

Writing FIQ code on
RISC OS 3.5

This Application Note describes how to write/convert FIQ routines for RISC OS 3.5.

Applicable
Hardware : The RiscPC range of

computers.

Support Group
Acorn Computers Ltd
Acorn House
Vision Park, Histon
Cambridge CB4 4AE
England

Related
Application
Notes:

Copyright © Acorn Computers Limited 1994

Every effort has been made to ensure that the information in this leaflet is true and correct at
the time of printing. However, the products described in this leaflet are subject to continuous
development and improvements and Acorn Computers Limited reserves the right to change
its specifications at any time. Acorn Computers Limited cannot accept liability for any loss
or damage arising from the use of any information or particulars in this leaflet. ACORN,
ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited.

None.

7th April 1994

Support Group Application Note
Number: 256
Issue: 1.00
Author: JR/JB

Introduction

For the majority of cases, Medusa will run the ARM 610/700 in 26-bit mode for compatibility with previous
ARM processors and the software written for them. However, FIQ routines are entered with the ARM in
32-bit configuration. Programmers need to take the following notes into account when converting or
writing FIQ code to run on a Medusa.

The FIQ routine itself

Your FIQ routine will be entered in with the ARM in 32-bit configuration. In this configuration any
instructions with the PC as destination and the S bit set will do the operation as specified and move the
saved PSR to the current PSR. The effect this has is that these instructions:

TEQP, TSTP, CMPP, CMNP

become useless as the results get discarded and the mode drops back into whatever mode was interrupted to
do the FIQ. These instructions have been defined to be not necessarily supported in future ARMs when
running in 32-bit mode. These instructions:

<dataop><cc>S pc, <reg>, <other> (eg SUBS pc,lr,#4)
LDM<cc><dba> <reg>, {<with PC>}^ (eg LDMIA {r0-r3 ,pc}^)

can only sensibly be used as returns from interrupt.

** do not enable interrupts in 32bit mode **

RISC OS 3.50 does not preserve the 32 bit status when returning from IRQs or other interrupts (eg SWI).
This means that a piece of code executing in 32 bit mode with IRQs enabled may, at any time, drop into 26
bit mode. Normally direct flag manipulation in 32-bit mode would be achieved using MRS and MSR
instructions, but for your purposes you are unlikely to need or want to do this in a FIQ routine due to the
amount of programming effort this would entail.

What does all this mean?

- subtractions in 32 bit mode will tend to not preserve flags

- returning from FIQ would be acheived using SUBS pc,lr,#4

Installing your FIQ routine

The ARM processor prohibits direct poking of the processor vectors whilst in 26 bit mode. This is

2

7th April 1994Support Group Application Note No. 256, Issue 1.00

Support Group Application Note No. 256, Issue 1.00

reasonable as it catches almost certainly OS-damaging 26-bit code before it does any harm (in other words,
it forces the authors of such code to rewrite the code in the light of the fact that this code will now be
entered in 32-bit mode, not 26-bit mode as before). As FIQ routines in RISC OS tend to be very small, they
also tend to need no conversion for the ARM600. Hence, to help with compatibility, RISC OS will detect a
write to location &1C (the FIQ vector) and allow this to happen. Other writes to the processor vectors are
left as exceptions. If you need rapid FIQ vector updates then your code must be altered to switch to 32 bit
mode whilst doing the FIQ vector update. ADFS does this and the relevant section of code is shown below
:-

 ; Switch to _32 mode with IRQs and FIQs off
 ; Note must switch interrupts off before switching mode as
 ; there can be an interrupt after the msr instruction
 ; but before the following instruction.
 ; For non-32-bit processors this section reads:
 ; NOP
 ; Push "r1"
 ; ORR r1, r1, #number
 ; NOP
 ; ORR r1, r1, #number
 ; NOP

 mrs AL, r1, CPSR_all
 Push "r1"
 ORR r1, r1, #I32_bit :OR: F32_bit
 msr AL, CPSR_all, r1
 ORR r1, r1, #2_10000
 msr AL, CPSR_all, r1

 NOP
 MOV LR, #FiqVector ; FIQ vector address

 ; Copy handler
40 LDR R1, [R0], #4 ; Get opcode
 TEQS R1, #0 ; All done?
 STRNE R1, [LR], #4 ; No then copy to FIQ area
 BNE %BT40 ; And repeat

 ; And switch back - this bit reads as follows for non-32-bit processors:
 ; Pull "r1"
 ; NOP
 Pull "r1"
 msr AL, CPSR_all, r1

******* and from the headers: ******************

; ARM6 PSR transfer macros

; Condition code symbols

Cond_EQ * 0 :SHL: 28
Cond_NE * 1 :SHL: 28

3

7th April 1994Support Group Application Note No. 256, Issue 1.00

Support Group Application Note No. 256, Issue 1.00

Cond_CS * 2 :SHL: 28
Cond_HS * Cond_CS
Cond_CC * 3 :SHL: 28
Cond_LO * Cond_CC
Cond_MI * 4 :SHL: 28
Cond_PL * 5 :SHL: 28
Cond_VS * 6 :SHL: 28
Cond_VC * 7 :SHL: 28
Cond_HI * 8 :SHL: 28
Cond_LS * 9 :SHL: 28
Cond_GE * 10 :SHL: 28
Cond_LT * 11 :SHL: 28
Cond_GT * 12 :SHL: 28
Cond_LE * 13 :SHL: 28
Cond_AL * 14 :SHL: 28
Cond_ * Cond_AL
Cond_NV * 15 :SHL: 28

; New positions of I and F bits in 32-bit PSR

I32_bit * 1 :SHL: 7
F32_bit * 1 :SHL: 6
IF32_26Shift * 26-6

; Processor mode numbers

USR26_mode * 2_00000
FIQ26_mode * 2_00001
IRQ26_mode * 2_00010
SVC26_mode * 2_00011
USR32_mode * 2_10000
FIQ32_mode * 2_10001
IRQ32_mode * 2_10010
SVC32_mode * 2_10011
ABT32_mode * 2_10111
UND32_mode * 2_11011

; New register names

r13_abort RN 13
r14_abort RN 14
lr_abort RN 14

r13_undef RN 13
r14_undef RN 14
lr_undef RN 14

 MACRO
 mrs $cond, $rd, $psrs
 LCLA psrtype
psrtype SETA -1

4

7th April 1994Support Group Application Note No. 256, Issue 1.00

Support Group Application Note No. 256, Issue 1.00

["$psrs" = "CPSR" :LOR: "$psrs" = "CPSR_all"
psrtype SETA 0 :SHL: 22
]
 ["$psrs" = "SPSR" :LOR: "$psrs" = "SPSR_all"
psrtype SETA 1 :SHL: 22
]
 ASSERT psrtype <> -1
 ASSERT $rd <> 15
 & Cond_$cond :OR: 2_00000001000011110000000000000000 :OR: psrtype :OR: ($rd
:SHL: 12)
 MEND

 MACRO
 msr $cond, $psrl, $op2a, $op2b
 LCLA psrtype
 LCLS op2as
 LCLA op
 LCLA shift
psrtype SETA -1
 ["$psrl" = "CPSR" :LOR: "$psrl" = "CPSR_all"
psrtype SETA (0:SHL:22) :OR: (1:SHL:19) :OR: (1:SHL:16)
]
 ["$psrl" = "CPSR_flg"
psrtype SETA (0:SHL:22) :OR: (1:SHL:19) :OR: (0:SHL:16)
]
 ["$psrl" = "CPSR_ctl"
psrtype SETA (0:SHL:22) :OR: (0:SHL:19) :OR: (1:SHL:16)
]
 ["$psrl" = "SPSR" :LOR: "$psrl" = "SPSR_all"
psrtype SETA (1:SHL:22) :OR: (1:SHL:19) :OR: (1:SHL:16)
]
 ["$psrl" = "SPSR_flg"
psrtype SETA (1:SHL:22) :OR: (1:SHL:19) :OR: (0:SHL:16)
]
 ["$psrl" = "SPSR_ctl"
psrtype SETA (1:SHL:22) :OR: (0:SHL:19) :OR: (1:SHL:16)
]
 ASSERT psrtype <> -1
 [("$op2a" :LEFT: 1) = "#"
 ; Immediate operand

op2as SETS "$op2a" :RIGHT: ((:LEN: "$op2a")-1)
op SETA $op2as

 ["$op2b" = ""
 ; Rotate not specified in immediate operand
shift SETA 0
 WHILE (op :AND: &FFFFFF00)<>0 :LAND: shift<16
op SETA ((op:SHR:30):AND:3):OR:(op:SHL:2)
shift SETA shift + 1
 WEND

5

7th April 1994Support Group Application Note No. 256, Issue 1.00

Support Group Application Note No. 256, Issue 1.00

ASSERT (op :AND: &FFFFFF00)=0
 |
 ; Rotate of immediate operand specified explicitly
 ASSERT (($op2b):AND:&FFFFFFE1)=0
shift SETA ($opt2b):SHR:1
]
op SETA (shift :SHL: 8) :OR: op :OR: (1:SHL:25)
 |

 ; Not an immediate operand
 ["$op2b" = ""
 ; Unshifted register
op SETA ($op2a) :OR: (0:SHL:25)
 |
 ! 1, "Shifted register not yet implemented in this macro!"
]
]
 & Cond_$cond :OR: 2_00000001001000001111000000000000 :OR: op :OR: psrtype
 MEND

; SetMode newmode, reg1, regoldpsr
;
; Sets processor mode to constant value newmode
; using register reg1 as a temporary.
; If regoldpsr is specified, then this register
; on exit holds the old PSR before the mode change
; reg1 on exit always holds the new PSR after the mode change

 MACRO
 SetMode $newmode, $reg1, $regoldpsr
 ["$regoldpsr"=""
 mrs AL, $reg1, CPSR_all
 BIC $reg1, $reg1, #&1F
 ORR $reg1, $reg1, #$newmode
 msr AL, CPSR_all, $reg1
 |
 mrs AL, $regoldpsr, CPSR_all
 BIC $reg1, $regoldpsr, #&1F
 ORR $reg1, $reg1, #$newmode
 msr AL, CPSR_all, $reg1
]
 MEND

This code is also provided on the disc which comes with this Application Note.

6

7th April 1994Support Group Application Note No. 256, Issue 1.00

Support Group Application Note No. 256, Issue 1.00

