the
top or bottom of a window, either to write or as a cursor
movement, the cursor wraps round from top to bottom of the column
it is in. If the cursor is moved off the end or beginning of a
line, it is moved to the beginning of the next line down, or to
the end of the previous line respectively. The two windows only
differ in their handling of a cursor moving left off the top of a
window, or right off the end of a window. If the window is a
scrolling window, then all text is scrolled by one line down or
up the window respectively. The line the cursor is on is made
blank, and the cursor moved to the opposite end of the line. If
the window is a non-scrolling window, then the two points wrap
around to each other (for horizontal movement only).

3.2.1 	 Current Implementation

Currently, there is only one page of size one screenful. A
maximum of 10 windows may be defined at any one time.

47

3.2.2 	 Super VDU Stream: Function List

Available Torch VDU functions for the Super VDU stream are
given in a list below, and then described in detail in the next
section.

<escape}
followed by:

General

<escape> 	Select Stream
<space> 	Initialise
'!' "Page Mode" On/Off

Screen Selection '$'

	 Select Page '%'
	 Clear Page

Clear Page and Select Mode
"'"
	 Position Screen Origin

'('
	 Pan Screen Up ')'
	 Pan Screen Right '*'
	 Pan Screen Down '+'
	 Pan Screen Left

Use of Windows

'0' 	 Define Window in Page
' 1 ' 	Select Window
2̀' 	 Clear Window

'3' 	 Clear to End of Window
4̀' 	 Clear to Start of Window '<'

` 	 Relative Cursor Address in Window
'=`
	 Home Cursor in Window

'>' 	 Absolute Cursor Address in Window

48

Character Deletion and Insertion

'D' 	 Clear Line
'E' 	 Clear to End of Line
'F' 	 Clear to Start of Line
'H' 	 Clear Characters Right

Clear Characters Left
'L' 	 Delete Column 'M'
	 Insert Column
'N' 	 Delete Line
'0' 	 Insert Line
'P' 	 Delete Character 'Q'
	 Insert Character

Cursor Movement

'T' 	 Cursor Up
'U' 	 Cursor Right
'V' 	 Cursor Down 'W'
	 Cursor Left

Colour Selection

'\'
	 Select Foreground Colour ']'
	 Select Background Colour

' A' 	 Define Colour Relationship

Enhancement '`'

	 Set Enhancement 'a'
	 Add Enhancement
'b' 	 Remove Enhancement

Character Definition

'd' 	 Define Character

49

3.2.3 	Super VDU Stream: Function Specifications

Select Stream

Arguments 	 Comment

<escape> <escape> and:

`B', stream number n 	Add stream n to output list
or 	'C', stream number n 	Remove stream n from output list
or 	'A', stream number n 	Clear output list; select stream n
or 	'a', stream number n 	Select input stream n

This function is used to control the I/O devices used by a
program, as selected by the arguments. For input, only one device
may be selected (to avoid input from more than one program, data
file, etc.0. For output, several devices may be selected at once,
by constructing a list of devices. An argument of 'A' clears the
list, and then selects the specified stream, leaving it on the
list.

Valid stream numbers are:

0 	Sink/Null
1 	Dumb terminal/keyboard
2 	Popular terminal/keyboard 	 | These are
3 	Super terminal/keyboard 	 | mutually
10 	Graphics terminal/keyboard 	 | exclusive
20 Printer
100 Parallel port 0
110 Serial port 0

50

Initialise

Arguments 	 Comment

<escape> <space>

This function initialises the vdu functions as follows:

1> 	I/O streams are selected for keyboard and screen only.
2> 	"Page mode" is set to off.
3> 	The screen origin is set to 1,1 on page 1.
4> 	The cursor is set to 1,1 (home).
5> 	The screen is set to mode 3, in black and white.
6> 	All pages and windows are cleared from memory.
7> 	There is no enhancement.
8> 	All defined characters are cleared.
9> 	Debug is set to off.

"Page Mode" On/Off

Arguments 	 Comment

<escape> '!' and

`1' 	On
or '0' 	 Off

This function is used to switch "page mode". If it is on,
all output to the screen stops scrolling after every screenfull,
until <shift> is pressed; if it is off, scrolling occurs
continually.

51

Select Page

Arguments 	 Comment

<escape) '$' and:

page number n

This function selects the page from which the current screen
of output is displayed. A page number either of 0, or greater
than the available number of pages, causes the function to have
no effect. Both the screen origin and the current cursor position
are unchanged.

Clear Page

Arguments 	 Comment

<escape> '%' and:

page number n

This function clears the specified page of memory, and all
windows for that page. A page number of 0 causes the function to
clear the current page; a page number greater than the available
number of pages causes the function to have no effect. The screen
origin is set to 191; and the cursor is homed (to 1,1).

52

Clear Page and Select Mode

Arguments 	 Comment

<escape> 'it' and:

page number n, mode m

This function clears the page as above; it also selects the
mode of screen display. Available modes are:

Mode 	Graphics 	Text 	Colours

0 	 640 x 256 	80 x 32
1 	 320 x 256 	40 x 32 	4
2 	 160 x 256 	20 x 32 	16

80 x 25
4 	 320 x 256 	40 x 32 	2
5 	 160 x 256 	20 x 32 	4
6 	 40 x 25 	2
7 	 40 x 25 Teletext

The new mode will have the default colours displayed (see
'Select Foreground Colour'); if it is required to change the
colour mapping, 'Define Colour Relationship' (see later) should
be used.

Position Screen Origin

Arguments 	 Comment

<escape> "'" and:

x, y

This function positions the screen origin at the given x,y
coordinates on the current page. The cursor remains in its
current position on the page. Coordinates of 0,0, or ones that
would position some or all of the screen off the current page,
cause the function to have no effect.

53

Pan Screen Up

Arguments 	 Comment

<escape> '(' and:

displacement

This function pans the screen up the page (i.e. the y origin
of the screen is decreased) over the specified displacement. If
the specified displacement is zero, or if it would move some or
all of the screen off the page, the function has no effect.

Pan Screen Right

Arguments 	 Comment

<escape> ')' and:

displacement

This function pans the screen to the right of the page (i.e.
the x origin of the screen is increased) over the specified
displacement. If the specified displacement is zero, or if it
would move some or all of the screen off the page, the function
has no effect.

54

Pan Screen Down

Arguments 	 Comment

<escape> '*' and:

displacement

This function pans the screen down the page (i.e. the y
origin of the screen is increased) over the specified
displacement. If the specified displacement is zero, or if it
would move some or all of the screen off the page, the function
has no effect.

Pan Screen Left

Arguments 	 Comment

<escape> '+' and:

displacement

This function pans the screen to the left of the page (i.e.
the x origin of the screen is decreased) over the specified
displacement. If the specified displacement is zero, or if it
would move some or all of the screen off the page, the function
has no effect.

55

Define Window in Page

Arguments 	 Comment

<escape> '0' and:

window number, 	 Must be unique (see below)
page number, x, y,
width, height, scroll
type

A window is created at origin x, y on the given page, and
having the specified height and width. The window is assigned a
number; if this number has been used previously, then the window
is redefined to the new shape (so long as the arguments are
legal; see below). A scroll type of one indicates that the window
is a scrolling window, and one of zero that it is a non-scrolling
window (See section 3.3.0, Accessing Torch VDU Commands). All
other scroll types cause undefined actions.

Window 0 is used in the functions below to refer to all of
the current page, and so may not be redefined. f a window number
is selected that is greater than the maximum permissible one,
then the function has no effect. A page number of zero indicates
the current page; if the page number is greater than the number
of pages, then the function has no effect. An x or y value of
zero indicates that the current x or y position of the cursor
should be used. A width of zero indicates that the window should
extend to the right of the page; a height of zero indicates that
the page should extend to the bottom of the page. Should any of
the above arguments specify a window some or all of which is off
the page, then the function has no effect.

56

Select Window

Arguments 	 Comment

<escape> '1' and:

window number

The specified window is selected as the current window. The
position of the screen is not affected. The cursor is moved to
the last position it had when the new window was last current; if
it has never been selected previously, then the cursor is homed
to the top left of the window.

Window 0 always corresponds to the whole of the current
page. If a window is selected that has not been defined, then the
function has no effect.

Clear Window

Arguments 	 Comment

<escape> '2' and:

window number

The specified window is cleared (i.e. it is made blank). The
window boundaries remain, and the cursor is homed to the top left
of the window.

If window 0 is cleared, this function has the same effect as
`Clear Page' acting on the current page. If a window that has not
been defined is passed, then the function has no effect.

57

Clear to End of Window

Arguments 	 Comment

<escape> '3'

The current window is cleared, starting with the current
cursor position, and clearing to the end of the current line and
all subsequent lines. The cursor is not moved.

Clear to Start of Window

Arguments 	 Comment

<escape> '4'

The current window is cleared, starting with the character
to the left of the cursory and clearing to the start of the
current line and all previous lines. The cursor is not moved.

58

Cursor Address Relative in Window

Arguments 	 Comment

<escape> '>' and:

x, y

The cursor is moved by the specified displacements in the
current window. Arguments of 0, 0 or ones that would remove the
cursor from the window cause the function to have no effect.

Home Cursor in Window

Arguments 	 Comment

<escape> '='

The cursor is homed in the current window (moved to the
defined origin).

Cursor Address Absolute in Window

Arguments 	 Comment

<escape> 'C and:

x, y

The cursor is moved to the absolute address given, relative
to the origin of the current window. Coordinates that would
remove the cursor from the current window, or ones of zero make
the function have no effect. Coordinates of 1,1 represent the
origin of the current window.

59

Clear Line

Arguments 	 Comment

<escape> 'D' and:

line number

The specified line of text in the current window is cleared
(i.e. all characters are replaced by spaces). A line number of
zero indicates that the line the cursor is currently on is to be
cleared. If a line number is given that is not in the current
window, the function has no effect.

Clear to End of Line

Arguments 	 Comment

<escape> 'E'

The current line of text is cleared (i.e. all characters are
replaced by spaces), from the current cursor position to the
right hand edge of the current window (inclusive).

Clear to Start of Line

Arguments 	 Comment

<escape> 'F'

The current line of text is cleared (i.e. all characters are
replaced by spaces), from the left hand edge of the current
window to the character on the left of the cursor (inclusive).

60

Clear Characters Right

Arguments 	 Comment

<escape> 'H' and:

number of characters

The specified number of characters are cleared, starting
with the current cursor position, and moving to the right hand
edge of the current window. IF more characters are specified than
are on the right of the window, then the function has no effect;
if zero characters are specified, then the function has the same
effect as 'Clear to End of Line'.

Clear Characters Left

Arguments 	 Comment

<escape> 'I' and:

number of characters

The specified number of characters are cleared, starting
with the character to the left of the current cursor position,
and moving to the left hand edge of the current window. If more
characters are specified than are on the left of the window, then
the function has no effect; if zero characters are specified,
then the function has the same effect as 'Clear to Start of
Line'.

61

Delete Column

TO BE IMPLEMENTED

Arguments 	 Comment

<escape> 'L' and:

column number

The specified column is deleted from the current window; as
a result all columns to the right of this are moved one column to
the left. The rightmost column of the window is filled with
blanks. A column number of zero indicates that the line the
cursor is currently on is to be deleted, and a column number that
is not in the current window causes the function to have no
effect.

Insert Column

TO BE IMPLEMENTED

Arguments 	 Comment

<escape> 'M' and:

column number

All columns in the current window to the right of (and
including) the specified column are moved one column to the
right, and a blank column is inserted in the specified column.
The contents (if any) of the rightmost column of the window are
lost. A column number of zero indicates that the column the
cursor is currently on is the column where insertion takes place;
if the column number is not in the current window, then the
function has no effect.

62

Delete Line

Arguments 	 Comment

<escape> 'N' and:

line number

The given line is deleted, and all lines below it on the
current window are scrolled up one line.The bottom line of the
window is filled with blanks. A line number of zero indicates
that the current line is to be deleted; if the line number is not
in the current window, the function has no effect.

Insert Line

Arguments 	 Comment

<escape> '0' and:

line number

All lines from the specified line downwards are scrolled
down one line in the current window, and a blank line is
inserted. The bottom line of the window is lost. A line number of
zero shows that the current line is the site of insertion; if the
line number is not in the current window, then the function has
no effect.

63

Delete Character

TO BE IMPLEMENTED

Arguments 	 Comment

<escape> 'P'

The character at the current cursor position is deleted, and
all characters to the right of this on the current line and in
the current window are moved one space to the left. The rightmost
character of the window is filled with a space.

Insert Character

TO BE IMPLEMENTED

Arguments 	 Comment

<escape> 'Q'

All characters on the current line of the current window, to
the right of (and including) the current cursor position, are
moved one place to the right, and the current cursor position is
filled with a space. The rightmost character of the window is
lost.

64

Cursor Up

Arguments 	 Comment

<escape> 'T'

The cursor is moved up the current window by one line. The
screen is not scrolled. The cursor wraps around from the top of
the window to the same column on the bottom line of the window.

Cursor Right

Arguments 	 Comment

<escape> 'U'

The cursor is moved across the current window one column to
the right. The screen is not scrolled. The cursor wraps around
from the right of the window to the left hand side of the next
line down. The action on attempting to pass the end of the window
depends on the scrolling type of the window. f the window is non
scrolling then the cursor is moved to the top left hand corner
(the origin) of the window. If the window is a scrolling window
then each line of text in the window is scrolled up one line (and
the top line is lost). The bottom line is made blank, and the
cursor moved to the left of it.

65

Cursor Down

Arguments 	 Comment

<escape> 'V'

The cursor is moved down the current window one of line. The
screen is not scrolled. The cursor wraps around from the bottom
of the window to the same column on the top line of the window.

Cursor Left

Arguments 	 Comment

(escape> 'W'

The cursor is moved across the current window one column to
the left. The screen is not scrolled. The cursor wraps around
from the left of the window to the right hand side of the next
line down. The action on attempting to pass the start of the
window depends on the scrolling type of the window. If the window
is non scrolling then the cursor is moved to the bottom right
hand corner of the window. If the window is a scrolling window
then each line of text in the window is scrolled down one line
(and the bottom line is lost). The top line is made blank, and
the cursor moved to the right of it.

66

Select Foreground Colour

Arguments 	 Comment

(escape> '\' and:

colour code

The selected colour is used for the foreground of the
screen. Normal default codes are:

Two colour modes 	 Sixteen colour modes

0 = Black 	 0 = Black
1 = White 	 1 = Red

2 = Green
3 = Yellow

Four colour modes 	 4 = Blue
5 = Magenta

0 = Black 	 6 = Cyan
1 = Red 	 7 = White
2 = Yellow 	 8 = Flashing Black/White
3 = White 	 9 = Flashing Red/Cyan

10 = Flashing Green/Magenta
11 = Flashing Yellow/Blue
12 = Flashing Blue/Yellow
13 = Flashing Magenta/Green
14 = Flashing Cyan/Red
15 = Flashing White/Black

These default definitions may be changed by 'Define Colour
Relationship' (see below).

Select Background Colour

Arguments 	 Comment

<escape> '3' and:

colour code

This function defines the background colour of the screen,
in the same way as 'Select Foreground Colour' defines the
foreground colour (see above).

67

Define Colour Relationship

Arguments 	 Comment

<escape> 'A' and:

logical colour code,
physical colour code

The given logical colour code, modulo the number of colours
in the current mode, is redefined for the current mode of screen,
according to the physical colour code given (which is the same as
the default logical codes for sixteen colour modes; see 'Select
Foreground Colour'). All colour relationships apply only to the
current mode, and are cleared when the mode is changed.

It should be noted that redefining logical colour 7 will
always change the foreground, and redefining logical colour 0
will select the background colour.

Set Enhancement

Arguments 	 Comment

<escape> '`' and:

enhancement mode

The list of enhancement modes is cleared and set to the
enhancement passed as an argument. This new list is used as the
mode of enhancement used for all enhanced text until changed.

Currently available modes of enhancement are:

0 	No enhancement
2 	Inverse
5 	Underlined

Mode 0 may not be used to add to a list of enhancements (and
hence may not be usefully removed.)

68

Add Enhancement

Arguments 	 Comment

<escape> 'a' and:

enhancement mode

The specified enhancement mode is added to the list of
enhancement modes, and the new list is used whenever enhanced
text is written.

Remove Enhancement

Arguments 	 Comment

<escape> 'b' and:

enhancement mode

The enhancement mode passed to the function is removed from
the list of enhancement modes, and the new list is used whenever
enhanced text is written.

69

Character Definition

Arguments 	 Comment

<escape> 'd' and:

character code, 	 Normally ASCII
character width, 	 | In
character height, 	| pixels
row representation(s)

The character code given is redefined to produce the
character programmed by the user. The character code is given,
followed by the width and height of the new character to be
generated.

The representation of each row of pixels is generated as
follows: each row, working from top to bottom, is written as a
binary number, with each bit representing a pixel; a one
indicates that the pixel is in the foreground colour, a zero that
it is in the background colour. The binary number is then
converted to an ASCII decimal number (unsigned), and passed to
the function.

Debug On/Off

Arguments 	 Comment

<escape> <delete> and:

1 	 On

or 0 	 Off

If debug mode is selected, by giving an argument of 1, then
all output is passed directly, and VDU control codes are not
invoked. f debug is switched off, then VDU codes are invoked.

70

3.3 	 TORCH VDU FUNCTIONS: GRAPHICS STREAM

3.3.0 	 Graphics Stream: Overview

A number of pages (at least one) of a size depending on the
implementation (always at least one screenful) reside in memory.
The screen may be positioned on this page anywhere that is
desired. Unlike the Super VDU stream, there is no windowing.

Routines exist for moving the cursor around the screen,
either leaving no trail, or drawing a line behind itsef, or
filling in triangles as it goes. There are comprehensive
facilities for changing the colours used to plot.

It should be noted that all routines for moving the screen
use the same system of coordinates as in the Super VDU stream;
that is, the screen is 80, 40 or 20 units wide and 25 or 32 units
high, depending on the mode; and the origin is the top left of
the page (1,1). Movement of the cursor is done using graphics
coordinates; the screen is 1280 units wide and 1024 units high,
and the origin is at the bottom left of the page (0,0).

3.3.1 	 Current Implementation

There is currently one page of size one screenful.

71

3.3.2 	 Graphics Stream: Function List

Available Torch VDU functions for the Graphics Stream are
given in a list below, and then outlined in detail in the next
section.

<escape>
followed by:

General

<escape> 	Select Stream
<space> 	Initialise

Screen Selection '$'

,	 Select Page
Clear Page

'&`
	 Clear Page and Select Mode "'"
	 Position Screen Origin

(' 	 Pan Screen Up
') ' 	 Pan Screen Right '*'
,	 Pan Screen Down '+'
, 	 Pan Screen Left

Graphics

h̀' 	 Move Cursor Relative
/
i'
	 Move Cursor Absolute
,j' 	 Draw Relative
k̀' 	 Draw Absolute
'm' 	 Plot
• 0' 	 Define Graphics Origin

72

Colour Selection

• \' 	 Select Graphics Foreground Colour
'3' 	 Select Graphics Background Colour
' A' 	 Define Graphics Colour Relationship

Debug

<delete> 	Debug On/Off

73

3.3.3 	Graphics Stream: Function Specifications

Select Stream

Arguments 	 Comment

<escape> <escape> and:

`B', stream number n 	Add stream n to output list
or 	'C', stream number n 	Remove stream n from output list
or 	'A's stream number n 	Clear output list; select stream n
or 	'a', stream number n 	Select input stream n

,
This function is used to control the I/O devices used by a

program, as selected by the arguments. For input, only one device
may be selected (for obvious reasons). For output, several
devices may be selected at once, by constructing a list of
devices. An argument of 'A' clears the list, and then selects the
specified stream, leaving it on the list.

Valid stream numbers are:

0 	Sink/Null
1 	Dumb terminal/keyboard 	 |
2 Popular terminal/keyboard 	 | These are
3 	Super terminal/keyboard 	 | mutually
10 	Graphics terminal/keyboard 	 | exclusive
20 Printer
100 Parallel port 0
110 Serial port 0

74

Initialise

Arguments 	 Comment

<escape> <space>

This function initialises the vdu functions as follows:

1) I/O streams are selected for screen and vdu only.
2) The screen origin is set to 1,1 on page 1.
3) The cursor is set to 0,0 (the bottom left of the page).
4) The screen is set to mode 0, in black and white.
5) All pages are cleared from memory.
6) The graphics origin is set to 0,0.
7) Debug is set to off.

Select Page

Arguments 	 Comment

(escape> '$' and:

page number n

This function selects the page from which the current screen
of output is displayed. A page number either of 0, or greater
than the available number of pages, causes the function to have
no effect. Both the screen origin and the current cursor position
are unchanged.

75

Clear Page

Arguments 	 Comment

<escape> '%' and:

page number n

This function clears the specified page of memory. A page
number of 0 causes the function to clear the current page; a page
number greater than the available number of pages causes the
function to have no effect. The screen origin is set to 1,1; and
the cursor is homed (to 0,0).

Clear Page and Select Mode

Arguments 	 Comment

<escape> '&' and:

page number n, mode m

This function clears the page as above; it also selects the
mode of screen display. Available modes are:

Mode 	Graphics 	Text 	Colours

0 	 640 x 256 	80 x 32
1 	 320 x 256 	40 x 32 	4
2 	 160 x 256 	20 x 32 	16
4 	 320 x 256 	40 x 32
5 	160 x 256 	20 x 32 	4

The new mode will have the default colours displayed (see
`Select Graphics Foreground Colour'); if it is required to change
the colour mapping, 'Define Graphics Colour Relationship' (see
later) should be used.

76

Position Screen Origin

Arguments 	 Comment

<escape> "'" and:

x, y

This function positions the screen origin at the given x,y
coordinates on the current page. The cursor remains in its
current position on the page. Coordinates of 0,0, or ones that
would position some or all of the screen off the current page,
cause the function to have no effect.

Pan Screen Up

Arguments 	 Comment

<escape> '(' and:

displacement

This function pans the screen up the page (i.e. the y origin
of the screen is decreased) over the specified displacement. If
the specified displacement is zero, or if it would move some or
all of the screen off the page, the function has no effect.

77

Pan Screen Right

Arguments 	 Comment

<escape> ')' and:

displacement

This function pans the screen to the right of the page (i.e.
the x origin of the screen is increased) over the specified
displacement. If the specified displacement is zero, or if it
would move some or all of the screen off the page, the function
has no effect.

Pan Screen Down

Arguments 	 Comment

<escape> 	and:

displacement

This function pans the screen down the page (i.e. the y
origin of the screen is increased) over the specified
displacement. f the specified displacement is zero, or if it
would move some or all of the screen off the page, the function
has no effect.

78

Pan Screen Left

Arguments 	 Comment

<escape> '+' and:

displacement

This function pans the screen to the left of the page (i.e.
the x origin of the screen is decreased) over the specified
displacement. f the specified displacement is zero, or if it
would move some or all of the screen off the page, the function
has no effect.

Move Cursor Relative

Arguments 	 Comment

<escape> 'h' and:

x, y

The cursor is moved by the specified displacement from its
current position. Coordinates of 0,0, or ones that would remove
the cursor from the page, cause the function to have no effect.

The function is the same as Plot 0, x, y.

79

Move Cursor Absolute

Arguments 	 Comment

(escape> 'i' and:

x, y

The cursor is moved to the coordinates given, relative to
the defined graphics origin. If the coordinates passed are off
the page, then the function has no effect.

The function is the same as Plot 4, x, y.

Draw Relative

Arguments 	 Comment

<escape> 'j' and:

x, y

The cursor draws a straight line across the screen in the
graphics foreground colour, moving by the specified displacement
relative to its current position. f the cursor would be removed
from the screen, then the function has no effect.

The function is the same as Plot 1, x, y.

80

Draw Absolute

Arguments 	 Comment

(escape> 'k' and:

x, y

The cursor draws a straight line across the screen in the
graphics foreground colour, moving to the coordinates given
(relative to the current graphics origin). If the cursor would be
removed from the page, then the function has no effect.

The function is the same as Plot 5, x, y.

81

Plot

Arguments 	 Comment

<escape> 'm' and:

Plot code, x, y

Plot is used to draw points, lines and triangles to the
screen, according to the plot code given. These are given in the
list below:

0 	 Move relative to last point

1 	 Draw line relative to last point in graphics foreground
colour

2 	 Draw line relative to last point in logical inverse
colour

3 	 Draw line relative to last point in graphics background
colour

4 	 Move to absolute position

5 	 Draw line from last point to absolute position in
graphics foreground colour

6 	 Draw line from last point to absolute position in
logical inverse colour

7 	 Draw line from last point to absolute position in
graphics background colour.

8-15 	As 0-7, but with the last pixel on the line not filled.

16-23 	As 0-7, but with a dotted line instead of a solid one.

24-31 	As 0-7, but with a dotted line, and with the last pixel
on the line not filled.

64-71 	As 0-7, but only the last pixel on any line is filled.

80-87 	As 0-7, but plot and fill a triangle. The last two
points visited are joined with the specified point to
form a triangle, and it is filled.

All other values are reserved for future expansion.

82

'Relative to last point' means moving by the given x, y
coordinates from the last point visited. An 'absolute position'
is one given as coordinates relative to the defined graphics
origin.

The logical inverse to a colour is (highest logical colour
code for current mode) - (logical colour code): e.g. for a four
colour mode:

logical 	inverse
0 	 3
1
2 	 1
3 	0

Define Graphics Origin

Arguments 	 Comment

<escape> 'o' and:

x, y

The graphics origin is redefined to be at the given x, y
coordinates, relative to the default origin of 0,0 at the bottom
left hand corner of the page.

83

Select Graphics Foreground Colour

Arguments 	 Comment

<escape> '\' and:

colour code

The selected colour is used for the foreground of the
screen. Normal default codes are:

Two colour modes 	 Sixteen colour modes

0 = Black 	 0 = Black
1 = White 	 1 = Red

2 = Green
3 = Yellow

Four colour modes 	 4 = Blue
5 = Magenta

0 = Black 	 6 = Cyan
1 = Red 	 7 = White
2 = Yellow 	 8 = Flashing Black/White
3 = White 	 9 = Flashing Red/Cyan

10 = Flashing Green/Magenta
11 = Flashing Yellow/Blue
12 = Flashing Blue/Yellow
13 = Flashing Magenta/Green
14 = Flashing Cyan/Red
15 = Flashing White/Black

These default definitions may be changed by 'Define Graphics
Colour Relationship' (see below).

Select Graphics Background Colour

Arguments 	 Comment

(escape> '3' and:

colour code

This function defines the background colour of the screen,
in the same way as 'Select Graphics Foreground Colour' defines
the foreground colour (see above).

84

Define Graphics Colour Relationship

Arguments 	 Comment

(escape> 'A' and:

logical colour code,
physical colour code

The given logical colour code, modulo the number of colours
in the current mode, is redefined for the current mode of screen,
according to the physical colour code given (which is the same as
the default logical codes for sixteen colour modes; see 'Select
Graphics Foreground Colour`). All colour relationships apply only
to the current mode, and are cleared when the mode is changed.

It should be noted that redefining logical colour 7 will
always change the foreground, and redefining logical colour 0
will select the background colour.

Debug On/Off

Arguments 	 Comment

<escape> <delete> and:

1 	 On

or 0 	 Off

If debug mode is selected, by giving an argument of 1, then
all output is passed directly, and VDU control codes are not
invoked. If debug is switched off, then VDU codes are invoked.

85

TORCH PROGRAMMERS' GUIDE: SECTION 4

USE OF THE TORCH BASE PROCESSOR

86

4.0 	 CONTENTS

Section Title 	 Page

4.0 	CONTENTS 	 87

4.1 	INTRODUCTION 	 88
4.1.0 	The Torch Base Processor 	 88
4.1.1 	Future Upgrades 	 88

4.2 	TECHNICAL TERMS 	 89

4.3 	TORCH BASE COMMAND INTERFACE 	 91
4.3.0 	Accessing Torch Base Commands 	 91
4.3.1 	Command List 	 92
4.3.2 	Command Specifications 	 93

4.4 	TORCH BASE USER COMMAND INTERFACE 	 105
4.4.0 	Accessing User Commands 	 105
4.4.1 	User Command List 	 106
4.4.2 	User Command Specifications 	 107

4.5 	OSWORD CALL INTERFACE 	 117
4.5.0 	Accessing Osword Calls 	 117
4.5.1 	The Torch Base Scratchpad 	 118
4.5.2 	Osword Call List 	 119
4.5.3 	Osword Call Specifications 	 120

4.6 	OSBYTE CALL INTERFACE 	 128
4.6.0 	Accessing Osbyte Calls 	 128
4.6.1 	Osbyte Call List 	 129
4.6.2 	Osbyte Call Specifications 	 130

4.7 	ACORN M.O.S. INTERFACE 	 146

4.8 	CHARACTER OUTPUT 	 147
4.8.0 	Character Output 	 147
4.8.1 	Output Code List 	 148
4.8.2 	Output Code Specifications 	 149

4.9 	'*' COMMANDS 	 163

4.10 	EXTERNAL INTERFACES 	 165

87

4.1 	 INTRODUCTION

4.1.0 	 The Torch Base Processor

The Torch Base processor is a peripheral processor,
constructed using the main p.c.b. From an Acorn B.B.C.
Microcomputer. A 6502 is used as the c.p.u. A large number of
functions are available to the programmer using this board, or
using this board in conjunction with the main Z80 c.p.u.

These features include a large number of functions providing
the same functions as the CPN operating system, and facilities
normally available on the B.B.C. microcomputer.

4.1.1 	 Future Upgrades

All the features given in this section are dependent on the
Torch Base periheral processor. Most of them are available either
from CPN, or from Torch VDU control codes, or by other methods.

Torch Computers Ltd. reserves the right to change the Torch
Base peripheral processor in future upgrades to the Torch
Computer. Although these features are documented for the
convenience of programmers, no undertaking is made to continue to
support them for future versions of the Torch. Wherever possible
<which will be the majority of cases) the other features outlined
in this guide should be used to achieve the end effect required.

88

4.2 	 TECHNICAL TERMS

Cutdown FCB: This is 12 bytes long. The first byte is the
drive code, with 0 representing drive A, 1 representing drive B,
and so on. The next 11 bytes are the ASCII representation of the
file name and type. Note that this is NOT the same as taking the
first 12 bytes of a CPN FCB (see section 2.4, File Control
Blocks), since the drive code for the Torch Base is one less than
that used in CPN.

File Handle: Each disc may have up to 256 directory entries.
A file handle identifies a particular file by giving its position
in the directory (from 0 to 255).

Cold Boot: The 6502 is reset by pressing the master reset
button. Any action it is taking is halted. Note that this can be
dangerous if, for instance, the 6502 is in the middle of writing
a disc track. All Z80 memory will be uninitialised, save for CPN
and CCCP, which are reloaded from ROM.

Warm Boot: CPN and CCCP are reloaded into Z80 memory. All
remaining Z80 memory is uninitialised. The 6502 is not affected.

89

Hobnailed Boot: The message:

`User Program Error nn'

is displayed, where nn is a number having one of the following
meanings:
01 	The Z80 has issued an invalid command.
02 	An attempt was made to read a record from a file that

was not open.
03 	An attempt was made to write a record to a file that

was not open.
06 or A8 Invalid user function attempted.
55 Invalid file handle specified (usually due to using an

FCB for transput without opening the corresponding
file.

66 	The 6502 failed to find enough store to load a file
structure block.

77 	A disc transfer was incomplete (disc controller
timeout).

Results 66 and 77 are unlikely to occur unless disc controller
parameters ar set up using peek and poke (see Systems Manual).

Following the message, a warm boot is performed.

Soft Boot: CCCP is reloaded from ROM into Z80 RAM. All other
contents of the Z80 RAM are preserved. The 6502 is unaffected.

90

4.3 	 TORCH BASE COMMAND INTERFACE

4.3.0 	 Accessing Torch Base Commands

The Torch Base commands are a low level (below CPN and Torch
VDU) interface with the Torch Base processor. A typical command
will consist of the Z80 sending the number of the desired
function to the 6502; there will then usually be an exchange of
information between the Z80 and the 6502, occurring in the order
given in each function specification. Note that in the first
section of each specification, in which the values to be
exchanged are given, there is no mention of the order in which
they are to be passed; this is given in each description below.
Note also that in some cases, not all the values given are
passed.

For instance, if it was wanted to Peek Into RAM (the
6502's) at location 8000 hex, then the Z80 would send:

0D hex 	(command number)
00 hex
80 hex 	(the address as a low/high byte pair)

The 6502 would reply by sending the contents of address 8000
hex to the Z80.

The bytes that are passed are either sent by the Z80, or
received by it. There is no user control over when the 6502 sends
a byte (being a parallel processor, it does so as soon as it has
completed a task), merely over when the Z80 receives that byte.

There are three routines available to send and receive
bytes; these are located in the Torch BIOS vector, at fixed
positions in memory. They are accessed as follows:

CALL 0FFC3H 	Sends the byte following the call to the 6502.
All Z80 registers apart from AF are preserved.

CALL 0FFC6H 	Returns with a byte in Z80 register A received
from the 6502.

CALL 0FFC9H 	Sends the byte in Z80 register C to the 6502.
Z80 registers AF are corrupted.

Throughout this manual the routines rx and tx respectively
are used to represent the last two routines above.

91

4.3.1 	 Command List

0 	Warm Boot
1. Print Byte
2. Open File
3. Close File
4. Search For First
5. Search For Next
6. Delete File
7. Read Random
8. Write Random
9. Make File
A. Rename File
B. Set File Attributes
C. Compute File Size
D. Peek Into RAM
E. Poke Into RAM
F. Call User Command
10H (G) 	Set/Get User Code
11H (H) 	Get Keyboard Status/Input
12H (I) 	Select Input
13H (J) 	Select Output
14H (K) 	Control Communications
15H (L) 	Console Output
16H (M) 	Get Input Status
17H (N) 	Compute Extent Size

92

4.3.2 	 Command Specifications

Command 0: Warm Boot

Passed Values 	 Returned Values

None 	 None

On receiving this command, the 6502 issues a reset pulse to
the Z80, initialises all internal tables for CPN, puts a startup
message on the screen, initialises the wire interface, and waits
for a "ready" byte from the Z80.

The 6502 then waits for further commands.

See description of Warm Boot for more information.

Command 1: Print Byte

Passed Values 	 Returned Values

ASCII character to be printed 	None

The 6502 waits for an ASCII character from the Z80, which is
added to the queue for printer output on the currently selected
printer stream.

93

Command 2: Open File

Passed Values 	 Returned Values

Cutdown FCB 	 Return code, file handle,
file opened.

The 6502 receives a cutdown FCB (as described earlier).
Depending on the disc qualifier, the appropriate disc directory
is searched for the first file with a name matching the FCB.

If a file is not found, a return code of FF hex is sent
back; otherwise a return code of 00 hex is sent back. 	The
information in the directory is then moved into a free slot in
the file handle table, and a byte giving the position in the
table is sent to the Z80, followed by the file name of the file
just opened.

Should the file handle table be full, the effect is the same
as if the file is not found.

If a File has not been closed since the last open command,
the effect is to return the same handle as the last open command.

Command 3: Close File

Passed Values 	 Returned Values

Cutdown FCB 	 Return code

A cutdown FCB is accepted from the Z80, and the first file
matching the FCB is located. 	The file handle table is then
scanned to find the entry corresponding to the matched file. On
finding this entry, the up-to-date information in the handle is
copied into the directory entry on disc, and the handle entry is
marked as free.

A return code of 00 hex indicates the file was successfully
closed, or had not been opened; FF hex indicates failure to close
the file.

94

Command 4: Search For First

Passed Values 	 Returned Values

Cutdown FCB 	 Return code, file name,
user number.

The directory of the specified disc is scanned sequentially until
a match is found for the cutdown FCB accepted from the Z80.

On finding a match, a return code of 00 hex is issued, and
the name of the matching file is sentback to the Z80, followed by
the user number of the file matched.

If a file is not found matching the cutdown FCB, a return code of
FF hex is returned.

Command 5: Search For Next

Passed Values 	 Returned Values

None 	 Return code, file name,
user number.

The directory of one or both discs is scanned sequentially,
starting from immediately after the last matched file, until a
match is found for the last cutdown FCB accepted from the Z80.

The codes returned and actions taken are the same as for
command 4 (Search For First Match).

95

Command 6: Delete File

Passed Values 	 Returned Values

Cutdown FCB 	 Return code

This command accepts a cutdown FCB from the Z80, finds all
matching files and removes them and all associated records and
file structure from the disc.

If one or more files were deleted, a return code of 00 hex
is issued by the 6502; otherwise a return code of FF hex is
issued.

Command 7: Read Random

Passed Values 	 Returned Values

File handle, record number 	 Return code, record

The Z80 sends the 6502 a file handle; the first open file
found that matches this is read from. If the handle does not
refer to an open file, the 6502 issues a hobnailed
boot. Otherwise, the 6502 reads a word (2 bytes pair) from the
Z80, and attempts to read the record at that position in the
file.

If the record exists, the 6502 sends back a return code of
00 hex, and then the 128 bytes of the record. If the record has
not yet been written, the return code 01 hex is issued, and no
record is passed.

96

Command 8: Write Random

Passed Values 	 Returned Values

File handle, record number, 	Return code
record.

The Z80 sends the 6502 a byte, indicating which file handle
to use. This is followed by a word (2 bytes) indicating a record
number. The 6502 responds either with 00 hex, indicating success,
in which case the Z80 sends 128 bytes of data to make up the
record; or with FF hex, indicating failure to write the record.

The writing of a record may cause several disc accesses,
because the file may have to be extended, and new space
allocated. 	The last disc access is overlapped with Z80
processing.

If the file handle supplied by the Z80 does not refer to an
open file, a hobnailed boot is issued.

Command 9: Make File

Passed Values 	 Returned Values

Cutdown FCB 	 Return code, file handle.

The Z80 sends a cutdown FCB to the 6502, specifying the name
of a file which it wishes to create. If a file with a matching
name already exists on the disc, or if the directory is full (it
holds up to 256 names), or there is insufficient room on the disc
for the file structure, a return code of FF hex is issued.
Otherwise the name of the file is entered in the directory of the
appropriate disc, and an empty file connected to this directory
entry.

When the file has been created, it is opened, and return
codes as for command 2 (Open File) are issued, along with (if
appropriate) a file handle.

Note that the name of the opened file is not returned by the
Make File command as it is in the Open File command.

97

Command 10: Rename File

Passed Values 	 Returned Values

Current cutdown FCB, 	 Return code
new cutdown FCB.

The 6502 accepts a cutdown FCB from the Z80, and then a
second cutdown FCB. 	A scan is made of the directories for the
current user and for user 0 to find files matching the first FCB.
Each of these files has its name changed to the second FCB, but
the attribute bits are not altered.

If one or more files can be renamed, a return code of 00 hex
is issued. 	If no matching files are found, a return code of FF
hex is issued.

Command 11 (B): Set File Attributes

Passed Values 	 Returned Values

New cutdown FCB 	 Return code

The 6502 accepts a cutdown FCB from the Z80. A scan is made
of the directories for the current user and for user 0 for files
matching the FCB, ignoring the values of the top bits. Each
matched file then has its directory name changed to that given by
the FCB. The attribute bits may be altered.

If one or more file names are matched, then a return code of
00 hex is given; if no matching files could be found then a
return code of FF hex is issued.

98

Command 12 (C): Compute File Size

Passed Values 	 Returned Values

Cutdown FCB 	 Return code, size (2 bytes)

The 6502 accepts a cutdown FCB from the Z80, and finds the
first matching filename in the directory. A return code of FF hex
is issued if no match was made. One of 01 hex is issued if the
file is full (i.e. it has length 64k records). Otherwise, a
return code of FF hex is issued, followed by a low-high pair of
bytes giving the virtual length of the file.

The virtual length of a file is defined as the record
immediately after the last record to be written; this will be the
same as the physical file size if the file has been sequentially
written. If, however, the file has been randomly written, with
some sequential disc space not allocated to the file, then the
file may contain fewer records than indicated. (If, for instance,
only the 4000th record has been written to, the file length would
be given as 4001, although only one record has been written.)

The virtual length of an empty file is zero.

Command 13 (D): Peek Into RAM

Passed Values 	 Returned Values

Address 	 (Address)

The Z80 sends a 2 byte address as a low/high pair of bytes.
The 6502 returns the contents of that location as a single byte.

99

Command 14 (E): Poke Into RAM

Passed Values 	 Returned Values

Address, data 	 None

The Z80 sends a 2 byte address, as low then high bytes,
followed by a single byte, which the 6502 pokes into that
location.

Command 15 (F): Call User Command

Passed Values 	 Returned Values

User command number

User commands are special commands which are provided for
Torch systems work. Each command is called by the Z80 issuing
the appropriate user command number.

The available user functions and their numbers are listed
below, in section 4.4 (Torch Base User Command Interface), which
also contains details of arguments and gives the specifications
of these functions.

100

Command 16 (0): Set/Get User Code

Passed Values 	 Returned Values

FF hex (get) 	 Current user code

or User code (set) 	 None

The Z80 sends a single byte to the 6502. If the byte is FF
hex, then the 6502 returns a byte giving the currently set user
number. Otherwise it sets the user number to the byte passed by
the Z80.

The initial user number after warm boot is zero.

Command 17 (H): Get Keyboard Status/Input

Passed Values 	 Returned Values

None 	 Return code, ASCII character

The 6502 returns either 00 hex, indicating no console input
is pending; or FF hex, followed by the ASCII code of the console
input pending.

Codes other than 00 hex or FF hex for the first byte are
reserved for future use.

101

Command 18 (I): Select Input

Passed Values 	 Returned Values

Console input code 	 None

The byte sent by the Z80 following this command indicates
which device should be treated as console input. The following
selections are available, all others causing undefined actions:

0: 	Read keyboard, and lose RS423 input. (The RS 423 buffer is
unaffected)

1: Lose keyboard input; if RS 423 buffer is empty, read from
RS 423 input; otherwise read from buffer, and buffer RS 423
input.

2: Read keyboard; add RS 423 input to buffer.

Command 19 (J): Select Output

Passed Values 	 Returned Values

Console output code 	 None

The byte sent by the Z80 following this command indicates
which device should be treated as console output. The following
selections are available, all others causing undefined actions:

Screen output 	 0
Printer output 	 Not yet defined
RS423 output
Special output 	 Not yet defined

102

Command 20 (K): Control Communications

Passed Values 	 Returned Values

Communication Command Code

This command is used to interface to the asynchronus
communications channel on the Torch Base peripheral processor. A
byte is sent following this command indicating what action should
occur.

The following communications commands are defined so far:

00 - Poll communications interface
01 - Perform interrupt action

After every normal CP/N command, a communications poll may
be made. 	This is controlled by a byte at some fixed offset from
the peripheral variable area.

For 	more information see TSMO3 - Torch Communications
Technical Manual.

Command 21 (1>: Console Output

Passed Values 	 Returned Values

ASCII character 	 None

The Z80 sends a byte to the 6502, which is sent down the
console output channel.

103

Command 22 (M): Get Input Status

Passed Values 	 Returned Values

None 	 Return Code

The 6502 returns a byte indicating the console status. If no
console input is pending, then 00 hex is issued; if input is
pending, then FF hex is issued.

Note that the console input may be redirected.

Command 23 (N): Compute Extent Size

Passed Values 	 Returned Values

File handle, extent number 	 Number of records

The Z80 sends the 6502 a file handle to indicate the file to
be used in the calculation. If the file handle does not refer to
an open file then a hobnailed boot is issued. Otherwise, the Z80
sends the 6502 an extent number, and the 6502 returns the number
of records in that extent (from 0 to 128).

104

4.4 	 TORCH BASE USER COMMANDS

4.4.0 	 Accessing User Commands

All user commands are accessed by calling Torch Base command
15 (Call User Command) and passing the 6502 the number of the
user function desired. Thus

tx 0FH, tx 00H

would call user command 0 (Read Block).

User commands may also be accessed through the BIOS vector,
by calling location FFC0, with the byte following the call
containing the call number, e.g:

CALL 	0FFC0H
DB 	00H

would also call User Command 0.

105

4.4.1 	 User Command List

0 	Read Block
1 	Write Block
2 	Select Disc
3 	Format Track
4
5 	Get Escape Status
6 	Move 40 Bytes
7 	Return Version Number
8 	Initialise Disc
9 	Unslave Disc Caches
10 (0A) 	Select Debug State
11 (0B) 	Get Character Hardware Definition
12 (0C) 	Call Osword
13 (0D) 	Read Scratchpad Byte
14 (0E) 	Write Scratchpad Byte
15 (F) 	Call Osbyte
16 (10) 	Toggle Printer
17 (11) 	Get Output Status
18 (12) 	Get Disc Error Count
19 (13) 	Reset Drive
20 (14) 	Get Disc Allocation Vector

106

4.4.2 	 User Command Specifications

User Command 0: Read Block

Passed Values 	 Returned Values

Block number 	 (Block)

The Z80 sends the 6502 a block number, and the 6502 returns
the contents of that block from the current disc, as a sequence
of 256 bytes. f the specified block number is invalid (i.e. does
not exist on the disc) then a hobnailed boot is issued instead.

For more information, see the Systems Manual.

User Command 1: Write Block

Passed Values 	 Returned Values

Block number, block 	 None

The Z80 sends the 6502 a block number to be written to. if
this number is invalid, then a hobnailed boot is issued. If it is
valid, then the next 256 bytes sent by the Z80 are written to
the specified block.

For more information, see the Systems Manual.

107

User Command 2: Select Disc

Passed Values 	 Returned Values

Drive code 	 None

The Z80 sends the 6502 a byte to indicate the drive to be
selected. 00 hex represents drive A, 01 drive B, and so on to 0F
hex which represents drive P on a 16 drive system.

User Command 3: Format Track

Passed Values 	 Returned Values

Track/side number 	 Return code

The Z80 sends the 6502 a byte, the least significant bit of
which contains the side number, and the other seven bits of which
contain the track number. If this value is illegal, a hobnailed
boot is issued. Otherwise, the 6502 attempts to format the
specified track; a return code of 00 hex indicates success. Other
return codes (modulo 32) are:

08 - 0E 	System error; recovery possible.
10 - 16 	Operator error.
18 - 1E 	Program/hardware error; generally fatal.

If a return code is over 32, then deleted data was found on
the disc.

For more information, see the Systems Manual.

108

User Command 4

Passed Values 	 Returned Values

None 	 None

Reserved for future 6502 software development. See the
Systems Manual.

User Command 6: Move 40 Bytes

Passed Values 	 Returned Values

Address 	 None

The Z80 sends the 6502 a low/high pair of bytes giving an
address in 6502 memory. The next 40 bytes of data, starting at
the given address, are moved 40 bytes towards high memory. If the
address value would cause any of the bytes to pass off the top
of memory, they are wrapped around to low memory.

This command is largely useful for the management of Prestel
double height lines.

109

User Command 7: Return Version Number

Passed Values 	 Returned Values

None 	 Version number

The 6502 returns a byte representing the version of the 6502
Torch Base ROM currently installed. Note that this is not
necessarily the same as the current version of CPN.

The byte 23 hex would be returned for version 2.3, 5A hex
for version 5.10, and so on.

User Command 8: Initialise Disc

Passed Values 	 Returned Values

None 	 Return code

All tracks on the current disc are formatted, and an empty
directory is written to track zero. A return code of 00 hex
indicates success. Other return codes (modulo 32) are:

08 - 0E 	System error; recovery possible.
10 - 16 	Operator error.
18 - lE 	Program/hardware error; generally fatal.

If a return code is over 32, then deleted data was found on
the disc.

For more information, see the Systems Manual.

110

User Command 9: Unslave Disc Caches

Passed Values 	 Returned Values

None 	 None

All disc information in the memory of the Torch Base
processor that is more recent than that on disc is written to the
disc. All disc information is then erased from Torch Base memory.

User Command 10: Select Debug State

Passed Values 	 Returned Values

Debug vector 	 None

The Z30 sends a single byte debug vector to the 6502, which
controls both the debug mode in use, and the usage of the numeric
keypad. If bit 7 is the most significant bit, then each bit has
the following effect:

Bit 	Effect

0 	 The top bit of the numeric key pad is set
1 	 The keys 1 - 9 move the cursor about the screen,

horizontally, vertically or diagonally.
`0' is defined as 'copy'.

2 	 Reserved for future expansion
3 	 Reserved For future expansion
4 	 Reserved for future expansion

When a disc is being used in a read or write
operation, the block number being used is printed
to the screen, with an 'r' for read or a 'w' for
write.

6 	 On a disc error, there is no hobnailed boot. (This
is reserved for test use only).

7 	 All bytes passed between the 6502 and the Z80
are traced on the screen.

A new debug vector cancels the effect of all previous debug
vectors.

111

User Command 11: Get Character Hardware Definition

Passed Values 	 Returned Values

ASCII character code 	 Character definition

The Z80 sends a byte to the 6502, giving the ASCII character
code whose definition is wanted. The 6502 returns a series of
eight bytes, which defines the pixels in each row of the
character from top to bottom. A bit that is set indicates that
the pixel is in the foreground colour; one that is cleared
indicates a pixel in the background colour.

Note that this call always returns the same results (i.e.
the default character definitions that have been
preprogrammed). To read any user defined characters, Osword Call
10 (Get Character Software Definition) should be used.

User Command 12: Call Osword

Passed Values 	 Returned Values

Osword call number

This interfaces to the Acorn Machine Operating System Osword
calls, the call being determined by the byte passed by the Z80.
For more information of Osword calls, and the ways of using them,
see section 4.5 <Osword Call Interface).

User Command 13: Read Scratchpad Byte

Passed Values 	 Returned Values

Byte number 	 (Byte)

The Z80 passes a byte number to the 6502, and this is used
as a displacement (from 0 to 3F hex) from the start of the
scratchpad <see section 4.5.1: The Torch Base Scratchpad). The
byte in this address is returned to the Z80 by the 6502.

112

User Command 14: Write Scratchpad Byte

Passed Values 	 Returned Values

Byte number, byte 	 None

A byte number is passed to the 6502, and this is used as a
displacement (from 0 to 3F hex) from the start of the scratchpad
(see section 4.5.1: The Torch Base Scratchpad). The 6502 then
accepts a byte, and stores it in the specified location in the
scratchpad.

User Command 15: Call Osbyte

Passed Values 	 Returned Values

Osbyte call number, x, y. 	 x, y.

The Z80 passes the 6502 an Osbyte call number, and then two
parameters for that call. The 6502 performs the call (see section
4.6: Osbyte Call Interface for a list of Osbyte calls and their
specifications) and then returns a two byte result. The result
may or may not contain useful information, depending on the call.

113

User Command 16: Toggle Printer

Passed Values 	 Returned Values

None 	 None

If the printing device was being used for output, it is no
longer; if it was not being used for console output, then it is
put in stream.

User Command 17: Get Output Status

Passed Values 	 Returned Values

None 	 Return Code

The 6502 issues a return code to the Z80; 00 hex indicates
that the printer queue or the RS423 buffer is full, and FF hex
indicates that they are both empty.

114

User Command 18: Get Disc Error Count

Passed Values 	 Returned Values

None 	 Disc Error Count

The 6502 sends the Z80 a count of the number of unsuccessful
attempts to access a disc that have been made. The count is
initialised on power up to an undefined value, and then
incremented for every unsuccessful access. The value is passed as
a two byte value, with the least significant byte first. Note
that if an error code of 01 hex is issued by the 6502 during a
disc access, the system will try to recover, and up to 10
attempts may be made to access the disc before the system stops.

User Command 19: Reset Drive

Passed Values 	 Returned Values

Disc vector 	 Return code

The Z80 passes the 6502 a bit map of discs to be reset. The
first byte received is used for drives A - H (low - high bits
respectively) and the second byte for drives I - P (low - high
again). A bit that is set indicates that the drive is to be
reset; one that is cleared shows the drive is not to be reset.

A return code is issued by the 6502: a value of 00 hex shows
that the reset(s) were successful, whilst one of FF hex shows
they were unsuccessful.

115

User Command 20: Get Disc Allocation Vector

Passed Values 	 Returned Values

Disc number 	 Allocation vector

The Z80 sends the 6502 a disc number, 00 hex corresponding
to disc A, through to 0F hex for drive P on a 16 drive system.
The 6502 returns a 32 byte value, being a representation of the
amount of space used on the disc. One bit is used to represent
16k bytes on the disc; the value returned will be a stream of
ones, indicating either that space is used, or was non-existent
on the disc (it being smaller than 4M bytes) and then a stream of
zeroes, indicating unused space.

Note that no information about disc layout is given or
implied.

116

4.5 	 OSWORD CALL INTERFACE

4.5.0 	 Accessing Osword Calls

Osword calls are accessed by User Command 12, which is
itsef accessed by the Torch Base Command 15. The call number is
passed by the Z80 to the 6502, after calling the above commands.
Thus to call Osword call nn, the following calls are made:

tx 0FH, tx 0CH, tx nnH.

Parameters for the Osword calls are passed in the scratchpad (for
more information, see the next section, The Torch Base
Scratchpad), and results (if any) are also returned in it. More
detailed information is given in the specification of each call.
When the call is made, the system sets the XY register pair of
the 6502 to point at the base of the scratchpad, and the Osword
call number is placed in register A.

117

4.5.1 	 The Torch Base Scratchpad

The 6502 has a 40H area of memory, known as the scratchpad,
which is used both for passing parameters to and from Osword
calls, and for use by programs running on the parasite processor.
Bytes are read from the scratchpad using user call 13, and are
written to the scratchpad using user call 14. Thus to read the
value mmH of the nnth byte of the scratchpad, the following calls
are made:

tx 0FH, tx 0DH, tx nnH, 	rx mmH.

And to write the value mmH to the nnth byte of the scratchpad,
the following calls are made:

tx 0FH, tx 0EH, tx nnH, tx mmH.

The first 16 bytes of the scratchpad are used for passing
Osword call parameters, and may be overwritten during any Osword
call. The allocation map of the scratchpad is as follows:

00 - F hex 	Osword parameter block
10 - 3E hex 	Available for general use

3F hex 	Reserved for use in help status

118

4.5.2 	 Osword Call List

00 	Pass Scratchpad to CLI
01 	Read Absolute Time
02 	Write Absolute Time
03 	Read Interval Time
04 	Write Interval Time
05
06
07 	Make Sound
08 	Define Envelope
09 	Read Pixel
0A 	Get Character Software Definition

0B 	Read Colour Relationship
0C
0D 	Read Graphics Cursor Position

119

4.5.3 	 Osword Call Specifications

Osword Call 0: Pass Scratchpad to CLI

Passed Values 	 Returned Values

Line to be interpreted

The contents of the scratchpad are passed to the Command
Line Interpreter (CLI). If there is a valid '* Command' in the
scratchpad, then the CLI will execute that command. Useful
commands are:

oBASIC 	 Enters B.B.C. Basic
*KEY 	 Redefines soft keys

(*FX 	 Calls Osbytei better done direct. See next
section.)

For more details of these commands, see section 4.9 ('*'
Commands).

Osword Call 1: Read Absolute Time

Passed Values 	 Returned Values

None 	 Absolute Time

This call reads the value of the absolute timer into bytes
00 - 04 of the scratchpad, with the least significant byte in
byte 00. The absolute timer is an internal clock on the 6502,
which takes the form of a counter, and counts upwards at a rate
of one digit per 10 ms. It is zeroed whenever the system has a
hard boot issued to it.

120

Osword Call 2: Write Absolute Time

Passed Values 	 Returned Values

Absolute Time 	 None

This call writes the value of bytes 00 - 04 of the
scratchpad to the absolute timer, byte 00 being the least
significant one. The absolute timer is an internal clock on the
4502, which takes the form of a counter, and counts upwards at a
rate of one digit per 10 ms. It is zeroed whenever the system has
a hard boot issued to it.

Osword Call 3: Read Interval Time

Passed Values 	 Returned Values

None 	 Interval Time

This call reads the value of the interval timer into bytes
00 - 04 of the scratchpad, with the least significant byte in
byte 00. The interval timer is an internal clock on the 6502,
which takes the form of a counter, and counts downwards at a rate
of one digit per 10 ms. It is zeroed whenever the system is
reset.

121

Osword Call 4: Write Interval Time

Passed Values 	 Returned Values

Absolute Time 	 None

This call writes the value of bytes 00 - 04 of the
scratchpad to the interval timer, byte 00 being the least
significant one. The interval timer is an internal clock on the
6502, which takes the form of a counter, and counts downwards at
a rate of one digit per 10 ms. It is zeroed whenever the system
is reset.

()sword Call 5

This call is reserved for future expansion.

Osword Call 6

This call is reserved for future expansion.

122

Osword Call 7: Make Sound

Passed Values 	 Returned Values

Sound Parameters 	 None

8 bytes are read from the scratchpad, and used to define a
sound. They come as 4 low/high byte pairs, (known hereafter as
words) and are used respectively (from byte 00 of the scratchpad)
to define channel, amplitude/envelope, pitch and duration.

The sound parameters define the sound for one of three sound
generating channels (numbered 1 -3) or a noise/pulse wave channel
(numbered 0). Which channel is defined is indicated by the least
significant hex digit (4 bits) of the channel word, which should
be in the range 0 -3. Up to four definitions of sound may be
queued in the sound buffer for each channel, in addition to the
sound being played. The next least significant digit (byte 0, top
bits) determines whether the sound is queued; if it is a one,
then the sound buffer is flushed and the sound immediately
output; if it is a zero, then the definition is queued. The
second most significant digit (byte 1, low bits) is used for
chord synchronisation, and indicates the number of other sound
channels having the same value of this digit which must be ready
before the chord was played. It should have a value between 0
(the normal default) and 3. The most significant digit (byte 1,
top bits) is used to send a dummy sound to the channel, so that
the previous sound will continue; this is only needed for some
software applications. A one indicates that the note is a dummy,
a zero that it is to be played.

Normally, only the channel is indicated; the other commonly
used digit is that for chord synchronisation.

The amplitude word is taken as a five bit 2's complement
number, the value being in the least significant bits (byte 2,
low bits). A number from -16 to -1 is used for a note of constant
pitch and amplitude to indicate the amplitude. A number from 0 to
15 is used to identify an envelope (See Osword call 8; Define
Envelope) for use with sounds of varying pitch and amplitude.

The pitch word is a single byte value between 0 and 255,
contained in the least significant byte (byte 4). A pitch of 0
represents the B 13 semitones below middle C. The pitch increases
at a rate of one quarter semitone per digit. For the noise
channel (channel 0), if bit 2 is set then it will produce grey
noise; otherwise it produces a pulse wave. Bits 0 and 1 control
the frequency of the wave; if they are both set the frequency
will be linked to that of channel 1.

123

Finally, the duration is a single byte value between 0 and
255, also contained in the least significant byte. A duration of
255 will give a note without end; otherwise, the value is in
units of 50ms.

Osword Call 8: Define Envelope

Passed Values 	 Returned Values

Envelope Parameters 	 None

The 6502 is passed 14 bytes in the scratchpad, and defines
both a frequency envelope and an amplitude envelope from them.

Byte 0 of the scratchpad is used to define the envelope
number (from 0 to 15), as used in the Make Sound call (see
above). Byte 1 is used for the time interval (from 1 to 127) at
which the envelopes are updated, in units of 10ms. If the top bit
of this value is set, then the frequency envelope is retriggered
after each cycle until the amplitude envelope reaches zero, or
the duration of the note expires; if it is cleared, then the
frequency envelope is triggered only once at the beginning of
each note.

The next six bytes (2 to 7) define the frequency envelope,
in the form of three pairs of bytes giving a rate of change of
pitch value (from -127 to 127, in 2's complement), and a duration
over which this change occurs (from 0 to 255 of the time units
defined by byte 1; see above). The rate of change is given in
bytes 3, 4 and 5, and the time intervals in bytes 6, 7 and 8;
these being for the first, second and third parts of the envelope
respectively.

The last six bytes define the amplitude envelope. Bytes 12
and 13 define the amplitude level at two points in the envelope,
which we shall call level 1 and level 2. Byte 8 defines the rate
of rise to level 1, and byte 9 the rate (from -127 to 127) at
which level 2 is reached. Byte 10 defines the rate of fall (from
-127 to 0) from when level two is reached to when the sound
duration (as given in Osword call 7: Make Sound) expires; and
byte 11 describes the rate of fall of amplitude after the sound
duration ends (assuming a new note does not cut off the old one).

124

Osword Call 9: Read Pixel

Passed Values 	 Returned Values

X, Y coordinates 	 Pixel value

X and Y coordinates are passed as a low/high pair of bytes,
the X value being at byte 0 of the scratchpad and the Y value at
byte 2. The logical colour of the specified pixel is returned in
byte 4 of the scratchpad.

If an invalid X, Y address is given then the value FF hex is
returned.

Osword Call 10: Get Character Software Definition

Passed Values 	 Returned Values

ASCII character code 	 Character definition

A character code is passed in byte 0 of the scratchpad. The
character representation used for that code is returned as a
series of eight bytes (1 to 8). Byte 1 represents the top row
from left to right, and so on to byte 8 which represents the
bottom row from left to right. A set bit in each byte indicates
that the corresponding pixel is in the foreground colour, and a
clear bit that the pixel is in the background colour.

125

Osword Call 11: Read Colour Relationship

Passed Values 	 Returned Values

Logical colour 	 Corresponding physical colour

A logical colour code is passed to byte 0 of the scratchpad,
and is made modulo the number of colours in the current mode. The
corresponding physical colour code is returned in byte 1, these
being:

0 	Black 	 8 	Flashing Black/White
1 	Red 	 9 	Flashing Red/Cyan
2 	Green 	 10 Flashing Green/Magenta
3 	Yellow 	 11 	Flashing Yellow/Blue
4 	Blue 	 12 	Flashing Blue/Yellow
5 	Magenta 	13 Flashing Magenta/Green
6 	Cyan 	 14 	Flashing Cyan/Red
7 	White 	 15 	Flashing White/Black

Bytes 2, 3 and 4 are zeroed; they are reserved for future
expansion.

Osword Call 12

This call is reserved for future expansion.

126

Osword Call 13: Read Graphics Cursor Position

Passed Values 	 Returned Values

None 	 Last x, y, current x, y.

The last two x, y positions of the graphics cursor are
returned in the scratchpad as 4 low/high byte pairs. The point
visited prior to its current position is returned in bytes 0 to
3, and its current position in bytes 4 to 7.

Because the screen has coordinates of 1280 x 1024, but the
cursor may only be addressed over a maximum range of 640 x 256,
this function rounds values. The x value is divisible by 2, and
the y value by 4, with all values rounded down.

127

4.6 	 OSBYTE CALL INTERFACE

4.6.0 	 Accessing Osbyte Calls

Osbyte calls are accessed by User Command 15, which is
itsef accessed by the Torch Base Command 15. The call number is
passed by the Z80 to the 6502, after calling the above commands.
Thus to call Osbyte call nn, the following calls are made:

tx 0FH, tx 0FH, tx nnH.

Parameters for the Osbyte calls are passed in the next two bytes,
in the order x, y. Osbyte calls always issue two result bytes to
the Z80; these may contain either useful information or (for
calls not issuing results) undefined values. Therefore, the Z80
should always then reply:

rx xxH, rx yyH.

When the call is made, the system sets register A of the
6502 to the call number, register X to the X parameter, and
register Y to the Y parameter.

Osbyte calls may also be accessed from either CCCP (the
normal Torch command line interpreter) or from the Acorn CLI
(used when the computer is in BBC Basic mode, or by Osword call
0) by using the command:

*FX n, x, y.

When only one parameter has to be passed, the Y parameter may be
omitted from the *FX command. Note that this command is of no use
where the Osbyte call returns a value, since it may not be
accessed by the *FX command.

128

4.6.1 	 Osbyte Call List

	

0 	Return Version Number

	

2 	Select Input
	3 	Select Output

	

4 	Control Cursor Edit

	

5 	Select Printer

	

6 	Set Printer Ignore Character

	

7 	Set Rx Baud Rate

	

8 	Set Tx Baud Rate

	

9 	Set Flash Mark Period

	

10 	Set Flash Space Period

	

11 	Set Auto Repeat Delay

	

12 	Set Auto Repeat Period

	

15 	Flush Buffers

	

16 	Select Analogue to Digital Channels

	

17 	Force Analogue to Digital Conversion

	

18 	Reset Soft Keys

	

21 	Flush Buffer

	

128 	Read Analgue to Digital Channel

	

132 	Get Start of Screen Memory

	

133 	Get Start of Screen Memory for Mode

	

134 	Read Cursor Position

	

135 	Read Character at Cursor Position

	

138 	Write to Buffer

	

145 	Read from Buffer

	

188 	Get Current Analogue to Digital Conversion Channel

	

18i► 	Get Number of Analogue to Digital Conversion Channels

	

220 	Set Escape Character
221-228 Get/Set Osvariable

129

4.6.2 	 Osbyte Call Specifications

Osbyte Call 0: Return Version Number

Passed Values 	 Returned Values

X= 0 	 Undefined
Y= Undefined

or

X-= 0 	 X= Version Number
Y= Undefined 	 Y= Undefined

A message is put to the screen, giving the version of the
Acorn M.O.S. (Machine Operating System) installed. If the X
parameter is non zero on entry, then the version number is given
in the X parameter on leaving. It is passed as two hex digits,
equivalent to the corresponding decimal values; e.g. 25 hex
represents version 2.5, 3A hex represents version 3.10.

130

Osbyte Call 2: Select Input

Passed Values 	 Returned Values

X= Console input code 	 Undefined
Y= Undefined

The X parameter indicates which device should be treated as
console input. The following selections are available, all others
causing undefined actions:

0: 	Read keyboard, and lose RS423 input. (The RS 423 buffer is
unaffected)

1: Lose keyboard input; if RS 423 buffer is empty, read from
RS 423 input; otherwise read from buffer, and buffer RS 423
input.

2: Read keyboard; add RS 423 input to buffer.

There is no useful value returned.

Osbyte Call 3: Select Output

Passed Values 	 Returned Values

X= Console output code 	 Undefined
Y= Undefined

The X parameter indicates which device should be treated as
console output. The following selections are available, all
others causing undefined actions:

Screen output 	 0
Printer output 	 Not yet defined
RS423 output
Special output 	 Not yet defined

There is no useful value returned.

131

Osbyte Call 4: Control Cursor Edit

Passed Values 	 Returned Values

X= Control Code 	 Undefined
Y= Undefined

The effect of the cursor controls is set by the control code
given. The following values have the following effects, with all
other values causing an undefined action:

0 	Enables cursor editing

1 	Disables cursor editing. The cursor control keys will
issue the following character codes:

Copy 	87 hex
Left 	88 hex
Right 	89 hex
Down 	SA hex
Up 	8B hex

2 	Makes the cursor control keys act as extra soft keys,
with the following key numbers:

Copy 	11
Left 	12
Right 	13
Down 	14
Up 	15

There is no useful value returned.

132

Osbyte Call 5: Select Printer

Passed Values 	 Returned Values

X= Printer code 	 Undefined
Y= Undefined

The printer output specified by the X parameter is used for
all printing until the next hard reset. The printer codes are:

0 	Sink (i.e. not printed)
1 	Centronics Port
2 	RS 423 Port

There is no useful value returned.

Osbyte Call 6: Set Printer Ignore Character

Passed Values 	 Returned Values

X= Character 	 Undefined
Y= Undefined

The character code passed as the X parameter is not sent to
the printer stream either when using Torch VDU control codes, or
when reflecting output to the printer by pressing control-P. It
has no effect on any CPN list functions. This is particularly
useful if, say, your printer generates a <linefeed> after every
<carriage return> it receives.

133

Osbyte Call 7: Set Rx Baud Rate

Passed Values 	 Returned Values

X= Rate code 	 Undefined
Y= Undefined

The Rx Baud rate for the RS 423 Port is set to the value
given by the X parameter. Valid codes are:

1 	75 Baud

2

	150 Baud 2
3 300 Baud
4 	1200 Baud
5 	2400 Baud
6 	4800 Baud
7 	9600 Baud
8 	19200 Baud

All other values cause an undefined action. There is no
useful value returned.

Osbyte Call 8: Set Tx Baud Rate

Passed Values 	 Returned Values

X= Rate code 	 Undefined
Y= Undefined

The Tx Baud rate for the RS 423 Port is set to the value
given by the X parameter. Valid codes are:

1 	75 Baud
2 	150 Baud
3 	300 Baud
4 	1200 Baud
5 	2400 Baud
6 	4800 Baud
7 	9600 Baud
8 	19200 Baud

All other values cause an undefined action. There is no
useful value returned.

134

Osbyte Call 9: Set Flash Mark Period

Passed Values 	 Returned Values

X= Mark period 	 Undefined
Y= Undefined

Physical Colour Codes 8 to 15 produce a screen of flashing
colours, these being (for physical colour N) the physical colours
N-8 and 8-N+7. This call sets the time (in centiseconds) spent in
colour N-8 (the first one given in lists of colour codes) to the
value of the X parameter.

There is no useful value returned.

Osbyte Call 10: Set Flash Space Period

Passed Values 	 Returned Values

X= Space period 	 Undefined
Y= Undefined

Physical Colour Codes 8 to 15 produce a screen of flashing
colours, these being (for physical colour N) the physical colours
N-8 and 8-N+7. This call sets the time (in centiseconds) spent in
colour 8-N+7 (the second one given in lists of colour codes) to
the value of the X parameter.

There is no useful value returned.

135

Osbyte Call 11: Set Auto Repeat Delay

Passed Values 	 Returned Values

X= Delay period 	 Undefined
Y= Undefined

The delay before a key auto repeats while being depressed is
set to the value (in centiseconds) given by the X parameter. A
value of zero disables the auto repeat facility.

There is no useful value returned.

Osbyte Call 12: Set Auto Repeat Period

Passed Values 	 Returned Values

X= Period time 	 Undefined
Y+ Undefined

The period with which a key auto repeats while being
depressed is set to the value (in centiseconds) given by the X
parameter. A value of zero resets the auto repeat delay and
period to their normal default values.

There is no useful value returned.

136

Osbyte Call 15: Flush Buffers

Passed Values 	 Returned Values

X= Buffer Code 	 Undefined
Y= Undefined

The buffers given by parameter X are flushed. Valid codes
are:

0 	All buffers
1 	Currently selected input buffer.

Any other value has an undefined effect. Values from 2 to
127 are reserved for future expansion: from 128 upwards is
available for user applications.

There is no useful value returned.

Osbyte Call 16: Select Analogue to Digital Channels

Passed Values 	 Returned Values

X= Number of channels 	 Undefined
Y= Undefined

On entry, the X parameter specifies the number of channels-
on which analogue to digital sampling is to occur. If a value of
zero is specified, then sampling is suppressed; otherwise the
given number of channels are activated (to a maximum of 4).

There is no useful value returned.

137

Osbyte Call 17: Force Analogue to Digital Conversion

Passed Values 	 Returned Values

X= Channel number 	 Undefined
Y= Undefined

The specified channel (from 1 to 4) has an analogue to
digital conversion forced on it. Osbyte Call 128 (Read Analogue
to Digital Conversion) may be used to test when a value is ready,
by passing it an X parameter of zero. If conversion is
incomplete, then the returned Y parameter will be zero. When
conversion is completed, the channel number is returned in the V
parameter, and the value may then be read.

There is no useful value returned by this call.

Osbyte Call 18: Reset Soft Keys

Passed Values 	 Returned Values

Undefined 	 Undefined

All the soft keys (including 0 to 3, which are normally
preset) are redefined to produce a null string (no character
codes).

There is no useful value returned.

138

Osbyte Call 21: Flush Buffer

Passed Values 	 Returned Values

X= Buffer code 	 Undefined

The buffer specified by the buffer code is flushed. Valid
buffer codes are:

0 	Keyboard 	 5 0 	Sound channel 1
1 	RS 423 input 	 6 	Sound channel 2
2 	RS 423 output 	 7 	Sound channel 3
3 	Printer 	 8 	Speech
4 	Sound channel 0

There is no useful value returned.

139

Osbyte Call 128: Read Analogue to Digital Channel

Passed Values 	 Returned Values

X= Channel number 	 Channel Value
Y= Undefined

or
X= 0 	 X= Fire button status
Y= Undefined 	 Y= Last channel converted

or
X= Buffer code 	 X= Full / empty slots
Y= Undefined 	 Y= Undefined

On entry, the X parameter may either have the value of zero,
or a valid channel number (1 to 4), or a buffer code (-1 to -9).
If it is a channel number, then the current value of that channel
is returned as a low/high pair in the X and Y parameters
respectively.

If X is zero, then the status of the fire buttons is
returned in bits 0 and 1 of the X value; a set bit shows the
button was depressed, and a clear bit that it was not depressed.
Bits 2 to 7 are undefined. The Y parameter returns the number of
the channel to last be converted (in the range 0 to 4).

f X is negative, then information is returned in the X
parameter giving space allocation in the buffer. For output
buffers, the number of empty slots is given; for input buffers,
the number of characters present is returned. Valid buffer codes
are:

-1 	Keyboard 	 -6 	Sound channel 1
-2 	RS 423 input 	 -7 	Sound channel 2
-3 	RS 423 output 	 -8 	Sound channel 3
-4 Printer 	 -9 Speech
-5 	Sound channel 0

Osbyte Call 132: Get Start of Screen Memory

Passed Values 	 Returned Values

Undefined 	 Start of screen memory

The start of screen memory for the current screen mode is
returned as a low/high byte pair in parameters X and
respectively. (Top of screen memory is always 7FFF hex.)

140

Osbyte Call 133: Get Start of Screen Memory for Mode

Passed Values 	 Returned Values

X= Mode 	 Start of screen memory
Y= Undefined

The start of screen memory for the mode given by parameter X
is returned as a low/high byte pair in parameters X and Y
respectively. (Top of screen memory is always 7FFF hex.) If the X
parameter does not have a value from 0 to 7, then the action of
this call is undefined.

Osbyte Call 134: Read Text Cursor Position

Passed Values 	 Returned Values

Undefined 	 X= X coordinate
Y= Y coordinate

The X and Y parameters returned give the X and Y coordinates
respectively of the current text cursor position on the screen.
The coordinates are given relative to the current window of text
(see Section 4.8 on Character Output), with the top left corner
specified as 0,0.

Osbyte Call 135: Read Character at Cursor Position

Passed Values 	 Returned Values

Undefined 	 X= Character code
Y= Undefined

The charater code of the character at the current text
cursor position is returned. If the character is one not
recognised by the Acorn M.O.S, then a value of zero is returned.

141

Osbyte Call 138: Write To Buffer

Passed Values 	 Returned Values

X= Buffer code 	 Undefined
Y= Character code

The character code given as the Y parameter is added to the
specified buffer. Valid buffer codes are:

0 	Keyboard Sound channel 1
1 	RS 423 input 	 6 	Sound channel 2
2 	RS 423 output 	 7 	Sound channel 3
3 	Printer 	 8 	Speech
4 	Sound channel 0

Note that there is no way provided in this call to determine if
the buffer is full; Osbyte Call 128 may be useful for this
purpose.

There is no useful value returned.

Osbyte Call 145: Read From Buffer

Passed Values 	 Returned Values

X= Buffer code 	 X= Undefined
Y= Undefined 	 Y= Character code

The next character is read from the specified buffer, and
returned as the Y parameter. Valid buffer codes are:

0 	Keyboard Sound channel 1
1 	RS 423 input 	 6 	Sound channel 2
2 	RS 423 output 	 7 	Sound channel 3
3 	Printer 	 8 	Speech
4 	Sound channel 0

Note that there is no way of determining when a buffer is empty
with this function; Osbyte Call 128 may be of use for this
purpose.

142

Osbyte Call 188: Get Current Analogue to Digital Channel

Passed Values 	 Returned Values

Undefined 	 X= Current channel
Y= Undefined

The currently selected analogue to digital channel is
returned as the X parameter.

Osbyte Call 189: Get Number of Analogue to Digital Channels

Passed Values 	 Returned Values

Undefined 	 X= Number of channels
Y= Undefined

The number of analogue to digital channels currently
selected by Osbyte call 16 (Select Analogue to Digital Channels)
is returned as the X parameter. The value lies in the range 0 to
4.

143

Osbyte Call 220: Set Escape Character

Passed Values 	 Returned Values

X= Character code 	 Undefined
Y= Undefined

The character indicated by the X parameter is redefined to
produce the character code 1B hex (escape) and to generate the
escape event. The escape key will also still have this effect.

If any characters had been previously set using this call,
they are reset to produce their normal character codes.

144

Osbyte Calls 221-228: Get/Set Osvariable

Passed Values 	 Returned Values

See below 	 X= Old value of Osvariable
Y= Undefined

There are 8 Osvariables in the system which are used to
determine the handling of output codes 80 to FF hex. Each
Osvariable is controlled by one Osbyte call, and refers to a
block of 16 codes, as follows:

221: C0 - CF 	 225: 80 - 8F
222: D0 - DF 	 226: 90 - 9F
223: E0 EF 	 227: A0 AF
224: F0 - FF 	 228: B0 - BF

Each Osvariable has the following effects on its group of output
codes, depending on its value:

0: 	The group of codes is disabled.
1: 	The code is produced unchanged (the normal default)

Others: 	The code produced is the value of the Osvariable, plus
the value of the bottom nibble (four bits) of the input
code.

The Osvariable is altered as follows by this call:

Osvariable := (Osvariable AND Y parameter) XOR X parameter

and the old value of the Osvariable is returned as the X
parameter. There is no useful value returned as the Y parameter.

An Osvariable is best written to by passing the new value as
the X parameter, and Y as zero. It may be read without alteration
by passing X as 00 hex, and Y as FF hex.

145

4.7 	 ACORN M.O.S. INTERFACE

Interfaces are provided to some of the commands in the Acorn
Machine Operating System. This section should be skipped by those
not familiar with the Acorn M.O.S, since all these features are
documented elsewhere. This section merely cross-references the
interface.

WRCH 	 This is provided by Torch Base Command 21, i.e.

tx 15H, tx ch,

where ch is the character to be printed.

Osword 	 See the section 'Osword Call Interface' for full
details of this interface.

Osbyte 	 See the section 'Osbyte Call Interface' for full
details of this interface.

Oscli 	 This command is interfaced by Osword call 0; see
the section 'Osword Call Interface' for full
details.

Scratchpad 	See the section 'Osword Call Interface' for full
details of this interface.

146

4.8 	 CHARACTER OUTPUT

4.8.0 	 Character Output

This section details the effect of passing control
characters to the screen. This may be done either via CPN, or the
BIOS vector, or the Torch Base Command Interface, or from the
CCCP by the VDU command. The control characters generally produce
effects accessible from Torch VDU control codes; where this is
so, the Torch SUPERVDU program should be used.

From CPN, control characters may be output either by
function 4 (Raw Screen Output) or by function 6 (Direct Console
I/O). Two other functions (2: Screen Output and 9: Print String)
are available for output to the screen, but these trap control
characters and interpret them, as described in their
specification.

From the BIOS vector, a character is sent by placing it in
Z80 register C, and making a call to location FFD8 hex, e.g:

LD 	C, 	1B
CALL 	0FFD8

would send <escape> to the screen without interpretation.

From the Torch Base Command Interface, a character may be
sent direct to the screen by using command 21 (see specification
in section 'Torch Base Command Interface').

From CCCP, characters may be output direct to the screen by
the VDU command. The values following the command are sent direct
to the screen, e.g:

VDU 3, 4, 0, 10, 27

would send 3, 4, 0, 10, and 27 in that order to the screen.

Note that different control characters will call for varying
numbers of parameters. All parameters called for should be sent,
even if they are irrelevant, or have a null value.

147

	

4.8.1 	 Output Code List

The list below gives the following information: 'number'
gives the decimal ASCII character code involved, 'hex' gives the
hex value of the ASCII character code, 'ctrl' gives the ASCII
character which, when pressed with control held down, will
produce the code given above, 'bytes' give the number of bytes of
parameters needed, and 'function' gives the function name.

Specifications of each command follow this list.

Number Hex Ctrl Bytes 	Function

	

0 	00 	@ 	0 	 <null>

	

1 	01 	A 	1 	 Send Character to Printer

	

2 	02 	B 	0 	 Enable Printer
	3 	03 	C 	0 	Disable Printer

	

4 	04 	D 	0 	 Separate Cursors
	5 	05 	E 	0 	Join Cursors

	

6 	06 	F 	0 	 Enable VDU Driver

	

7 	07 	G 	0 	 Ring Bell

	

8 	08 	H 	0 	 Cursor Left

	

9 	09 	I 	0 	 Cursor Right

	

10 	0A 	J 	0 	 Cursor Down

	

11 	OB 	K 	0 	 Cursor Up

	

12 	0C 	L 	0 	 Clear Text Area

	

13 	OD 	M 	0 	 Move Cursor to Start of Line

	

14 	0E 	N 	0 	 Page Mode On

	

15 	0F 	0 	0 	 Page Mode Off

	

16 	10 	P 	0 	 Clear Graphics Area

	

17 	11 	Q 	1 	 Define Text Colour

	

18 	12 	R 	2 Define Graphics Colour

	

19 	13 	S 	5

5

	 Define Colour Relationship

	

20 	14 	T 	0 	 Reset Colour Relationships

	

21 	15 	U 	0 	 Disable VDU Driver

	

22 	16 	V 	1 	 Select Mode
23
	23 	17 	W 	9 	Define Character

	

24 	18 	X 	8 	 Define Graphics Window

	

25 	19 	Y 	5 5 	Plot

	

26 	1A 	Z 	0 	 Reset Windows

	

27 	1B 	C 	0 	 <escape>

	

28 	1C 	\ 	4 	 Define Text Window

	

29 	1D 	3 	4 	 Define Graphics Origin

	

30 	1E 	A 	 0 	 Home Text Cursor

	

31 	1F 	_ 	2 	 Position Text Cursor

	

127 	7F 	 0 	 Delete Character

148

4.8.2 	 Output Code Specifications

Output Code 0: <null>

This code has no effect on the screen display.

Output Code 1: Send Character to Printer

Passed Values: ASCII Character

The specified character is sent to the printer only, and is
therefore not displayed on the screen.

Output Code 2: Enable Printer

Passed Values: None

All characters that are sent to the VDU driver are also sent
to the printer. This continues until control character 03 hex is
sent to the VDU driver (see below).

149

Output Code 3: Disable Printer

Passed Values: None

Characters that are sent to the VDU driver are not sent to
the printer after this code has been issued, until a code of
either 1 or 2 is sent to the VDU driver (see above).

Output Code 4: Separate Cursors

Passed Values: None

The graphics and text cursors are made independent in
operation. Text may only be written to the text area, using the
text cursor.

This is the normal default state.

Output Code 5: Join Cursors

Passed Values: None

This code causes the text cursor and graphics cursor to be
dependent. The two cursors become one, at the screen position of
the graphics cursor. This cursor may be moved using output code
25 <Plot) to any position on the graphics area, and text written
there. As a result, all scrolling is disabled.

150

Output Code 6: Enable VDU Driver

Passed Values: None

This code causes all characters to be sent to the VDU
driver, usually after the use of output code 21 (Disable VDU
Driver).

Output Code 7: Ring Bell

Passed Values: None

A short 'beep' sound is added to the sound queue. It is also
sent to the printer.

Output Code 8: Cursor Left

Passed Values: None

This character (backspace) moves the text cursor back one
character; if it reaches the start of a line, then it is moved
onto the previous line, and if it reaches the start of the text
screen, then the text is scrolled down one line. The code has no
effect if the start of text is reached.

151

Output Code 9: Cursor Right

Passed Values: None

This character (tab) moves the text cursor forward one
character; if it reaches the end of a line, then it is moved onto
the next line, and if it reaches the end of the text screen, then
the text is scrolled up one line. The code has no effect if the
end of text is reached.

Output Code 10: Cursor Down

Passed Values: None

This character (linefeed) moves the text cursor down one
character line; if it reaches the bottom of the text screen, then
the text is scrolled up one line. The code has no effect if the
last line of text is reached.

Output Code 11: Cursor Up

Passed Values: None

The text cursor is moved up one character line; if it
reaches the top of the text screen, then the text is scrolled
down one line. The code has no effect if the first line of text
is reached.

152

Output Code 12: Clear Text Area

Passed Values: None

The current text area (by default the whole screen) is
cleared and set to the current text background colour (logical
colour 7 modulo number of colours in mode). The text cursor is
homed to the top left corner of the text area.

Output Code 13: Move Cursor to Start of Line

Passed Values: None

This character (carriage return) moves the text cursor to
the left hand edge of the current line. It remains in the text
area (which defaults to the whole screen).

Output Code 14: Page Mode On

Passed Values: None

This switches on page mode. Whenever scrolling is to be
attempted, the shift key is scanned; if it is depressed, then
scrolling takes place; otherwise, scrolling waits until it is
depressed.

153

Output Code 15: Page Mode Off

Passed Values: None

This code sets page mode off, and scrolling takes place
continually.

Output Code 16: Clear Graphics Area

Passed Values: None

The graphics area of the screen is cleared and set to the
current graphics background colour. The graphics cursor is moved
to the bottom left hand corner of the screen.

Output Code 17: Define Text Colour

Passed Values: Colour code

The text foreground and background colours may be set using
this code. The colour code, modulo the number of colours
available in the current mode, gives a logical colour. If the
initial value was less than 128, then the foreground is set to
the resultant logical colour; otherwise, it is the background
which is changed.

For default logical to physical colour code mappings, see
Code 20 (Reset Colour Relationships).

154

Output Code 18: Define Graphics Colour

Passed Values: Colour handling, colour code

The second byte passed after this code is used in the same
way as in output code 17 (Define Text Colour), but as modified by
the first byte. The first byte has the following effects:

0 	Plot specified colour
1 	OR specified colour with that already there
2 	AND specified colour with that already there
3 	Exclusive OR specified colour with that already there
4 	Plot inverse of colour already there.

f the Graphics area is empty, then the colour already there
will be the graphics background colour.

Output Code 19: Define Colour Relationship

Passed Values: logical colour code, physical colour code, 0, 0, 0

The given logical colour code, modulo the number of colours
in the current mode, is redefined for the current mode of screen,
according to the physical colour code given (see output code 17:
Define Text Colour). All colour relationships apply only to the
current mode, and are cleared when the mode is changed.

It should be noted that redefining logical colour 7 will
always set the foreground colour, and redefining logical colour 0
will select the background colour.

155

Output Code 20: Reset Colour Relationships

Passed Values: None

The default text and graphics foreground and background
colours are set, and the normal default logical to physical
colour relationship is set up. These are:

Two colour modes 	 Sixteen colour modes

0 = Black 	 0 = Black
1 = White 	 1 = Red

2 = Green
3 = Yellow

Four colour modes 	 4 = Blue
5 = Magenta

0 = Black 	 6 = Cyan
1 = Red 	 7 = White
2 = Yellow 	 8 = Flashing Black/White
3 = White 	 9 = Flashing Red/Cyan

10 = Flashing Green/Magenta
11 = Flashing Yellow/Blue
12 = Flashing Blue/Yellow
13 = Flashing Magenta/Green
14 = Flashing Cyan/Red
15 = Flashing White/Black

Output Code 21: Disable VDU Drivers

Passed Values: None

This stops any of the output codes affecting the screen,
except for output code 6 (Enable VDU Drivers).

156

Output Code 22: Select Mode

Passed Values: Mode

The mode given, modulo 8, is selected. Default logical to
physical colour relationships are restored, the screen is
cleared, and the cursor homed to the top left of the screen.

Available modes are:

0: 	2 colours; 80 columns x 32 lines text; 640 x 256 graphics.

1: 4 colours; 40 columns x 32 lines text; 320 x 256 graphics.

2: 16 colours; 20 columns x 32 lines text; 160 x 256 graphics.

3: 3:	2 colours; 80 columns x 25 lines text; no graphics.

4: 2 colours; 40 columns x 32 lines text; 302 x 256 graphics.

5: 4 colours; 20 columns x 32 lines text; 160 x 256 graphics.

6: 2 colours; 40 columns x 25 lines text; no graphics.

7: Teletext display mode; 40 columns x 25 lines. The character
set is different to that normally used on the Torch, and
characters may not be software defined.

Output Code 23: Define Character

Passed Values: Character code, row representations.

The ASCII character code specified is defined to produce the
character given in the following 8 bytes. If a code from 0 to 31,
or 127 is given then the code has no effect. Otherwise, each
following byte represents a row of the character, with a set bit
indicating a pixel of the foreground colour, and a clear bit
indicating a pixel of the background colour. The first byte is
the top row, the eighth byte is the bottom row; all rows read
from left to right.

157

Output Code 24: Define Graphics Window

Passed Values: Left x, bottom y, right x, top y.

A graphics window is set up, and the graphics cursor homed
in it. The graphics cursor may not be moved outside the window,
nor may any graphics operations take place outside it.

The window is specified by four low/high byte pairs,
specifying (respectively) the left hand edge x coordinate, the
bottom edge y coordinate, the right hand edge x coordinate, and
the top edge y coordinate.

158

Output Code 25: Plot

Passed Values: Plot code, x coordinate, y coordinate.

Plot is used to draw points, lines and triangles to the
screen, according to the plot code given. These are given in the
list below:

0 	 Move relative to last point

1 	 Draw line relative to last point in graphics foreground
colour

2 	 Draw line relative to last point in logical inverse
colour

3 	 Draw line relative to last point in graphics background
colour

4 	 MOVE to absolute position

Draw line from last point to absolute position in
graphics foreground colour

6 	 Draw line from last point to absolute position in
logical inverse colour

7 	 Draw line from last point to absolute position in
graphics background colour.

8-15 	As 0-7, but with the last pixel on the line not filled.

16-23 	As 0-7, but with a dotted line instead of a solid one.

24-31 	As 0-7, but with a dotted line, and with the last pixel
on the line not filled.

64-71 	As 0-7, but only the last pixel on any line is filled.

80-87 	As 0-7, but plot and fill a triangle. The last two
points visited are joined with the specified point to
form a triangle, and it is filled.

All other values are reserved for future expansion.

The x and y coordinates are given as a low/high byte pair.

159

`Relative to last point' means moving by the given x, y
coordinates from the last point visited. An 'absolute position'
is one given as coordinates on the screen, which is 1280 (0-1279)
points wide, and 1024 (0-1023) points high, with its origin at
the bottom left. Note, however, that the graphics origin may be
moved using output code 29 (Define Graphics Origin).

The logical inverse to a colour is (highest logical colour
code for current mode) - (logical colour code); e.g. for a four
colour mode:

logical 	inverse
0 	 3
1
2 	 1
3 	0

Output Code 26: Reset Windows

Passed Values: None

The text and graphics areas are restored to the normal
default of the whole screen, and the graphics origin is set to
the bottom left of the screen.

Output Code 27: <escape>

When this character is output from a program, the Torch VDU
controls are invoked; see section 3, 'Torch VDU Controls'.

160

Output Code 28: Define Text Window

Passed Values: Left x, bottom y, right x, top y.

This defines the text area, outside which the text cursor
may not be moved (and hence no text may be written). If the text
cursor was not in the new text area, it is moved to the top left
corner; otherwise, it remains where it was.

The coordinates are given in terms of character cells, the
numbers on each axis being dependent on the current mode. The x
axis is numbered from 0 to 19, 39 or 79; the y axis from 0 to 24
or 31. The origin is the top left hand corner of the screen. The
bytes passed specify respectively the left hand edge x cell, the
bottom edge y cell, the right hand edge x cell, and the top edge
y cell.

Output Code 29: Define Graphics Origin

Passed Values: x coordinate, y coordinate.

The graphics origin is defined relative to the default
origin of 0, 0 at the bottom left of the screen. The coordinate
of the new origin is given as two low/high byte pairs.

Output Code 30: Home Text Cursor

Passed Values: None

The text cursor is homed to the top left of the text area.

161

Output Code 31: Position Text Cursor

Passed Values: x coordinate, y coordinate.

The text cursor is moved to the specified coordinate inside
the text area, the position being given relative to the origin of
the text area. The coordinates are given as two low/high byte
pairs.

Output Code 127: Delete Character

Passed Values: None

The text cursor is moved back one space, and the character
cell at that position is set to the text background colour. If
the cursor is at the start of a line, it is moved to the end of
the previous line; if the text area is at the start of the
screen, then the screen is scrolled.

162

4.9 	 '*' COMMANDS

The Torch CCCP passes all commands commencing with a star to
the Acorn command line interpreter. A large proportion of these
commands are used for the B.B.C. microcomputer cassette tape
interface, and are hence not documented here. The more important
commands are given below:

*FX

The *FX command may be used to access Osbyte calls (see
section 4.6: Osbyte Call Interface). Those Osbyte calls that
issue results may not be usefully implemented with this call.

*BASIC

The *BASIC command makes the Torch run in Basic, as a B.B.C.
microcomputer. Full documentation of this facility is available
from your dealer in the 'B.B.C. Microcomputer System User Guide'.
To return the computer to normal operation, the command 'oCPN'
should be used, or the reset button (at the back of the Torch)
may be pressed while holding down <control>.

*CPN

The *CPN command returns control to the CPN operating system
from B.B.C. Basic, after the oBASIC command has been used.

163

*KEY

The *KEY command is used to program the blue function keys
along the top of the keyboard. These are numbered from 0 to 13,
but are unmarked on the keyboard. Whenever hit, they will produce
the string that has been programmed into them.

They are programmed by typing:

*KEY < space(s) > <number> < space(s) > <string> <return>

to a amaximum of 39 characters.

<number> is the number of the key to be programmed, and
<string> is the string which is produced when the key is typed.

Where leading spaces are to be used, the string must be
enclosed in double quotes (' " '). In this case, any double
quotes in the string must be typed twice, e.g:

*KEY 4 " 	'Hello', he said."

would, on typing key 4, produce four leading spaces and then:

"Hello", he said.

If needed, control characters may be programmed. An example
is given where a carriage return is wanted (control-M):

*KEY 4 F 4 |MB 6|M

This would produce:

F 4 <return>B 6<return>

See section 4.8 (Character Output) for the effects of control
codes on the screen.

If key 10 is programmed, then the text in it is output to
screen (and any relevant action taken) whenever the reset button
on the back of the Torch is pressed. This is useful for setting
up your machine in a manner you like; e.g. to set display
colours.

164

4.10 	 EXTERNAL INTERFACES

Analogue to Digital Interface

The full specification of this interface has yet to be
defined. See Osbyte calls 16, 17, 128, 188 and 189 for currently
available information.

Econet Interface

To be defined.

Light Pen Interface

To be defined.

165

TORCH PROGRAMMERS' GUIDE: SECTION 5

MISCELLANEOUS INFORMATION

166

5.0 	 CONTENTS

Section Title 	 Page

5.0 	CONTENTS 	 167

5.1 	CCCP COMMANDS 	 168
5.1.0 	Command 	 168
5.1.1 	Input 	 168
5.1.2 	Protect 	 169
5.1.3 	View 	 169
5.1.4 	[System 	 170

5.2 KEYBOARD CODES 	 171

167

5.1 	 CCCP COMMANDS

5.1.0 	 Command

The CCCP command 'Command' (which can be abbreviated to 'C')
is used to present the contents of a file as a series of commands
to the Torch. Comprehensive facilities are available for argument
substitution.

The command takes the form:

C <filename> <arguments> 	or 	COMMAND <filename> <arguments>

If no extension is given to the filename, then a default of
`.SUB' is assumed. The filename is used as the input stream to
the Torch, and any dollar signs in it are treated as parameter
flags. Where '$0' appears, the name of the command file will be
substituted. '$1' to '$9' result in the corresponding argument
being substituted in the text of the command file. A literal '$'
may be produced by the combination '$$'.

The argument list consists of groups of characters,
separated by spaces and terminated by the line's end. Backslash
may be used to insert special characters into the arguments:

\n 	:newline
\s :space
\0 	:terminate argument (useful for null argument)

5.1.1 	 Input

This command is used to type in a file. It has the syntax:

INPUT <filename> <return>
<file>
<end>

Both the command line, and the file itsef, are input using CPN
Function 10 (Read Keyboard Buffer). For details of the editing
facilities available, see the specification of this function
(section 2.5.2). Input is ended by pressing the <end> key.

168

5.1.2 	 Protect

This is used to protect filenames in varying ways. The
syntax is:

PROTECT <filename> [<options>] <return>

The options may be a single string, or may be separated by commas
and spaces for clarity. Available options are:

either 	s: System use only
or 	u: Current user only

and one of:
e: execute/only
r: read/only
w: read/write

5.1.3 	 View

View sends a file direct to the screen, without the normal
interpretation of control characters. For the effect this has on
character output, see section 4.8 (Character Output). This
command is most useful for inspecting files of graphics
information.

The syntax is:

VIEW <filename> <return>

169

5.1.3 	 [System

This has the syntax:

[System <number><return>

It has exactly the same effect as User Command 10 (Select Debug
State) . The state is affected by each bit in the passed number;
if a bit is set it has the following effect (bit 7 being the high
bit):

Bit 	Effect

0 	 The top bit of the numeric key pad is set
1 	 The keys 1 - 9 move the cursor about the screen,

horizontally, vertically or diagonally.
`0' is defined as 'copy'.

2 	Reserved for future expansion
3 	Reserved for future expansion
4 	 Reserved for future expansion
5 	 When a disc is being used in a read or write

operation, the block number being used is printed
to the screen, with an 'r' for read or a 'w' for
write.

6 	 On a disc error, there is no hobnailed boot. (This
is reserved for test use only).

7 	 All bytes passed between the 6502 and the Z80
are traced on the screen.

5.2 	 KEYBOARD CODES

Blue Function Keys

The codes produced by these keys are unaffected by either
the shift key or the control key. Codes produced are:

Function 0 (the leftmost function key) 	 80 hex

through to

Function 13 (the rightmost unmarked function key) 	8D hex

Lower Case 	 8E hex
Upper Case 	 8F hex
Move Left 	 8C hex
Move Past 	 8B hex
Move Right 	 8D hex

Deletion Keys

The codes produced by these keys are unaffected by either
the shift key or the control key. Codes produced are:

Para 	 A3 hex
File 	 AG hex
Undo 	 AB hex
Window 	 A5 hex
Screen 	 A4 hex
Underline 	 5F hex
Word 	 AC hex
Line 	 Al hex
Redo 	 Al hex
Insert 	 A7 hex
Begin 	 A9 hex
End 	 AA hex
Control 	 See below

171

Main Keyboard

The keys on the main keyboard are generally affected by both
the shift key and the control key. The table below gives a key's
lower case character and code, its shifted character and code,
and the codes produced when the key is held with either the
control key, or both the shift key and the control key. (All
values are in hex).

<shift> 	<shift> 	 <shift> &
Char 	Code 	Char 	Code 	<control> 	<control>
---- 	---- 	---- 	----

	

Tabulate 09 	Tabulate 09 	09 	 09
Return 	D 	Return 	D 	OD 	 0D
Line 	D 	Line 	0D 	D 	 0D
Escape 	1B 	Escape 	1B 	1B 	 1B

	

<space> 20 	<space> 20 	20 	 20 " ' "
	 27 	 ' " ' 22 	27 	 22 2
,(' 	28 	 '{' 	 7B 	28 	 7B
,)' 	29 	 ' 1' 	 7D 	29 	 7D
' ,' 	 2C 	 ' ?' 	 3F 	2C 	 3F
'_' 	 2D 	 '+' 	2B 	2D 	 2B

'

 .' 	 2E 	 ' 1' 	 21 	2E 	 21
0̀' 	30 	 '=' 	 3D 	30 	 3D
1̀' 	31 	 '*'

	 2A 	31 	 2A
2̀` 	32 	 `\` 	 5C 	32 32 	 1C

'3'
	 33 	 `/` 	 2F 	33 	 2F

4̀' 	34 	 `@` 	 40 	34 	 00
'5'
	 35 	<pound> 60 	35 	 60
'6' 	36 	 `$` 	 24 	36 	 24
`
7`
	 37 	 `&` 	 26 	37 	 26

'8' 	 38 	 '%' 	 2.5 38 	 2 25 I
'9' 	 39 	 '4*' 	

23 39 	 23
';' 	 3B 	1:' 	 3A 	3B 	 3A
'[' 	5B 	 ' <' 	 3C 	1B 	 1B
,]' 	5D 	 ' > ' 	 3E 	5D 	 3E
`

'^` 	 5E 	 ' _' 	 7E 	1E 	 1E

à' 	61 	'A' 	41 	01 	 01

through to

z̀' 	7A 	'Z' 	5A 	1A 	 1A

' |' 	 7C 	<acute> 	27 	7C 	 27

	

<exact..> A0 	<exact—> A0 	A0 	 A0

Capitals: redefines keys a-z to be always shifted.

172

Numeric Pad

The numeric pad keys are functionally the same as keys 0 to
9 and the keys '-' and '.'; that is, they produce the following
codes:

'' 	 2D 	'+, 	 2B 	2D 	 2B

'

 ' 	2E 	 '!' 	21 	2E 	21 .
'0' 	30 	,=` 	 3D 	30 	 3D
'1' 	31 	 ,*'

	 2A 	31 	 2A
'2' 	32 	'\' 	 5C 	32 32 	 1C
`
3`
	 33 	`/' 	 2F 	33 	 2F
'4' 	34 	`@, 	 40 	34 	 00
7 5' 35 	<pound> 60 	35 60
'6' 	36 	's' 	24 	36 	 24
'7' 	37 	'&' 	26 	37 	 26
,
8`
	 38 	1%' 	 25 	38 	 ,1.= ".....1

'9' 	39 	,#, 	23 	39 	 -.),.. ,....,

173

TORCH PROGRAMMERS' GUIDE: SECTION 6

INDEX

174

6 .0 	 CONTENTS

Section Title 	 Page

6.0 	CONTENTS 	 175

6.1 	CONVENTIONS AND ABBREVIATIONS 	 176

6.2 	INDEX 	 177

175

6.1 	 CONVENTIONS AND ABBREVIATIONS

Throughout this index, the following conventions and
abbreviations have been used:

Angle brackets are used to indicate a class of entry, and
not a literal entry; e.g.

See also <language names>
means to look up the names of all languages you are interested
in; say Fortran, Basic and Pascal.

A character in quotes (e.g. '?') is used to indicate an
ASCII character. All such entries precede the main index.

All entries commencing with a number also precede the main
index.

(CPN) indicates a CPN function.

(VDU) indicates a Torch VDU control code.

(TB Com) indicates a Torch Base Command.

(TB User) indicates a Torch Base User Command.

(TB Osword) indicates a Torch Base Osword Call.

(TB Osbyte) indicates a Torch Base Osbyte Call.

(TB Output) indicates a Torch Base Output Code.

In general, all (TB...) entries should not be referenced
where there is an alternative, since CPN and Torch VDU control
codes are the preferred interfaces.

176

G.2 	 INDEX

's' 	 24, 168
'?' 	 28, 29, 30
' *'

See: Commands
'"' 	 164
oBASIC 	 120, 163
*CPN 	 163
*FX 	 120, 163
*KEY 	 120, 164

6502 	 7, 10, 88, 89,
90

Absolute address
See: Addresses

Absolute Timer
See: Timers

Acorn Machine Operating System
See: MOS

Ada (TM) 	 7
Add Enhancement (VDU) 	 69
Addresses

Absolute 	 59, 162
Relative 	 59

Algol60 	 7
Allocation Vector 	 34, 116
Analogue to digital conversions 	 137, 138, 140,

143, 165
ASCII numerals 	 46
Assemblers 	 7

See also:Cross assemblers, Z80 assembler
Attribute bits 	 35, 98
Auto repeat 	 136

177

Basic 	 7
Basic Disc Operating System

See: BDOS
BCPL 	 7
BDOS 	 10, 11
BIOS vector 	 40-41, 91, 105,

147
Block

See: Discs
Boot

Cold 	 89, 120-121
Hobnailed 	 90, 96, 97,

104, 107, 108,
111, 170

Soft 	 90
Warm 	 89, 90, 101

Byte pair 	 91

C 	 7
Call Osbyte (TB user) 	 113, 128
Call Osword (TB user) 	 112, 117
Call User Command <TB corn) 	 100, 105, 117,

128
Cambridge Central Command Processor

See: CCCP
Carriage return 	 20, 21, 24, 46,

133, 153
CCCP 	 10, 11, 13, 17,

89, 90, 128e
147

Centronics port 	 133
Character Definition (VDU) 	 70
Characters

Control 	 20, 21, 24, 25,
164, 147, 148

Definition 	 51, 112
See also: Character Definition

Graphics 	 20, 21, 24
Keyboard codes 	 171-173
Output

See: Torch VDU control codes
Reflection 	 20, 21, 24
See also: <characters>, <control character
names>, Torch VDU control codes

Clear Characters Left (VDU) 	 61
Clear Characters Right (VDU) 	 61
Clear Graphics Area (TB output) 	 154
Clear Line <VDU) 	 60
Clear Page (VDU) 	 52, 76

178

Clear Page and Select Mode (VDU) 	 46, 53, 76
Clear Text Area (TB output) 	 153
Clear to End of Line (VDU) 	 60
Clear to End of Window (VDU) 	 58
Clear to Start of Line <VDU) 	 60
Clear to Start of Window (VDU) 	 58
Clear Window (VDU) 	 57
CLI 	 120, 128
Close File (CPN) 	 28
Close File (TB com) 	 94
Cobol 	 7
Cold boot

See: Boot
Colours

Codes 	 67, 84
Logical 	 68, 85, 125,

126, 154-157
Colour 0 	 68, 85
Colour 7 	 68, 85, 153

Physical 	 68, 85, 126,
135, 154-157

Default 	 53, 67, 76, 84
Graphics Background 	 82, 84, 154,

159
Graphics Foreground 	 82, 84, 159
Handling 	 155
Logical Inverse 	 82, 155, 159

Comal 	 7
COMBASE 	 11
Command

See: Commands
Command Line Interpreter

See: CLI
Commands 	 13

`*' Commands 	 120, 163-164
Command 	 168
Input 	 1A8
Protect 	 169
[System 	 170
View 	 169

Communications channel 	 103
Communications interface 	 103
Compute Extent Size (TB com) 	 104
Compute File Size (CPN) 	 38
Compute File Size (TB com) 	 99
Console Output. (TB com) 	 103, 147
Control characters

See: Characters
Control Communications <TB com) 	 103
Control Cursor Edit (TB Osbyte) 	 132
Console status 	 26

179

Coordinates
See:Torch VDU control codes

CPN functions 	 18-41, 89, 93,
147

Accessing 	 18
See also: <CPN function names>

Cross assemblers 	 7
Cursor Address Absolute in Window (VDU) 	 59
Cursor Address Relative in Window (VDU) 	 59
Cursor Down (TB output) 	 152
Cursor Down (VDU) 	 66
Cursor Left <TB output) 	 151
Cursor Left (VDU) 	 66
Cursor Right (TB output) 	 152
Cursor Right (VDU) 	 65
Cursor Up (TB output) 	 152
Cursor Up (VDU) 	 65
Cutdown FCB 	 89

Drive code 	 89

Debug 	 51, 75
Debug On/Off (VDU) 	 70, 85
Debug vector 	 111
Define Character (TB output) 	 157
Define Colour Relationship (TB output) 	 155
Define Colour Relationship (VDU) 	 68
Define Envelope (TB Osword) 	 124
Define Graphics Colour (TB output) 	 155
Define Graphics Colour Relationship (VDU) 	 85
Define Graphics Origin (TB output) 	 161
Define Graphics Origin (VDU) 	 83
Define Graphics Window (TB output) 	 158
Define Text Colour (TB output) 	 154
Define Text Window (TB output) 	 161
Define Window in Page 	 56
Delete 	 25
Delete Character (TB output) 	 163
Delete Character (VDU) 	 64
Delete Column (VDU) 	 62
Delete File (CPN) 	 30, 31
Delete File (TB corn) 	 96
Delete Line (VDU) 	 63
Directory 	 15, 28, 29, 31,

32, 39, 94, 95
97, 99, 110

Full 	 31
Direct Console I/O (CPN) 	 23, 147
Disable Printer (TB output) 	 150
Disable VDU Drivers (TB output) 	 156

180

Discs 	 7, 20
Blocks 	 107, 170
Default drive 	 12, 27, 29, 33
Drive code

See: FCB dr byte, Cutdown FCB
Drive select letter 	 13
Drive Vector 	 391 115
Extents 	 15, 30, 31,

104
Format 	 15, 108, 110
Free space 	 34
Full 	 31
Layout 	 15
Parameter Block 	 36
Random access 	 15, 37, 38, 99

See also: Read Random, Write Random
Records 	 15, 29, 30, 31,

33, 37, 38, 96,
97, 104

Sequential access 	 15, 28, 37, 38
99

See also: Read Sequential) Write
Sequential

Sides 	 108
Tracks 	 108, 110

Display String (CPN) 	 24, 147
DMA

Address 	 12, 27, 33
Buffer 	 12, 13, 30, 31,

37
See also: Set DMA Address (CPN)

Draw Absolute (VDU) 	 81
Draw Relative (VDU) 	 80
Drives

See: discs
Dumb terminal 	 50, 74
Dynamic Memory Address

See: DMA

Econet 	 165
Editing 	 251 47, 132
Enable Printer (TB output) 	 149
Enable VDU Driver (TB output) 	 151
End 	 168
End of file 	 30
Enhanced text 	 50, 68-69
Envelopes

Amplitude 	 124
Frequency 	 124

181

Errors
Hardware 	 108, 110
Operator 	 108, 110
Program 	 108, 110
System 	 108, 110
See also: User Program Error

Escape 	 20, 21, 24, 44-
85, 109, 144,
147, 160

Execute Only 	 169
Extents

See: Discs

FCB

	

	 13, 16-17
Bytes:

cr 	 17, 30, 31, 37
dr 	 16, 27, 29, 30,

32,
ex 	 17, 28, 37
f1-f8 	 16, 35
hl 	 17
h2 	 17, 28, 29, 31
r0-r2 	 17, 28, 37, 38
rc 	 17
tl-t3 	 16, 35
u0-un 	 17, 28, 32

Default address 	 12, 17
User field

See: Bytes u0-un
See also: Cutdown FCB

File Control Block
See: FCB, Cutdown FCB

File handle 	 89
File name 	 14, 89

See also: FCB, Cutdown FCB
File names <disc) 	 13

See also: FCB, File name, File type,
Cutdown FCB

File size
Physical 	 38, 99
Virtual 	 38, 99

File type 	 14, 89
See also: FCB, Cutdown FCB

Fire button 	 140
Floppy discs

See: Discs
Flush Buffer (TB Osbyte) 	 139
Flush Buffers (TB Osbyte) 	 137
FPL 	 7

182

Force Analogue to Digital Conversion (TB Osbyte) 	138
Format Track (TB user) 	 108
Forth 	 7
Fortran 	 7

Get Address <Allot) <CPN) 	 34
Get Address (Disc Parms) (CPN) 	 36
Get Character Hardware Definition (TB user) 	112
Get Character Software Definition (TB Osword) 	125
Get Current Analogue to Digital Channel

(TB Osbyte) 	 143
Get Disc Allocation Vector (TB user) 	 116
Get Disc Error Count (TB user) 	 115
Get Escape Status (TB user) 	 109
Get I/O Byte (CPN) 	 23
Get Input Status (TB corn) 	 104
Get Keyboard Status (CPN) 	 26, 40
Get Keybuard Status/Input (TB com) 	 101
Get Number of Analogue to Digital Channels

(TB Osbyte) 	 143
Get Output Status <TB user) 	 114
Get Read/Only Vector (CPN) 	 35
Get/Set Osvariable (TB Osbyte) 	 145
Get Start of Screen Memory <TB Osbyte) 	 140
Get Start of Screen Memory for Mode (TB Osbyte) 	141
Graphics terminal 	 50, 74

Help Status 	 118
Hobnailed boot

See: Boot
Home Cursor in Window (VDU) 	 59
Home Text Cursor (TB output) 	 161

Imp 77 	 7
Initialise (VDU) 	 51, 75
Initialise Disc (TB user) 	 110
Input

See: Commands
Input buffer 	 25
Insert Character (VDU) 	 64
Insert Column (VDU) 	 62
Insert Line (VDU) 	 63
Interrupt action 	 103
Interval Timer

See: Timers

183

Inverse text 	 68-69
IOBYTE 	 27, 24
I/O devices 	 50, 51, 74, 75

Join Cursors (TB output) 	 150

Keyboard Input (CPN) 	 20, 40

Languages 	 7
High level 	 6
See also: <language names>

Light pen 	 165
Line feed 	 20, 21, 24, 25,

46, 133
Lisp 	 7
Login vector 	 32
Low/high byte pair

See: Byte pair
Low memory 	 12

Machine Operating System
See: MOS

Make File (CPN) 	 28, 30, 31
Make File (TB cam:) 	 97
Make Sound <TB Osword) 	 123-124
Memory Map 	 11

See also: Low memory
Menu display 	 6
Modes 	 51, 53, 68, 75,

76, 84, 85,
140, 141, 157

Modula 	 7
MOS 	 112, 130, 141,

146
Move Cursor Absolute 	 80
Move Cursor Relative (VDU) 	
Move Cursor to Start of Line (TB output) 	 153
Move 40 Bytes (TB user) 	 109

New line 	 20, 21, 24
Null 	 149
Numeric key pad 	 111, 170

184

Open File (CPN) 	 28, 30, 31, 37
Open File <TB com) 	 94, 97
Osvariables 	 145

Page Mode Off (TB output) 	 154
Page Mode On (TB output) 	 153
Page Mode On/Off (VDU) 	 51
Pan Screen Down (VDU) 	 55, 78
Pan Screen Left <VDU) 	 55, 79
Pan Screen Right (VDU) 	 54, 78
Pan Screen Up <VDU) 	 54, 77
Parallel port 	 50, 74
Pascal 	 7
Pass Scratchpad to CLI (TB Dsword) 	 120
Peek Into RAM (TB com) 	 91, 99
Peripherals 	 7

See also: Torch Base, 6502
Peripheral Variable Area 	 103
Pilot 	 7
PLA 	 10, 11, 12

Running programs 	 13
PLM 	 7
Plot (TB output) 	 159-160
Plot (VDU) 	 79, 80, 81, 82-

83
PL/1 	 7
Poke Into RAM (TB com) 	 100
Popular terminal 	 50, 74
Ports

See: Parallel, Serial
Position Text Cursor (TB output) 	 162
Position Screen Origin (VDU) 	 53, 77
Prestel 	 109, 157
Print Byte <TB com) 	 93
Printer Output (CPN) 	 22, 40
Printer Status 	 41
Printer stream 	 50, 74, 93,

133, 139, 140,
142

Printing device 	 22, 114, 149
Program Load Area

See: PLA
Prolog 	 7
Protect

See: Commands
Punch Output 	 22, 40

185

Random access
See: Discs

Ratfor 	 7
Raw Keyboard Input (CPN) 	 21
Raw Screen Output (CPN) 	 22, 147
Read Absolute Time (TB Osword) 	 120
Read Analogue to Digital Channel (TB Osbyte) 	140
Read Block (TB user) 	 107
Read Character at Cursor Position (TB Osbyte) 	141
Read Colour Relationship <TB Osword) 	 126
Read From Buffer (TB Osbyte) 	 142
Reader Input 	 21, 40
Read Graphics Cursor Position (TB Osword) 	127
Read Interval Time 	 121
Read Keyboard Buffer 	 25
Read/Only 	 34, 35, 169
Read/Only vector 	 35
Read Pixel (TB Osword) 	 125
Read Random (CPN) 	 37
Read Random (TB com) 	 96
Read Scratchpad Byte (TB user) 	 112
Read Sector 	 40
Read Sequential <CPN) 	 30
Read Text Cursor Position (TB Osbyte) 	 141
Read/Write 	 27, 35, 169
Records

See: Discs
Relative Address

See:Addresses
Relative Cursor Address in Window (VDU) 	 46
Remove Enhancement (VDU) 	 69
Rename File <CPN) 	
Rename File (TB com) 	 98
Reset 	 121-122
Reset Colour Relationships (TB output) 	 156
Reset Disc System (CPN) 	 27
Reset Drive <CPN) 	 39
Reset Drive (TB user) 	 115
Reset pulse 	 93
Reset Soft Keys (TB Osbyte) 	 138
Reset Windows (TB output) 	 160
Return Current Disc (CPN) 	 33
Return Login Vector <CPN) 	 32
Return Version Number (CPN) 	 26, 41
Return Version Number <TB Osbyte) 	 130
Return Version Number (TB user) 	 110
Ring Bell (TB output) 	 151
RS423 	 102, 114, 131

133, 134, 139
140, 142

Rubout 	 25
rx 	 91

1 86

Scratchpad 	 112-113, 117-
118

Screen Output (CPN) 	 21, 40, 147
Scrolling 	 51, 153-154

See also: Torch VDU control codes; window
scrolling types

Search For First (CPN) 	 29
Search For First (TB com) 	 95
Search For Next (CPN) 	 29
Search For Next (TB com) 	 95
Seek Track 0 	 40
Select Analogue to Digital Channels <TB Osbyte) 	137
Select Background Colour (VDU) 	 67
Select Debug State <TB user) 	 111, 170
Select Disc <CPN) 	 27, 40
Select Disc (TB user) 	 108
Select Foreground Colour (VDU) 	 67
Select Graphics Background Colour (VDU) 	 84
Select Graphics Foreground Colour (VDU) 	 84
Select Input (TB com) 	 102
Select Input (TB Osbyte) 	 131
Select Mode (TB output) 	 157
Select Output (TB com) 	 102
Select Output <TB Osbyte) 	 131
Select Page (VDU) 	 52, 75
Select Printer <TB Osbyte) 	 133
Select Stream (VDU) 	 50, 74
Select Window (VDU) 	 57
Send Character to Printer <TB output) 	 149
Separate Cursors (TB output) 	 150
Sequential Access

See: Discs
Serial port 	 50, 74
Set Auto Repeat Delay (TB Osbyte) 	 136
Set Auto Repeat Period (TB Osbyte) 	 136
Set DMA Address (CPN) 	 33e 40
Set Enhancement (VDU) 	 68
Set Escape Character (TB Osbyte) 	 144
Set File Attributes (CPN) 	 35
Set File Attributes (TB com) 	 98
Set Flash Mark Period (TB Osbyte) 	 135
Set Flash Space Period (TB Osbyte) 	 135
Set/Get User Code <CPN) 	 36
Set/Get User Code (TB com) 	 101
Set I/O Byte (CPN) 	 24
Set Printer Ignore Character (TB Osbyte) 	 133
Set Rx Baud Rate (TB Osbyte) 	 134
Set Sector 	 40
Set Track 	 40
Set Tx Baud Rate (TB Osbyte) 	 134
Sink stream 	 50, 74, 133

187

Soft keys 	 132, 138
Sound

Amplitude 	 123-124
Buffer 	 123, 139, 140,

142, 151
Channel 	 123
Chords 	 123
Dummy 	 123
Duration 	 123-124
Envelope 	 123-124
Pitch 	 123-124

Speech 	 139, 140, 142
Stage 2 	 7
Streams

See: <stream names>
Super terminal 	 50, 74
SUPERVDU.COM 	 45

See also: Torch VDU control codes
ESystem

See: Commands
System Only 	 169
System parameters 	 11
System Reset (CPN) 	 20, 40
Systems Manual 	 107, 108, 110
System Warmboot 	 40

Tab 	 20, 21, 24
TCK 	 10, 11, 36
TDOS 	 10, 11, 12, 31,

37
Terminal attachment 	 21
Terminals 	 50, 74
Timers

Absolute 	 120-121
Interval 	 121-122

Toggle Printer (TB user) 	 114
TORBASE 	 11, 12
Torch Base peripheral processor 	 7, 44, 88,

111
See also: peripherals, 6502

Torch Communications Technical Manual 	 103
Torch Computer 	 6
Torch Control Kernel

See: TCK
Torch Disc Operating System

See: TDOS

188

Torch VDU control codes 	 22, 23, 44-85
Arguments 	 46

Separator 	 46
Terminator 	 46

Coordinates 	 46, 71, 141
Origins 	 46, 51, 52, 53e

56, 59, 65, 66,
75, 76, 77, 80,
81, 83, 160,
161

Line number 	 60
Page number 	 52, 53, 56, 76
Screen displacement 	 54-55, 77-79
Windows

Maximum number 	 47
Number 	 56, 57
Scrolling type 	 47, 56, 65, 66

Translate Sector 	 41
Triangles 	 82, 159
tx 	 91

Underlined text 	 68-69
Unslave Disc Caches (TB user) 	 111
User number 	 ...36
User Program Error 	 90

Version number
CPN 	 26
MOS 	 130
Torch Base ROM 	 110

VDU command 	 147
VDU control codes

See: Torch VDU control codes
View

See: Commands

Warm boot
See: Boot

Warm Boot (TB com) 	 93
Wild cards 	 28
Word processor 	 6
Write Block (TB user) 	 107
Write Protect Disc (CPN) 	 34
Write Random (CPN) 	 37
Write Random (TB com) 	 97

189

Write Random With Zero Fill (CPN) 	 39
Write Scratchpad (TB user► 	 113
Write Sector 	 41
Write Sequential .(CPN) 	 31
Write To Buffer (TB Osbyte) 	 142

Z80 assembler 	 6, 7
Z80 memory 	 89, 90
Z80 processor 	 6, 88
Z80 registers 	 18, 91, 147

190

TORCH
COMPUTERS Programmers' Guide

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196

