
Technical Briefing

The TAOS Operating System:
An introduction

October 1994

Disclaimer: Provided for information only. This does not imply Acorn has any intention or
contract to use or sell any products based on, or using the TAOS Operating System*

Reprinted by kind permission of Tao Systems/TKS Corporation.

© Taos Systems.
Audience

This document, which has been designed to address a wide audience, gives a brief introduction
to the ideas behind Taos and its benefits. We have attempted to keep the technological
language to a minimum although the very nature of the subject matter makes it necessary for
explanations in some of the sections to be quite technical.

Overview

Computing has been getting steadily more restrictive. The move to so called 'open' systems has
not helped improve portability, has not produced credible support for parallel systems and has
not stopped the further development of increasingly complex interfaces between operating
systems and applications. All in all, it has done nothing to improve the lot of the developer or
the consumer.

The Taos operating system addresses these issues. Its existence and success is good news for
technology from small embedded systems through to supercomputers and large scale network
applications.

Taos is not conventional as it has not evolved from an existing operating system. Tao Systems
developed Taos taking into account the commercial and technological realities of the time
whilst also removing the limitations enforced upon the user market.

Key Features

Taos, a compact, general purpose
kernel for parallel systems
embodies a number of vital ideas .

Hardware Independence - Taos
applications run on different
processor architectures without
any re-compilation of programs.

Load-Balancing - Taos provides
an optimum distribution of
processes over the network.

Heterogeneous Processing
-Parallel applications are able to

execute over networks of
dissimilar processors.

Dynamic Binding - Only those
parts of an application which are
needed at any time are loaded into
memory.

Multi-Threading - A piece of
code loaded into memory, is
available to all programs which
need it.

Parallelism - Taos uses a process-
based programming model.

Object Orientation - Taos has
an object-based program design
model.

Asynchronous Messaging
-Messaging does not halt the

sending process.

Minimal Kernel - Taos has a
very compact implementation,
optimising performance and
minimising memory requirements.

The Challenge of Parallel
Systems

Why has parallel processing
remained on the periphery, given
the obvious potential this
technique has to increase the
power of computers way beyond
that possible from increasing the
power of a single processor?

The answer is that, whilst it is

comparatively easy to build
massive parallel computers,
programming them has proven
immensely difficult.

This has been due to a number of
factors including:

• A lack of a suitable general
purpose programming
methodology

• Programs written to run on one
machine tend to be tied to that
one machine, possibly to a
single configuration

• Uncertainty as to which
computation and
communications model to use.

Parallel - Features & Benefits

Taos is a software response to the
challenge of harnessing parallel
hardware. Parallel systems are
complex, comprising thousands of
processors with differing amounts
of memory, link standards and so
on. Taos exploits the power of the
hardware, whilst presenting the
programmer with a clean, simple
and powerful programming
environment.

Taos enables programmers to
think about the design of their
applications in terms of parallel
processes. They are completely
free to build any structure of
processes and communications
they need. It is the programmer's
responsibility to think about their
application and identify the
appropriate decomposition into
parallel processes. But once this is
determined, Taos will manage the
distribution of these processes on
any target network.

Programmers need not concern
themselves with the details of the
actual hardware and network
architecture upon which their
applications will run, including

adjustments to the network size.
Taos grows over all processors
available on the network, and will
expand if more processors are
added; whilst applications grow
over the available processors as
they create objects during their
execution. This means that it is
easier to write 'shrink-wrapped'
applications for parallel computers
using Taos than it is to write them
for single processor operating
systems, as applications code will
run on any processor supported by
Taos.

Taos uses a process and
communications model of
parallelism. Each process can
execute on a separate processor,
and talk by sending messages to
each other. The processes are fast
and can only interact by passing
messages. There is deliberately no
concept of shared memory,
though Taos can be implemented
on shared memory machines.

Taos does not attempt to evolve
from a sequential model;
extracting parallelism from
sequential programs does not and
will not work. So, Taos has been
designed as a perfect fit for parallel
systems. Taos software exploits
parallelism; creating parallel
applications using Taos is easy. By
creating objects and passing
messages, the programmer
generates the opportunity for Taos
to distribute the objects over
processors and thus generate
parallelism.

The final important point to re-
emphasise is that it is up to the
programmer to write their
programs so that the objects can
execute in parallel. Parallelism is
not automatically created, nor
should it be. There are instances
where a program must be
sequential to behave correctly.

Portable - Features & Benefits

Portability is normally taken to
mean that programs written in a
language (such as C) to run on a
particular processor, can be re-
compiled to run on a different
processor without the need to re-
write any (or a small portion) of
the code. This approach has its
limitations as a new compiler
needs to be written for every
processor type introduced. This
can consume a great deal of effort
to achieve.

Taos takes a different approach.
By targeting all compiled code at
the Taos Virtual Processor,
porting relates only to the VP
itself and not to the applications,
whatever language they may be
written in. In effect the portability
has been taken from the language
level to the processor level.
Furthermore, this low level
portability facilitates
heterogeneous processing support.
See Heterogeneous Processing,
below.

Taos can be ported with little
effort to any processor or
communications hardware. The
only part of Taos that needs to be
re-coded to support a new physical
processor, is the Translator. The
Translator is the program which
converts VP code into the native
code for the processor. Once the
translator is written, all
applications written for any
processor, in any language which
compiles to VP, will become
instantly executable on the new
processor type.

So, to reiterate; programs written
on any supported platform will
run on all other supported
platforms without any changes;
you don't even have to recompile.

Virtual Processor - Features &
Benefits

The first Taos virtual processor
was an imaginary 32bit
microprocessor. It has already
been extended to create a 64bit
version and can be taken further
with no limitation.

All programs are compiled or
assembled into virtual processor
code and are kept in this form on
disk. The VP code is translated
into the native code of the
processor on which it is to run
only when it is needed. The
translation occurs as the VP code
is loaded from disk, across the
network and into the memory of
the target processor. This
mechanism is at the heart of Taos'
dynamic binding facilities. See
Dynamic Binding, below.

It would be wrong to think that
this slows the system down. Most
processors are able to translate VP
into native code faster than the
VP code can be loaded from disk
and sent across the network, so
there is no visible overhead.
Indeed, VP code is often more
compact than the native code;
therefore less disk space is used
and code is loaded faster than if it
were the native for the processor.

If there are particular advantages
in using a native version of the
code, then this can be stored on
disk and will be loaded in
preference to the VP version. This
would be because the performance
of the code would benefit from
specific instructions supported in
hardware by a particular processor.

A VP version of the code will run
on any processor for which a
translator is available. There is no
need for re-compilation. see
Portability, above.

Dynamic Binding - Features &
Benefits

Some readers may be familiar with
dynamic linking. Taos dynamic
binding is more than dynamic
linking. Code units are brought
into memory only when needed.
This is how it works:

As a process executes it will ask
for a named piece of code, a tool.
This will be brought in from disk
and translated into native code,
before being executed. This tool
may, in turn, call further tools,
following the above procedure.
Once a tool has finished being
executed, it may be removed from
memory if no other process is
referencing it.

Dynamic binding implies that
many processes may share code
(tools), i.e. multi-threading of
code. This is highly memory
efficient. Once a tool has finished
being executed, it stays on the list
of available tools. Should it be
needed again, this local copy will
be used, thus avoiding a re-load
from disk. Only if memory gets
filled up will the tool be flushed
and subsequent calls require a re-
load from disk.

Taos' dynamic binding and VP
code combine to enable Taos to
exploit heterogeneous parallel
hardware.

Heterogeneous Processing -
Features & Benefits

Taos is able to run on any
hardware for which there is a
translator. This provides the basic
facility which enables
programmers to write code which
can run on a wide range of
hardware. This, together with
Taos' dynamic binding, enables
programs to run over a network of
differing processor and

communications types without
any changes to the code, or any
re-compilation.

Heterogeneous processing is the
exploitation of a range of different
types of processor memory and
communications hardware to
create a versatile parallel
computing machine.

Such machines may be built from
a variety of hardware to support
different kinds of computation.
For example, a vision system
requires a front end to do the
initial work on the raw images
being received, to find edges,
shapes, etc. This stage of the
problem is well suited to data
parallel hardware, whereas the
back end will need to extract
meaning from the shapes, which is
more suited to implementation on
hardware supporting list or
network processing. The ability of
software to run a variety of
hardware is essential for this type
of machine to be successfully
exploited.

Furthermore, Taos provides access
to information about the hardware
available in the network. So,
programs can take advantage of
special purpose hardware to run
specific objects. This means that
sophisticated adaptive programs
can be written within the Taos
model to get the most from
heterogeneous machines.

Heterogeneous processing is the
complete Open System, in which
all aspects of the processing are
distributed across dissimilar
processors, networks and
architectures. It benefits
consumers who can select
processors on the basis of current
price:performance or whichever
criteria they select as their
priority, without prejudicing
future decisions. For

manufacturers, it gives them the
flexibility to improve hardware
design and not become locked
into historical decisions for the
sake of software compatibility.

Minimal Kernel - Features &
Benefits

The key to Taos' applicability to
so many areas lies in its compact
kernel. This is all that is needed
for a processor to provide all of
the Taos services. The Taos
kernel provides all the facilities
needed to support its simple
execution model, yet the whole
kernel is only 12K.

The kernel executes on every
processor in the network from
boot, and its facilities include
memory management and
caching, object creation,
distribution and execution, object
message passing and tool calling.
There are also calls to provide
global name management, local
timer and scheduling, and access
to network hardware information.

The programmer is free to add
objects to the system as
appropriate. Examples of these
may be hardware drivers or file
system objects.

Objects and Messages -
Features & Benefits

Taos objects are also parallel
processes. Each object which Taos
creates is given its own process to
execute it. The difference
between objects and processes lies
what they are about; objects are
about data and code, they occupy
memory space; processes are about
processors, they consume
processor time. Put the two
together and you have an object
which is executing, consuming
memory space and processor time.

A process brings an object to life.

Objects can only interact with
other objects by sending and
receiving messages. As objects can
exist on separate processors,
memory can not be shared
between objects. Taos provides a
light-weight-mail system to
communicate between processors.

Messages are just like letters, you
send them by posting them in a
mail box with an address on it.
You use letters to communicate
with people to whom you cannot
talk directly. So it is also with
Taos objects; you use messages to
communicate with other objects,
as you cannot talk to them
directly since they can be on
separate processors.

When you send a message you
specify the mail address of the
recipient. The sending of mail is
equivalent to popping a letter into
a post-box. Conversely, each
process has a mail-box in which
mail is placed by the messaging
system. Objects receive mail by
checking their mail-boxes.
Messages are typed, so the object
can distinguish between a variety
of possible incoming message
types.

Messages conform to the basic
node format, plus extensions, to
hold the sender's address and the
message's destination address.
When mail arrives it is left on a
list for the receiving process look
at.

Taos provides a simple mechanism
to send messages, there being only
two facilities in its messaging
system, to send and receive
messages. Messages are sent
synchronously; once a message has
been sent on its way the sending
process is free to continue its
execution. Synchronous

communication can be achieved
by waiting for a returned
acknowledge message. Taos'
method of communication ensures
that parallel processes execute
independently of one another for
as much of the time as possible.
An object may need to wait for a
message before it continues
processing, but a sending object
will not wait until the destination
has received it.

The mailing system uses a
distributed algorithm which finds
multiple paths to a destination
and may use more than one route
for each message sent, thus
making best use of all available
communication paths. If one
route is bottlenecked then the
message will get through via
another.

Distributed Processing -
Features & Benefits

The whole conceptual approach
to the design, implementation and
execution of Taos is organic. A
program evolves to fill the
network during runtime. Other
systems introduce bottlenecks by
requiring a system-wide time-
stamp on all messages, or by
maintaining a central control over
the distribution algorithm.

Taos does not attempt to impose a
central control over the execution
of an application. The kernel is
small enough to exist on every
processor, providing local services
to the objects on its processor and
interacting with adjacent
processors' kernels to provide
message passing and process
distribution.

Distribution is based on processes
which pass messages. Load
balancing (the distribution of
processes over the network to

maximise the performance of the
system) is achieved via a simple
algorithm based on the
computation and communication
requirements of the objects.
When an object is created, the
loading on the local processor is
compared with the loading on
neighbouring processors and the
object is allocated to the most
suitable processor.

Each processor holds minimal
routing information for each
communications channel to
enable messages to be forwarded
towards their destinations.
Messages are routed to their
destinations in much the same
way as water flows down through
pipes under the effect of gravity.

During the execution of a
program, processes distribute
themselves over the available
processors as they are created. The
net effect is that objects spread
out over the available processors
in much the same way as a liquid
spreads out over a surface.

Object Orientated Design -
Features & Benefits

Taos was conceived to take
advantage of the reusability and
robustness provided by an object
based approach to design. Object
ideas are exploited at all levels of
Taos, from kernel data structures
to high level classes. Kernel
objects are used to build higher
level messaging passing objects.

The basic data node structure used
by Taos is inherited by all objects
in the system. This enables Taos
to manipulate all entities which
conform to this very simple
structure. Message passing objects,
the messages which they pass to
each other and the tools which
they use to process their data all

conform to this basic data
structure. New types of object may
be introduced by the programmer.

Data nodes are the basic object in
the system.

Tool objects are bits of code, like
formal object orientated
programming's methods, but
without any restrictions on their
use.

Control objects, as they are
known, are objects which have a
process associated with them.
They communicate via messages
and can be distributed over
processors. Such a message passing
object will typically contain
several components which are
references to tool objects. See
Objects and Messages above.

Classes provide higher level
functionality such as the Window
and Polygon World. These are
formed of message passing objects
bound together to form the class
object. A class may make use of
many objects working in parallel.
These objects are made available
to the user in the form of calls to
the class to, for example, create
new windows and manipulate
them using method calls. So the
user just sees the functionality
such as 'open window' and does
not needed to be concerned with
underlying parallelism generated
by the execution of the objects in
the class.

Programmers are encouraged to
use existing messages, tools,
objects, and classes, to create their
own new ones. There are
presently over 3000 tools covering
a wide range of basic functionality
from string and file handing to
classes supporting 3D polygon
worlds. Re-use and relax! A
program to fly-through a fractal
landscape is a under 100 lines

long, when written using the
existing objects.

Object and Memory
Management - Features &
Benefits

Taos executes objects and
manages memory in a very
consistant manner.

The Taos software model uses
processes, messages and objects,
whilst its hardware model uses
processors with local memory and
communication channels between
processors. The way to view
objects is that they consume
memory space, whereas processes
consume processor time. An
object needs a process to enable it
to execute.

Upon creation of an object Taos
allocates the object to a processor
and then allocates a process to
execute the object. A typical Taos
object is a few hundred bytes in
size. So, they lie between fine-
grain Smalltalk-style objects and
course-grain UNIX-style objects.

The lowest level object in Taos is
the 'node. This is the simplest
entity with which Taos deals. It is
a variable sized packet of data
which can be placed in a doubly
linked list. All Taos entities
conform to this basic format. From
this basic building block, other
structures have been grown, such
as tools, messages and other types
of system object.

Nodes have a type field which
identifies what type of Taos object
the node holds and hence how it
should be processed. Pre-defined
types include: Tools, Control
Objects, Bitmaps, Graphical
Objects and Class Objects. The
user can define new types.

Nodes are held in one of two
forms. When the node is on disk

or being communicated across a
network, it is held in 'template'
form, as it is loaded into memory
and made ready to be executed it
is converted to 'process-ready'
form. As the template is
converted to process-ready, any
translation from VP code to the
local processor's native code is
performed, and the node is
inserted into a list of other
process-ready objects (see
Dynamic Binding and
Portability). Once a node is in a
process-ready list it can be
processed. The node type
determines how it is to be
processed. Two types to focus on
are the Control object and the
Tool object.

When a Control object is created
the object's template is distributed
and made process ready on a
processor. A process is made
available to the object and it starts
to execute. A Control object is
made up of one or more
components, which are all Taos
nodes of one type or another.
Each component is executed in
sequence until the last one is
finished when the Control object
closes and its process finishes. The
components may be other Control
objects, tools, graphic objects etc.
Tools are bits of code which
operate on the data defined in a
Control object. For example, they
may perform calculations and send
and receive messages to and from
other Control objects. All
Control objects are created by
another Control object, and each
has the mail address of its parent,
forming a tree. Tools, being nodes,
can be manipulated by the kernel.
A Control object may consist of
some local memory space and
some constituent tools which
operate on the data.

Whilst the Control object is the
smallest entity which can execute
in parallel, it is not the finest
granularity of memory
management. Individual tools can
be loaded from disk, as they are
also Taos objects (conforming to
the basic node format). A Control
object template only holds the i
text names of its constituent
components, not the actual code.
As a Control object is created, the
kernel checks to see if the tools
which the components reference
are already available in memory,
and if they are, simply points to
them. Only if an object is not
present will it be loaded from disk
and be made process-ready. So all
Taos objects can be multi-
threaded. You will never have two
copies of the same object in the
same memory space, unless you
specifically request it (See
Dynamic Binding).

Another feature of this execution
mechanism is that only those
components which are needed are
ever loaded. If you design your
application so that it is built of
hierarchically structured Control
objects, then code will only ever
be loaded if it is executed. If the
path of execution does not pass
the particular component then it
will not be loaded and thus
occupy no space. So, the amount
of memory consumed is kept to an
absolute minimum and is driven
by the execution of the program.

Conclusion

Taos is ground breaking. The push
of new technologies and of
parallel processing in particular
has forced a profound re-think of
what an operating system should
be. Taos provides what is needed.
Elegant, compact and versatile, it
provides the programmer with

simple yet powerful tools to
exploit emerging technologies.

For those carrying the torch of
Open Computing, Taos provides
the ultimate open platform
through distributed processes
across dissimilar processors to
achieve Heterogeneous
Processing. This is achieved by
having totally Portable Code.
Taos-based applications are
written only once, so that software
houses can now channel funding
into the development of new
products rather than having to
allocate vast sums towards the
porting of existing packages from
one platform to another.

Taos' Parallel Processing facilities
generate a Masterless Network
with no practical limit on its size
and providing Linear Scalability
of performance. Developing
products for a parallel
environment has traditionally
been a major stumbling block. But
writing parallel programs for Taos
is as easy as writing programs for a
single processor environment; and
once a program is written it will
run on any processor supported by
Taos without any changes. The
Load Balancing techniques
employed by Taos enable
applications to exploit additional
processing power as it is added,
without re-compilation, even
during the execution of a program.

Taos' Object Orientated
programming techniques have led
to the creation of thousands of
reusable tools which will be used
over and over again in future
software developments. Other
Object Orientated techniques
have so far failed to live up to
expectations, but Taos shows that
this methodology can, if employed
wisely, yield massive benefits to
the programmer and end user.

Taos' lack of protocol layers makes
it very reactive to stimuli and this
combined with its highly efficient
Dynamic Binding, provides the
basis for truly Real Time systems.

Taos' Scalability enables it to
underpin massive superscalable
networks, whilst its Compactness
makes it an obvious choice for
embedded applications.

This only provides a brief
overview of just some of the
features and benefits of Taos;
despite this document's
limitations, what we hope it does
emphasise is the remarkable
flexibility of Taos and the broad
range of markets for which it is
ideally suited.

OCTOBER 1994

APP 764

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

