

THE BBC MICRO ROM PAGING SYSTEM

INTRODUCTION

It is well known that ROMs may be plugged, into the BBC
micro to add new languages, filing systems and other
special applications programs, The protocols through which
these ROMs are called by the operating system are complex
and difficult to discover for yourself. The ROM paging
system is very complex, a high level of competence in
machine code programming will be required to write a ROM.
In the course of writing the Watford Electronics DFS, we
have discovered the meaning of the most important entries.
Whilst we believe the information contained to be accurate
we cannot be sure of any of the meanings we have attached
to the various calls so it is up to you to ensure that any
ROM call you use actually performs as required.

This document only applies to OS 1.0 and higher. It
concerns the paged ROM sockets. There are four of these in
the standard BBC, on the right hand side under the
keyboard. These sockets are arranged in the memory map as
16k units from &8000 to &C000. Any one ROM may be selected
at any one time by the operating system which is mapped
from &C000 to &FFFF.

The OS supports 16 sockets and the Watford Electronics 13
ROM board allows all 16 to be utilised. The sockets are
generally used to contain languages such as BASIC or FORTH
and filing systems such as the DFS. If you are intending
to write a ROM of some sort for the BBC, it is strongly
recommended that you invest in a system of RAM in the
&8000 area as offered by the Watford Electronics 13 ROM
board.

This allows a 'ROM' to be written into this extra piece of
RAM so that modifications can be made by simply
reassembling the code, speeding up debugging considerably.
Attempting to write a ROM directly into EPROMs, making a
modification, blowing a new EPROM, trying it out etc. is
only suitable for very simple projects.

ROM RECOGNITION

The first group of bytes in the ROM must be in a specific
format for the operating system to recognise the ROM. When
BREAK is pressed the OS scans through all 16 ROM sockets
examining the contents for legal ROMs. If a ROM is of the
correct format then its ROM type byte is stored in a table
from &2A1. The address of this table can be found from the
operating system with OSBYTE 170 for compatibility with
future operating systems.

The format of the ROM is:
Offset (from &8000) Size (in
bytes)

0 JMP language 3
3 JMP service 3
6 ROM type 1
7 Copyright offset 1
8 Version number 1
9 Title string as required

00 1
Version string as required
00 1
'(' 1
'C' 1
')' 1

Copyright string as required

00 1
Tube relocate address 4

WHAT ALL THESE MEAN

JMP language

Should contain JMP XXXX to go to the entry of a language in
the ROM. All three bytes should be zero if there is no
language entry. Thus the Basic ROM contains 4C 1F 80,
meaning JMP &801F.

JMP service

Should contain JMP XXXX to go to the service entry
processor in your ROM. Service calls are used to pass
commands to the ROM. Put three zeros if not needed,
however, only the Basic interpreter is allowed to have no
service entry.

ROM type

Identifies the type of ROM, either service or language.
The relevant bits are:

S L T K 0 0 1 0

Set S to identify a service entry
Set L to identify a language entry

Set T to indicate that a valid tube relocation address
exists
Set K if the ROM supports soft key expansions for the
Electron
Bit 1 must be set, though existing operating systems do
not use it!

It is common for what is apparently a language ROM to be a
service ROM as well.

Copyright offset

Points to the '00' immediately prior to the

copyright string (C)...., relative to the start of the
ROM i.e. &8000 + offset = CHR$(0).

Version number

This is just an 8 bit number held internally for your own
use. It doesn't have anything to do with the Version
string.

Title string

Identifies the ROM. The operating system prints this out
when the ROM is entered through its language entry.

Version string

The version number of the ROM as an ASCII string. This is
completely optional as it is never output by the OS.

Copyright string

It is vital that this string starts null,'(C)'. This is
what the OS checks for when detecting ROMs. Look at a ROM
to see how it should be done. Also ensure that the
copyright pointer points to the null (00).

Tube relocate address

Address to which the code will be moved when sent down the
tube to the second processor. This does not relocate the
code, it simply shifts it to the address given. Thus you
will usually have a relocate address of &8000, otherwise
your ROM will have to have been specially assembled to run
at a different location such as &B000.

This first block is followed by the rest of the code
itself. The two entry points should come into the main code
and interpret the various entries possible. Examination of
the header part of an existing ROM may prove explanatory,
do not however that Basic is different to any standard ROM.

AVAILABLE MEMORY SPACES

The memory map of the BBC is allocated as follows:

00-8F Language workspace

A0-A7 NMI memory, may be used only when NMI is under your
control.
A8-AF Used by filing systems when processing * commands
only.
B0-BF Filing system temporary workspace, may be destroyed
between calls and should not be used for IRQ.
C0-CF Filing system workspace which will remain between
calls until the workspace area is taken from you by a
service call.

D00-D5F NMI routine should be copied to here on entry. NMI
enters &D00. If there is insufficient room for your NMI
routine then write directly to the ROM latch at FE30 to
enter your ROM and process the NMI, then re-write the ROM
latch with the contents of &F4 to restore the original ROM
in the space.

E00-... The main workspace area shared by all service ROMs
in the machine. This area is grabbed by ROMs as required by
a service call. (Service calls are explained later). This
is in a fixed place (from &E00) and its length is set by a
call to all the ROMs at Break. Any ROM can

take control of this area which is used for such things
as file buffers and general workspace.

Private. The private workspace area can be found by
referencing the table &DFO,rom number for the base page of
your private workspace. This area is always yours and its
size is set by a service call. This area of memory is used
to store information that must not be corrupted when the
shared work space area has taken by another ROM, such as
which files are currently open.

OSHWM-..The remaining memory above OSHWM is available to
language ROMs. These also have various parts of the first
block available, detailed in the User Guide.

LANGUAGES

A ROM may either be a language ROM-or a service ROM---
Languages are programs like Basic or wordprocessors that
call up other ROMs to handle hardware 'such as disc
drives. Any program that is not dependant on another
language should be written as a language. Many service
ROMs contain parts that are strictly a language. The
Watford Electronics DFS for instance treats the Disc
Sector Editor as a language, though the rest of the
commands are still service calls. A service ROM handles
the machine's hardware -devices directly, something that
languages cannot do for tube compatibility.

A language is entered through *FX142. The syntax is
*FX142,rom number. The rom number being the number of the
paged ROM socket from 0 to 15. Thus the user may type
*FX142,13 to enter the language in ROM number 13.

The normal way for a ROM to be entered is to type *FRED,
where FRED is the word you have decided to recognise to
enter your ROM with. The command *FRED must be recognised
by the service entry in your ROM which will then use
OSBYTE 142 to enter the ROM as a language properly, using
the ROM number stored in &F4, also in the X register on
entry. Thus your language ROM must have a service entry to
be recognised by a * command. This service entry then
calls up the language. This rather contorted entry method
is necessary to function correctly down the tube, so it is
worth using correctly. All ROMs must in fact have a
service entry except BASIC. This is because the command
*BASIC scans through the ROMs until it finds the first ROM
with no service entry and then enters that as a language.

When your ROM is entered as a language you will be entered
at the language entry point, having had your title string
output. The accumulator contains an action code.

The normal entry is with A=1, in which case the language
should simply start running.

If A=2 or A=3 then a soft key expansion has been requested
by an Electron, this will only happen if bit 4 of the ROM
type byte is set. For A=3 return X=Key no., Y=length of
new key definition. For A=2 pass out the bytes for the key
expansion one at a time in Y.

If A=0 on entry then the system is convinced that there
are no languages fitted in the micro, this call should
only be intercepted by the Tube ROM.

LANGUAGES AND THE TUBE

It is essential that languages are written so that they
can run across the tube. At BREAK you may get thrown
across the tube and be expected to run on the other side.
The whole principle of writing a language is to use the
OSBYTE, OSWORD etc. calls rather than access the I/O
processor directly. Languages such as BASIC can access the
main memory directly for storing the program. but cannot
change mode by directly poking to the 6845 for instance.

Thus commands such as the sector editor of the Watford
Electronics DFS are treated s languages by the system and
so will be sent across the tube. Thus the sector editor
loads and saves each sector through OSWORD &7F. Any code
to access some part of the I/O machine's memory must not
simply consist of a JSR to another part of your ROM, it
must call the operating system with an unallocated °SWORD
or OSBYTE number of your choice, which will then be passed
out to all the ROMs in turn when you will grab it back.
execute it, and then return through the OS to your
original code.. This may seem confusing. but it really
consists of writing your primitive command levels to be
accessed through service entries such as OSWORD and then
writing the language to use OSWORD etc.

The tube system will only access ROMs through the service
entry in the I/O processor, thus a service ROM such as the
DFS can access the hardware directly as you can be sure
that you are running in the I/O processor, and not
executing the copy of this code that may running your
language in the tube machine.

Just to confuse things even more the tube system does not
check processor type, so your-language may be given to a
16032, you cannot be held responsible for the results so
don't worry about it.

THINGS LANGUAGES MUST DO

You must execute CLI (clear interrupt disable bit), or
the OS will not work.

You must also set the BRK vector at &202 to handle errors
as required. This may not be necessary on very simple ROMs
but errors can be generated by the filing system when
doing very simple operations such as printing a character.

The memory available for your use is from &400 to &800,
from 00 to &8F, together with the main memory from OSHWM
to the bottom of the display. Get both of these figures
from the operating system for tube compatibility, these
will give appropriate values for the tube processor. When
accessing memory you may use these main memory areas
directly as languages are intended to use the tube
processor memory for storing programs etc. However do not
use any I/O processor or OS specific locations.

SERVICE ROMS

The most common service ROMs are filing systems. These
ROMs can only take * commands, OSBYTE and OSWORD calls
etc. The service ROM will not be used on the wrong side of
the tube and so can directly access I/O processor memory.
It is quite normal for a ROM to be both a service ROM and
a language ROM. In this case the hardware access is done
by the service section.

when a service is handed to a ROM, A contains the call
number, X the ROM number and Y a parameter if needed.

A service call can be initiated with *FX143, call number,
parameter. However usually service calls are generated by
the OS. If a ROM generates a service call it must use
*FX143 to enter the OS and scan the ROMs. When entered,
&F4 always contains the ROM socket number that you are
plugged in to; this is also in the X register.

Call Number Description

00 NOP
01 Work space area required
02 Private space required
03 Auto-boot
04 Command not recognised by OS
05 Interrupt not recognised by OS
06 BRK has occurred
07 unknown OSBYTE
08 Unknown OSWORD
09 HELP information
OA Claim main work space
OB NMI no longer being used
OC Request to use NMI
OD Initialise *ROM
OE Return one byte in tape format for *ROM
OF Claim indirection vectors
10 About to close SPOOL and EXEC files
11 Character set about to explode
12 Intialise filing system
FE Tube Post initialisation
FF Main Tube initialisation

These various calls are issued either at BREAK or during
operation. When offered a call you may either use it or
ignore it. You must restore registers to their entry
condition before returning. If you have used the call then
set A=&00 so that the rest of the ROMs are sent NOP so
that they ignore the call.

00

NOP

The call hs already been grabbed by another ROM which has
set A=0. This call is to be ignored.

01

Set work space area

This is given at BREAK to determine the total amount of
work space required. This is the space from &E00 up to the
private space. This area of memory is shared with the
other ROMs which can claim it from you at any time. The Y
register enters containing the current top of the fixed
area (main workspace from &E00 to the bottom of Private
space). If this is high enough for your needs then leave
it alone, or increment as required. Do NOT decrement this
value, some other ROM may need more workspace than you.
This memory is used by the DFS for storing the catalogue
and for the file buffers etc. It remains your memory space
which will not be corrupted by other ROMs until it is
claimed by someone else.

02

Set private space required

This call is also sent at BREAK to set the size of the
private memory area needed. This space is used to keep
essential information when the main workspace is grabbed
by another ROM. The DFS for instance will keep information
on open files in this area when needed. If you need
private space then STY &DF0,X to store the address of the
base of your space in the private area table at &DF0. Then
increment Y as needed and return, i.e. add on the number
of pages of private memory you require to store essential
information. You must now always use the value stored in
the table for the start of your private space. The private
workspace should never be corrupted by anything as no
other ROM is allowed to touch it. However programmers have
a habit of running Basic programs all over this area of
memory. You must allow for this possibility when using
this area
i.e. it should only be used when it is unavoidable. The
private memory is after the main workspace.

03

Auto-boot

Each ROM is given the opportunity to start up when BREAK
is pressed. Test to see if a key is pressed. If a key you
recognise is pressed then start up otherwise return with
the register contents as on entry.

If Y=0 on entry then you should do something with a file
called !BOOT. The DFS can *LOAD, *RUN and *EXEC this file,
another filing system may do something different.

04

Command not recognised by OS

If a command is typed that the OS cannot recognise then
that command is passed to all the ROMs in turn until one
is found to recognise it. At this point ROMs should only
intercept commands that are independent of the filing
system currently in use. Thus *DISC and *DUMP should be
intercepted by the DFS, but *WIPE should not.

On entry Y contains an offset from a base address stored
in (&F2) pointing to the line to be processed. This
pointer has already been passed over any asterisks or
spaces in the line before the command. You must compare
the text with your command table. If you recognise the
command then execute it and set A=0 before returning to
the OS.

If the command is not recognised by any of the ROMs
currently resident then the command is passed to the
currently active filing system where the filing system
dependant commands are dealt with.

05

Interrupt not recognised by Os

The OS has not recognised an IRQ and so passes it to the
ROMs, you must check to see if the interrupt is of
interest to you. If so process it before setting A=0 and
returning. Note that you should return with an RTS NOT an
RTI

06

BRK

A BRK instruction has been executed. This call happens
before the indirection at &202 is used. BRK is used for
error generation.

07

OSBYTE not recognised by OS

The OSBYTE parameters A, X, Y are stored in &EF,&F0,&F1.
Check &EF and process if required. Return with A=0 to stop
the call being sent to other ROMs. Store the new X,Y values
in &F0, &F1 and restore X and Y.

08

OSWORD not recognised by OS

&EF,&F0,&F1 are used to store A,X,Y for the OSWORD call.
Deal with as for unrecognised OSBYTE. Use OSWORD numbers
less than 128 as negative OSWORD calls ae sent to the user
vector instead. DFS uses &7D,&7E,&7F.

09

HELP information

*HELP has been typed. The rest of the line is pointed to by
(&F2),Y as for call number 04. If the rest of the line is
blank then output the ROM name and version number together
with any subheadings to which the ROM will respond.

If there is text after the command then compare each word
with the subheadings you recognise and give the information
for the sub headings as required. You should respond to each
word in turn.

It .is very important to leave the pointer to the HELP
line at its original position or ROMs further down the
sockets will get garbage.

0A

Claim main work space

When you wish to claim the use of the work space area
whose size was set by call 01 you must execute OSBYTE 143
with X=&0A and Y=&FF. This is sent to the ROM that
currently has the workspace which must then take all vital
information out of the main work space and put it into
their private space. The DFS will write all file buffers
to disc and store information on open files in the private
area etc.

Having claimed the main workspace you are also free to use
the zero page workspace (&B0 to &CF).

You must keep marker bytes in your private work space to
show when you are the selected filing system and when you
have grabbed the workspace. If this is not done you could
be selected as filing system without having the.
workspace. This is very likely to crash the machine when
the original workspace user is returned to, as this ROM
will think that memory is intact. These marker bytes are
vulnerable as they are in the area where people tend to
load programs when they are running short of memory. If the
contents are not sensible then grab the workspace just in
case. It is perfectly normal to have the workspace but not
be the selected filing system. If another ROM needs the
space it will take it from you.

0B

NMI no longer being used

Whoever last .claimed the NMI from you is now giving it
back. Y contains a ROM ID, if it is yours then NMI is
being returned to you. If NMI is not being given to you
then preserve all registers, otherwise set A=0. Do not use
the filing system page zero memory during this call.

0C

Request to use NMI

OSBYTE 143 with X=&0C and Y=&FF to tell any ROM that is
using NMI to stop generating NMIs. Thus you must turn your
NMI hardware off on receiving this call. When the OSBYTE
returns to the ROM that generated it Y will contain the
ROM number of the last user or &FF if it was not in use.
You must store this ID so that when you finish using NMI
you can OSBYTE 143 with call number 0B to return NMI to
the last user.

Having claimed NMI you can use the NMI zero page &A0 to
&A7. The NMI service routine should be put at &D00. You
may assume that only your own hardware will be generating
NMI as all other ROMs should have turned any other sources
off, but it would be a good idea to check that the NMI is
coming from your own hardware to make the system more bomb
proof.

Do not destroy the filing system zero page memory whilst
using call 0C.

0D

Initialise *ROM

When this call is recognised you must check the contents
of &F6 to see if it contains your logical ROM number -
this is unrelated to your physical ROM number. If it is,
then set the bytes &F6,&F7 to point to the data Area of
the ROM ready for the data to be read.

OE

Return one byte for *ROM

Using the pointer at &F6 return a single byte to the OS in
Y. You should simply return the bytes one by one for all
the programs in the ROM. The OS will handle file names
etc.

OF

Claim indirection vectors

When claiming the vector space, to point it to your own
code, first OSBYTE 143 with X=&0F. This call is intended
to allow ROMs other than the filing system to note the
fact that the current filing system has been disconnected.
It allows you to become aware of the need to re-check the
present filing system. Do not use the zero page filing
system memory while this call is in use

10

About to close *SPOOL and *EXEC files

This call is a warning to ROMs that these files are about
to be closed, usually because the filing system is being
closed down. If you cannot allow them to be closed then
set A=0, this will force them to be left open through the
change.

11

Character set about to explode/implode

Probably mostly of use to a language. This call allows
anything in the language main memory to be moved out of
the way before the character set explodes all over the
program. The character set may also be imploding, in which
case you have more memory available. Y contains the new
setting for OSHWM. This call is generated when the user
types *FX20,X. X sets the number of pages of memory
devoted to soft character definitions.

12

Initialise filing system

If Y equals the filing system number for your ROM then
initialise your self and set A=0.

FE

Tube post intialisation

This call is always emitted once at BREAK and at no other
time. This can be very useful for putting out messages at
BREAK time. This is intended to allow Tube machines to
finish their initialisation after OSHWM has been set. The
main use being to allow the Tube machine to explode the
character set.

FF

Tube hardware present

This is the tube pre-initialisation call. This is only
given if the tube hardware is fitted.

This occurs before OSHWM etc. are set and so is used to
allow the Tube processor to be reset and the tube hardware
to be initialised before languages etc. are sent across. It
is also used so that the tube start-up message can be
output instead of the BBC micro. message.

*ROM

The *ROM mechanism exists to allow programs to be loaded
from ROMs as if they were being loaded off tape. The
system is to return bytes one by one in the format of a
standard tape. The OS will test the file names given to it
etc. until it finds the required file.

When using this system it is possible to use a condensed
format for the block headers. All headers other than the
first and last may be replaced by a single 'hash'
character ('E'). This replaces the synchronisation byte.

For protection of *ROM software, use the 'file attributes'
as described in the User Guide and DFS manual. These work
with the cassette system so you can set your programs in
the ROM to be not readable by you or others, but still
allowing them to be executed. To be of use you must have
at least one file that can be *RUN as this is the only
type of file that can be protected. The user can of course
save the ROM contents directly and can copy the ROM, store
the data internally in a strange format and make the
accessing code as obscure as possible to make it harder to
read the bytes from the ROM in the correct order manually.

FILING SYSTEMS

A filing system ROM uses the above mechanisms to obtain
workspace, the use of NMI etc. There is a second system
for accessing filing system commands such as *RUN through
the file control system.
At Break you must set the size of the main workspace and
private workspace areas when

service calls 1 and 2 are received:

You should then be offered service call-3 at which point
you should either start up or pass the call on. You should
process !BOOT if required.

The filing system may be started up by three different
routes:
At Break, the usual method
By a * command such as *DISC from service call 4 Service
call &12, (check Y to see if it is your filing system
number)

When starting up you must claim the main workspace memory
by calling OSBYTE 143 with X=&0A, Y=&FF if the use of the
memory is required.

EXTENDED VECTOR SPACE

You may require one of the vectors at &200 to point into
your own ROM. This would allow all print output to be
directed to the ROM for instance. DFS directs OSBPUT,
OSFILE etc. to gain control of the machine when a filing
operation occurs. The obvious thing to do is to point the
indirection vector directly at the routine in your ROM.
Unfortunately this does not work as it is necessary for
the correct ROM to be selected in the sideways ROM space.
Thus each required vector must be pointed to a special
routine in the OS which accesses a new table of vectors,
this table containing the physical ROM number as well as
the address.

To gain control of any routine in this way is rather
complicated. You must first inform the last user of the
extended vector space that you are grabbing the vectors.
This allows the last

user to switch itself off properly. This is achieved
through a call to OSFCM, the filing system control
routine. This is entered with JMP(&21E). You must execute
this with A=6 to inform the last user of the vectors that
they are being claimed. Failure to do this will probably
lose data in any file buffers currently open and will
probably result in a crashed machine.

Having taken control of the vectors you must point each
required vector to a new address in 'page &FFXX. Point for
instance OSARGS (at &214) at &FF1E, take the vector
number, the address of the existing vector being
&200+2*vector number and point this vector at
&FF00+3*vector number.

Having pointed the vectors to the extended vector
processor in the &FFXX area, you must point the extended
vectors at the actual ROM routines. The base address of
these vectors is' found with OSBYTE 168 with X=0 and
Y=&FF. Returning X=low byte and Y=high byte of the base
vector address. This gives the address at which the new
vector table should start. Make up the vectors at
base+3*vector number in the format:

Low byte, High byte, Physical ROM number

The ROM number to be put into the table is stored at &F4.
When you have finished this process you should call OSBYTE
143 with X=&F to tell all sideways ROMs that the filing
system vectors have been grabbed, allowing other filing
systems to ensure that they are fully de-selected and
marked as such.

It is necessary to re-direct the OSFCM routine as you will
have to detect when the vectors are grabbed back by
another ROM. To gain control

over the filing system entries you will need to redirect
it anyway.

MORE ON FILING SYSTEMS

The OSFCM routine (JMP(&21E)) is used to send commands to
the current filing system. It uses call numbers like the
other routines with parameters in X,Y.

A=

00 *OPT X,Y
01 EOF check, handle in X
02 */<name>
03 *command
04 *RUN
OS *CAT
06 Filing system vectors being taken
07 Return range of handles used
08 About to process a *command

The OSFCM Commands are explained in more detail as follows:

00

*OPT X,Y has been entered, X,Y contain the parameters. DFS
uses this entry for *OPT1 and *OPT4.

01

Check for an end of file condition for the file whose
handle is in X. The OS has received an OSBYTE 127 to check
for an end of file and so is going to the filing system to
find out. Set X to &FF if there is an EOF, otherwise set
X=00.

02

*/<name> has been given to the OS. This is usually treated
as *RUN <name> as */ is a standard abbreviation for *RUN.
You may however treat it differently if needed.

03

* command has been given that, was not recognised by the
OS or grabbed through service call 4. You should at this
point detect for commands like *DELETE or *COPY and
process as required. If you cannot internally recognise
the command then you should attempt to *RUN the
appropriate file. This action should only occur if you can
detect the existence of the file in a few seconds. The
user will not want to wait for a few minutes while you
check to find his command *COBY before he realises that he
has spelt it incorrectly. XY point to the command line, X-
low byte, Y-high byte.

04

*RUN <name> has been received. Load and execute the file.
You must also set up the pointer to be returned by OSARGS
A=l, Y=0 to point to the rest of the command line. XY
point to the name.

05

*CAT has been called so print out either a list of files
on your medium or print out information on the next file
found if you control something slow. XY point to the rest
of the command line for parameters such as a drive number.

06

Another filing system is about to take over so you should
de-activate yourself by closing *EXEC and *SPOOL files and
writing buffers to the media. You may wish to mark
yourself as switched off in your private workspace and
perhaps release NMI etc.

07

Return the range of file handles that can be returned by
your filing system. X=lowest, Y-highest. DFS will return
X=17, Y-21.

08

This is sent each time the OS is about to process any
command sent to OSCLI. This is used to implement the
*ENABLE command in the DFS.

STANDARD PARAMETER SCANNING

The OS contains routines to read the parameters of a *
command that interpret 11 etc. in the standard way, thus
saving you the effort of writing your own routines. (&F2),
Y is used to point to the string to be decoded. This is
incremented as required automatically.

FFC2

Initialise reading of the string. If the carry flag is set
on entry then the reading of the string will return carry
set when a delimiter character such as space is found, If
carry is clear on entry then only return will cause the
carry flag to be set on exit from the read routine. This
call returns with the zero flag set if the string's first
character is a terminator. A and Y are corrupted and X is
preserved.

FFC5

Reads the next character from the string, automatically
decoding control characters etc. (&F2),Y is automatically
updated. The carry flag will be set on exit if the type of
terminator set by the initialisation is found. X is
preserved, Y updated, and A contains the character
returned.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30

