
Logo is the computer
language which children can
use. It is not a computer
game, but an ingenious
educational aid that will
stitnulate and stretch the
minds of children from as
young as four years old.

At the same time, working
with Logo is fun. It combines
the basic concepts of
geometry, language and
numbers with musical sound
and colourful displays to
provide an exciting learning
environment which children
find totally absorbing. The
system encourages the child
to experiment, which
stimulates imaginative and
logical thinking, and in the
process it introduces young
minds to the creative and

practical process of writing
computer programs.

In addition to developing
an awareness of geometrical
shape and providing limitless
scope for exciting designs,
Logo introduces numerical
concepts which help children
to use numbers purposefully
and with understanding. A
third important educational
feature of Logo is the facility
to play with words, through
which techniques for
exploring language can be
practised.

Acornsoft Logo is the
fullest possible version of this
exciting computer language,
available for both the BBC
Microcomputer and the
Acorn Electron.

Logo in the classroom.
Acornsoft Logo provides an
educational environment that
children find irresistible.
Working with Logo teaches
them a wide variety of skills
basic to literacy and
numeracy as well as
providing limitless scope for
imaginative design. Sound,
colour, words and numbers
combine to educate the child
in a way that makes learning
fun, while the system also
gives children a valuable
beginning in the world of
computer technology.

The floor turtle, which
plots drawings or designs
according to commands from
the workstation, adds a
further exciting dimension to
the potential of Acornsoft
Logo as an educational aid.

Logo in the home. Logo is
as relevant in the home as it
is in the classroom. Used as a
system for creative play it
provides an educational
microworld that fascinates
the whole family. In addition,
Logo in the home gives
children the opportunity to
further explore the
possibilities discovered at
school.

1, 2 & 3. The turtle is the
triangular cursor which
moves around the screen to
plot images. This is the
friendly character at the heart
of Logo's drawing facility.
Images are built on the
screen by writing simple
programs which tell the turtle
which way to move and as
the turtle travels it leaves a
trail behind it. As you can see

here, turtle graphics can be
used to draw just about
anything.

Once it is programmed to
produce a particular
geometrical shape, Logo can
be told to repeat that shape
over and over to 'produce
developing patterns, such as
spirals. A process called
'recursion' allows a modified
version of the same
procedure to be put to work
in producing more
representational figures, like
the trees shown in picture 1.

The child can add the
finishing touch to a picture
by giving it a title, because
text can be incorporated
anywhere on the screen.

4. Here it is possible to see
that the size, shape and
colour of the turtle can be
altered and that animated
shapes can be produced.

5. As many as 32 turtles
can be employed together at
one time by writing a simple
program to HATCH as many
as required. Each turtle is
given its instructions by the
command TELL and they go
to work to produce patterns
of limitless possibility. The
curves and loops shown 'here
are being generated by
simple SIN and COS
operations.

6. Turtle graphics provide
a clear and simple way to
teach the fundamentals of
geometry. Logo can continue
developing shapes as simple
or as complex as required.
Here is a program written to
illustrate the relationships
between the number of sides
in a regular polygon and the
angles which occur in it.

7 & 8. The Logo Editor can
be used to change one,
several or all procedures at
once, using simple
commands. The other screen
here illustrates Logo's
powerful trace facility which
is invaluable for locating any
mistakes which may have

occurred during
programming. Sixteen
different levels of tracing
allow procedure calls,
statements and/or
assignments to variables to
be listed as they are carried
out.

Acornsoft Limited
Betjeman House
104 Hills Road
Cambridge CB2 1LQ
Telephone
(0223) 316039

ARITHNIETIC
ASN <number> Returns the angle (in degrees)
whose sine value is <number>.
ATN <number> Returns the angle (in degrees)
whose tangent is <number>.
COS <number> Returns the cosine of <number>
degrees.
DECS Returns the number of decimal places
currently being worked to.
EXP <number> Returns the exponential function
of <number>.
HEX <hexword> Returns the decimal value of
<hexword>.
HIBYTE <integer> Returns the high byte of the
2-byte value <integer> ie QUOTIENT <integer>
256.
INT <number> Returns the integer part of
<number>, any decimal part being stripped off.
LOBYTE <integer> Returns the low byte of the
2-byte value <integer> ie REMAINDER
<integer> 256.
LN <number> Returns the natural logarithm of
<number>.
PI Returns the value of pi.
tPRODUCT <number1> <number2> . . .
Returns the product of the numbers input.
QUOTIENT <number1> <number2> Returns
the integer part of <number1>/<number2>. If
<number2> is zero an error is generated.
RANDOM <integer> Returns a random non-
negative integer less than <integer>.
REMAINDER number1> <number2>
Returns the remainder of <number1>/
<number2>. If <number2> is zero an error is
generated.
RERANDOM <integer> Seeds the random
number generator with <integer> to produce a
repeatable sequence of random numbers. If no
parameter is given then a random value is used to
seed it.
ROUND <number> Returns the value of
<number> rounded to the nearest integer.
SETDECS <integer> Controls the handling of
numbers by setting the number of decimal places to
<integer> if <integer> is in the range 0 to 8.
SIN <number> Returns the sine of <number>
degrees.
SQRT <number> Returns the square root of
<number>.
tSUM <number1> <number2> . . . Returns the
sum of the numbers input.
TAN <number> Returns the tangent of
<number> degrees.
+ Adds the numbers on either side and returns
result.
- Subtracts the number on the right from the
number on the left and returns result.
* Returns the product of the numbers on either
side.
/ Divides number on left by number on right and
returns result.
> Returns TRUE if the number on the left is greater
than the number on the right and FALSE otherwise.
< Returns TRUE if the number on the left is less
than the number on the right and FALSE otherwise.
= Returhs TRUE if the objects on the left and right
are equal and FALSE otherwise.

COMMENTS
\ Causes the rest of the line to be treated as a
comment.

DEBUG
TC Shows the chain of current procedure calls
along with their inputs.
TRACE <integer> Tells the system to trace parts
of the program:

TRACE 1 traces every line
TRACE 2 traces every procedure call
TRACE 4 traces every primitive and buried
procedure
TRACE 8 pauses between trace messages

These can be combined.

DEFINING and ERASING
BURY <name or list> Prevents the procedure(s)
specified being listed, edited or saved.
BURYALL Prevents all procedures being listed,
edited or saved.
COPYDEF <newname> <fromname> Copies
the definition of the procedure <fromname> and
calls it <newname>.
DEFINE <name> <list> Allows you to write
procedures that define other procedures, <name>
is the procedure to be defined; <list> helps with
the definition and consists of a series of sublists.

EDALL Edits all procedures and names in
workspace.
EDIT (ED) <procname or list> Puts the
procedure(s) specified into the edit buffer so
allowing you to edit them. If the input is absent the
current contents of the edit buffer will be displayed.
EDN <varname or list> Edits the variable(s)
specified.
EDNS Edits all the variables in the workspace.
EDPS Edits all the procedures in the workspace.
END Defines the end of a procedure.
ERALL Erases all procedures and variables from
the workspace.
ERASE (ER) <procname or list> Erases the most
recent invocation of the procedure(s) specified from
the workspace.
ERN <varname or list> Erases the most recent
invocation of the variable(s) specified from the
workspace.
ERNS Erases all invocations of all variables from the
workspace.
ERPS Erases all procedures from the workspace.
NOREDEF Prevents primitives being redefined.
REDEF Allows primitives to be redefined.
REDEFQ Returns TRUE if primitives can currently
be redefined and FALSE otherwise.
TEXT <procname> Returns the definition of
<procname> as a list of lists.
TO <procname> <parameters> Tells Logo that
you are defining a procedure <procname> which
has the inputs <parameters>.
UNBURY <procname or list> Allows the
procedure(s) specified to be listed, edited or saved.
UNBURYALL Allows all procedures in workspace
to be listed, edited or saved.

EDITING COMIVIANDS
arrow keys Allow the cursor to be moved around
the screen.
CTRL/FUNC left Moves the cursor to the start of
the current Logo line.
CTRL/FUNC right Moves the cursor to the end of
the current Logo line.
CTRL/FUNC up Moves the cursor to the top of
text.
CTRL/FUNC down Moves the cursor to the
bottom of the text.
DELETE Deletes the character before the cursor.
CTRL/FUNC D Deletes the character at the cursor
position.
CTRL/FUNC U Deletes the current Logo line.
CTRL/FUNC L Deletes from the current cursor
position to the end of the current Logo line.
CTRL/FUNC N Inserts a new line below the
current cursor position.
COPY Exits from the editor, preserving any
changes made.
ESCAPE Exits from the editor without altering the
original procedure(s)/name(s).

FILES
CAT Catalogues the current filing system.
ERFILE <filename> Deletes <filename> from
the current filing system.
LOAD <filename> Loads the contents of the file
<filename> into your workspace.
READPICT <filename> Copies the picture in the
file <filename> on to the screen, changing the
screen mode, number of lines of text, palette and
type of screen if necessary.
SAVE <filename> <procname or list> Creates
the file <filename> and saves into it all variables
and property lists held in your workspace. If the
second input is present then the procedures
specified will be saved, otherwise all procedures
will be saved. If you call a procedure LOADINIT and
save it, then when it is loaded again it will be
executed automatically.
SAVEPICT <filename> Creates the file
<filename> and saves into it the graphics part of
the screen.

FLOOR TURTLES
BACK (BK) <number> Moves the turtle back by
<number> steps.
EXPLORE <number> Moves the turtle forward
by <number> steps or until it hits something and
returns the number of steps which it managed to
cover.
FLOOR Tells Logo that all subsequent commands
apply to the floor turtle rather than the screeri turtle.
FORWARD (FD) <number> Moves the turtle
forwards by <number> steps.
HOOT Generates a brief sound from the turtle's
speaker, if one exists, otherwise causes a BEEP
from the computer.

LEFT (LT) <number> Turns the turtle left by
<number> degrees.
PENDOWN (PD) Lowers the pen so that the turtle
leaves a trail behind it when it moves.
PENUP (PU) Lifts up the pen so that the turtle does
not leave a trail behind it when it moves.
PENUPQ Returns TRUE if the turtle's pen is up and
FALSE otherwise.
RIGHT (RT) <number> Turns the turtle right by
<number> degrees.
SCREEN Tells Logo that all subsequent commands
apply to the screen rather than the floor turtle.
SCREENQ Returns TRUE if the screen turtle is in
use and FALSE otherwise.
SENSE <number> Returns the value TRUE if the
turtle sensor <number> is touching anything and
FALSE otherwise.

KEYBOARD
CI Clears the keyboard input buffer. Any keys
pressed before CI is issued will be forgotten.
INKEY <integer> If <integer> is in the range 0 to
3276 INKEY waits for that number of tenths of
seconds or until a key is pressed. If no key was
pressed, the empty word is returned; if a key was
pressed the one-character word CHAR <code> is
returned, where <code> is the ASCII value of the
key. If <integer> is negative a specific key is tested
and the value TRUE returned if that key is currently
pressed, and FALSE otherwise.
ICEYQ Returns the value TRUE if a key has been
pressed and its value has not been used by RC,
READWORD or READLINE, and FALSE otherwise.
RC Reads the next character from the keyboard;
waits for one to be typed if none is available.
READLIST (RL) Reads the following line from the
keyboard in the form of a list.
READWORD (RW) Reads the first word of the line
entered from the keyboard.

LOGICAL
tALLOF <t/f> <t/f> . . . Returns TRUE if all
expressions are true and FALSE otherwise.
tANYOF <t/f> <t/f> . . . Returns TRUE if at least
one of the expressions is true and FALSE otherwise.
NOT <t/f> Returns TRUE if the expression is false
and FALSE if the expression is true.

MANY TURTLES
ALIVEQ <integer> Returns TRUE if turtle
<integer> is 'alive' and FALSE otherwise.
FORGET <integer or list> Deletes the turtle or
turtles specified from the list of turtles currently
'alive' . TURTLE 0 cannot be deleted.
tHATCH <integer or list> <integer2 or list2>
Creates the turtle or turtles with the numbers given
by the first input at the current turtle position, with
the shape of the current turtle or with a shape given
by SETSH of the second input if one is given. Each
input must be different from all identifiers of
currently 'alive' turtles and must be in the range
1 to 32.
TELL <integer or list> Determines which turtles
all the subsequent primitives will apply to. The
effect of TELL is cancelled by another TELL.
TURTLES Returns a list of all turtles currently alive.
WHO Returns a list of all turtles currently being
talked to.

MISCELLANEOUS
CALL <address> Calls the machine code routine
at <address>. On entry to the machine code, the
A, X and Y registers are set up from bytes 0, 1 and 2
respectively of DATAAREA. On return bytes 0 to 3
are set up from the A, X, Y and P flags/registers
respectively.
DASIZE Returns the size of the data area in bytes.
tDATAAREA <integer> Returns the byte
address of a data area reserved by Logo of size
<integer> bytes.
DEPOSIT <address> <byteinteger> Places the
value <byteinteger> in the location with address
<address>.
EXAMINE <address> Returns the contents of
the location <address>.
HIBYTE <integer> Returns the high byte of the
2-byte integer value <integer> ie QUOTIENT
<integer> 256.
LOBYTE <integer> Returns the low byte of the
2-byte integer value <integer> ie REMAINDER
<integer> 256.
OSBYTE <integer> <integer> <integer>
Calls the operating system general purpose routine
with the A register and optionally the X and Y
registers. The contents of the X and Y registers are
returned as the low and high byte of the result.

OTHER INPUT AND
ADVAL <integer> If <i
4 it returns the value of th(
converter channel.
BEEP Generates a brief s(
loudspeaker.
BUTTONQ <integer> I
the button on the appropr
pressed and FALSE other
or 2 then an error is gener(
ENVELOPE 14*<integ
and pitch of sounds create
operation.
PRSCREEN Copies the c
the printer unless the scre
which case it does nothin
SOUND <channel> <a
<duration> Produces a
loudspeaker.
TIME Returns the time in
the computer was switch(
operation was last used.T
zero at 26214 (approx 43 m
TIMERESET Resets the t
WAIT <tenths of secs>
running for the number of
or until ESCAPE is press&
WS Returns a list of two in
total number of bytes free
the maximum workspace
individual item.

PROGRAM CONTROL
BREAK Breaks out of REF
loops.
CATCH <catch label>
THROW <catch label> is
execution, control returns
<catch label>.
CATCH "TRUE <list> C
CATCH "ERROR <list>
suppresses error message
CATCH "ESCAPE <list:
ESCAPE key.
CONTINUE (CO) Resum
has been executed or ESC
DOFOREVER <list> Re
until a BREAK, LOOP, OU'
encountered, an error occ
executed and moves cant]
ERRMSG <list> Prints tl
message when <list> col
form given by ERROR.
ERROR Returns informati
occurred whilst a CATCH
information is in the form (
the error number and the t
error or empty lists if non-(
GO <label> Transfers cc
following <label> in the s
IF <t/f> <list1> <list2:
TRUE then <list1> is exe(
is executed Tit exists.
IFFALSE <list> If the res
TEST in the current proce(
is executed otherwise it d
IFTRUE <list> If the rest
TEST in the current proce(
executed otherwise it doe:
LABEL <label> Used in
primitive - GO <label> p(
instruction following <lat
LOOP Returns control to t
REPEAT or DOFOREVER .
REPEAT, increments ther
OUTPUT (OP) <object>
when control is passed ba(
which called it.
PAUSE Suspends the exe(
until CONTINUE is typed i
instructions to debug youi
REPEAT <integer> <li:
<integer> times unless in
DOFOREVER.
RUN <list> Runs <list>
in directly.
SETERR <list> Regeneri
been trapped by CATCH "1
to take action about it your
STOP Is only allowed with
the procedure and returns
which it was called.
TEST <t/f> Tests wheth(
TRUE or FALSE and remer
subsequent IFFALSE and
THROW <catch label>
primitive to dictate control

Copyright o Acornsoft Limited 1984

TPUT
teger> is between 1 and
analogue to digital

and from the machine's

eturns the value TRUE if
ate joystick is being
ise. If <integer> is not 1
.ed.
)r> Controls the volume
with the SOUND

ntents of the screen to
)11 is in modes 3, 6 or 7 in

plitude> <pitch>
ound from the internal

;enths of a second since
d on or the TIMERESET
71e time 'wraps round' to
inutes 41.44 seconds).
me counter to zero.
Stops the program
;enths of a second input
E.
tegers, the first being the
n workspace, the second
available for one

EAT or DOFOREVER

:list> Runs <list> and if
called during its
to the primitive after

atches any THROW.
Catches errors and
3.
> Catches any use of the

DS running after a PAUSE
APE has been pressed.
eats <list> forever or
PUT or STOP is
rs or a THROW or GO is
ol out of the list.
le appropriate error
[tains information in the

on about an error that has
'ERROR is in effect. The
1a list with two items,
NO parameters of the
xistent.
ntrol to the instruction
ame procedure.
>If the expression is
uted otherwise <list2>

ult of the most recent
lure was FALSE, <list>
es nothing.
lt of the most recent
lure was TRUE, <list> is
3 nothing.
conjunction with the GO
.sses control to the
el>.
'le beginning of the
ist and, in the case of
epeat count.
Returns <object>
ck to the procedure

ution of a procedure
a, allowing you to enter
procedure.
4> Runs <list>
structed otherwise as in

as if it were being typed

ates an error which has
ERROR if you decide not
self.
in a procedure. It stops
-control to the point at

)1. the expression is
bers the result for
FTRUE instructions.
s used with the CATCH
during execution.

THROW "LEVEL Returns control to the most
recent command level.
THROW "TOPLEVEL Returns to the highest
command level.
TIDYForces a garbage collection to be carried out.

PROPERTY LISTS
ERPLIST <name or list> Erases the property
name(s) specified, along with their properties.
ERPLISTS Erases all property names and their
properties.
GPROP <name> <propname> Returns the
value associated with a specific property
<propname> of the word <name>. If there is no
such <name> or no such property of <name> it
will return the empty list.
PLIST <name> Returns the property list of the
word <name>, if there is no such property list it
will return the empty list.
PPALL Prints the property list of every name.
PPROP <name> <propname> <word or list>
Gives the word <name> a specific property
<propname> with the value <word or list>.
PPS <name or list> Prints the property list(s)
associated with the name(s) specified.
REMPROP <name> <propname> Removes
the property <propname> from the property list of
the word <name>.

SCREEN
CT Clears the text area of the screen and puts the
cursor at its top left hand corner.
CURSOR Returns the text cursor position as a list
of its x and y coordinates.
MODE Returns the current screen mode.
PAL <integer1> <integer2> Sets the logical
colour <integer1> to the physical colour
<integer2>.
PM <integer> Ensures that sufficient space is
reserved in memory for you to be able to change to
screen mode <integer>.
tPRINT (PR) <word or list> . . . Outputs the
word(s) specified at the text cursor position,
separated by spaces and followed by a carriage
return.
SCR Returns the value of the screen's aspect ratio.
SETCURSOR <list> Places the text cursor at the
position represented by <list>, which consists of
the column number followed by the line number.
SETMODE <integer> Changes the current
screen mode to MODE <integer>.
SETSCR <integer> Sets screen aspect ratio to
<integer>.
SHOW <object> Prints the contents of <object>
on the screen, followed by a carriage return.
TS Reserves the entire screen for text and clears it.
tTYPE <word or list> . . . Outputs the word(s)
specified at the text cursor position. It does not
insert spaces between them nor a carriage return at
the end.
tVDU <number> or "; or <list> . . . Allows you
to send control codes to the VDU driver.

SCREEN PRINT
PO <procname or list> Prints the definition of the
procedure(s) specified.
POALL Prints the definition of every procedure and
the contents of every variable that is currently in
your workspace.
PONS Prints the name and value of every variable
that is currently held in your workspace.
POPS Prints out the definition of every procedure in
your workspace
POTS Prints out the title line of every procedure in
your workspace.

SPECIAL WORDS
"ERROR "ESCAPE
'TALSE "TRUE
"LEVEL "TOPLEVEL

TURTLE GRAPHICS
BACK (BK) <number> Moves the turtle
backwards by <number> steps.
BG Returns an integer which represents the logical
background colour.
CLEAN Clears the graphics area, leaving the turtle
where it is.
CS Clears the graphics area and returns the turtle to
the centre of the screen.
DISTANCE <list> Returns the distance from the
current turtle position to the point on the screen
addressed by <list> which is in the form [x,y].
DOT <list> Returns an integer which represents
the colour of the dot at the position specified by
<list> which is in the form [x,y.

DRAW <integer> Resets the screen and reserves
<integer> lines at the bottom of the screen for text
(the default being 6).
FENCE Sets a fence around the graphics area and
displays an error message if the turtle hits it.
FORWARD (FD) <number> Moves the turtle
forward by <number> steps.
t HEADING <integer> Returns the direction in
which the turtle <integer> is pointing in degrees.
HIDETURTLE (HT) Hides the turtle from view
until SHOVVTURTLE is used.
HOME Returns the turtle to the centre of the
screen, leaving a track if the pen is down.
LEFT (LT) <number> Turns the turtle left by
<number> degrees.
t PC <integer> Returns an integer which
represents the current pen colour of turtle
<integer>.
PE Tells the turtle to erase all lines over which it
passes as it moves. The eraser can be removed by
using PENDOWN, PENUP, PENRESET or PX.
tPEN <integer> Returns the current pen
parameters of turtle <integer> in the form of a list:
penstate — either PU, PD, PE or PX
shown — TRUE if turtle is visible, FALSE otherwise
colour — pen colour
nib — current graphics option
pentype — colour option
PENDOWN (PD) Tells the turtle to draw lines
when it moves.
PENRESET Resets the turtle state, so that the
turtle is shown, the pen is down, colour is 7, nib is 8
and pen type is O.
PENUP (PU) Lifts the turtle's pen up so that no
lines are drawn when it moves.
PENUPQReturns TRUE if the turtle's pen is up and
FALSE otherwise.
tPOS <integer>Returns the position of turtle
<integer> in the form of a list.
PX Sets a reversing pen.
RIGHT (RT) <number> Turns the turtle right by
<number> degrees.
SECT <number1> <number2> <number3>
Draws a sector through angle <number2> with
radius <number1> and thickness <number3>.
SETBG <integer> Sets the background to the
colour represented by <integer>.
SETDOT <list> Puts a dot at the position
represented by <list> which is in the form [x,y], in
the current pen colour and without moving the
turtle.
SETHEADING (SETH) <number> Turns the
turtle so that it is pointing in the direction
<number> degrees.
SETNIB <integer> Sets the BASIC PLOT code
value to <integer> to give dotted lines, triangles
etc.
SETPC <integer> Changes the logical pen colour
to the colour represented by <integer>.
SETPEN <list> Sets the pen state to the condition
determined by <list> which has five parameters:
penstate, shown, colour, nib and pentype.
SETPOS <list> Moves the turtle to the position
specified by <list> which is in the form [x,y].
SETPT <integer> Defines the way in which
colours are to be used, eg Exclusive-ORed or
ANDed on to the screen.
SETSH <integer or list> Allows the turtle to be
redefined by sending one or a list of VDU
commands describing what you want it to be.
SETX <number> Moves the turtle horizontally to
the point with the x-coordinate <number>.
SETY <number> Moves the turtle vertically to
the point with the y-coordinate <number>.
t SH <integer> Returns the list of VDU
parameters which define the current shape of turtle
<integer>.
SHOWTURTLE (ST) Makes the turtle visible.
STAMP Causes an image of the turtle to be left on
the screen at its current position.
tTITLE <word or list> . . . Prints the object(s)
you give it at the current turtle position.
TOWARDS <list> Returns a value which
indicates the heading needed to make the turtle
face the position given by <list> which is in the
form [x,y].
WINDOW Turns the screen into a window which
shows only part of the field in which the turtle can
move. If the turtle moves out of this window it will
still move as instructed but will not be visible.
VVRAP Places a fence around the screen so that
when the turtle hits the fence it reappears on the
opposite side of the screen.
tXPOS <integer> Returns the x-coordinate of
the current position of turtle <integer>.
tYPOS <integer> Returns the y-coordinate of the
current position of turtle <integer>.

TESTS ON OBJECTS
BURIEDQ <procname> Returns the value TRUE
if the procedure <procname> is buried and FALSE
otherwise.
DEFINEDQ <name> Returns TRUE if <name>
is the name of a procedure or primitive and FALSE
otherwise.
EMPTYQ <object> Returns TRUE if <object> is
the empty word of empty list and FALSE otherwise.
LISTQ <object> Returns TRUE if <object> is a
list and FALSE otherwise.
MEMBERQ <object1> <object2> Returns the
value TRUE if <object1> is an element of
<object2> and FALSE otherwise.
NUMBERQ <object> Returns TRUE if <object>
is a number and FALSE otherwise.
PRIMITIVEQ <name> Returns TRUE if
<name> is a primitive and FALSE otherwise.
THINGQ <name> Returns TRUE if <name> has
some value and FALSE otherwise.
WORDQ <object> Returns the value TRUE if
<object> is a word and FALSE otherwise.

VARIABLES
LOCAL <name> <value> Hides any previous
invocation of <name> from the current procedure
or list and replaces it with a new one containing
<value>. The previous value is restored on leaving
the procedure or list, when THROW transfers
control to a procedure at a higher level, when ERN
is used to erase it or when an error is encountered.
MAKE <name> <value> Assigns the value
<value> to <name>.
THING <name> Returns the contents of the
variable <name>.

WORDS AND LISTS
ADDITEM <integer> <object1> <object2>
Returns an object made up of <object1> with
<object2> added at position <integer>.
ASCII <word> Returns the ASCII value of the first
character of <word>.
BUTFIRST (BF) <object> Outputs everything
except the first element of <object>. Using it on
empty words and lists will generate an error.
BUTLAST (BL) <object> Outputs everything
except the last element of <object>. Using it on
empty words and lists will generate an error.
CAPS <object> Converts the letters of <object>
to capitals.
CHAR <integer> Returns a one character word
whose ASCU code is <integer>.
COUNT <object> Returns the number of
elements in <object>.
ERITEM <integer> <object> Returns an object
which is <object> with the element at position
<integer> removed.
FIRST <object> Returns the first element of
<object>. Using an empty word or list will
generate an error.
FPUT <object1> <object2> Produces a new list
by putting <object1> at the beginning of
<object2>.
ITEM <integer> <object> Returns the element
in position <integer> of <object>. If the
<integer>th element doesn't exist then an error is
generated.
LAST <object> Returns the last element of
<object>. Using an empty word or list will
generate an error.
tLIST '<object> <object> . . . Returns a list
whose elements are the objects specified.
LPUT <object1> <object2> Produces a new list
by putting <object1> at the end of <object2>.
MEMBER <object1> <object2> If <object1>
is an element of <object2> it returns the element
number, otherwise it returns zero.
tSENTENCE (SE) <object> <object> . . .
Combines the objects specified to form one list.
SETITEM <integer> <object1> <object2>
Returns an object which is <object1> with
element <integer> changed to <object2>.
tWORD <word> <word> . . . Returns a word
that is built up from the words specified.

t The inputs to these primitives may be repeated one or more times.
t If the input shown is used then the primitive and the input must be enclosed in brackets. The input defaults to O.

	Page 1
	Page 2
	Page 3
	Page 4

