
MIDI

USER GUIDE

MIDI USER GUIDE

Copyright © Acorn Computers Limited 1989
Designed and written by Acorn Computers Technical Publications Department

Neither the whole nor any part of the information contained in, or the product
described in this Guide may be adapted or reproduced in any material form except
with the prior written approval of Acorn Computers Limited.

The products described in this Guide are subject to continuous development and
improvement. All information of a technical nature and particulars of the products
and their use (including the information and particulars in this Guide) are given by
Acorn Computers Limited in good faith. However, Acorn Computers Limited cannot
accept any liability for any loss or damage arising from the use of any information or
particulars in this guide, or any incorrect use of the products. All maintenance and
service on the products must be carried out by Acorn Computers' authorised dealers.
Acorn Computers Limited can accept no liability whatsoever for any loss or damage
caused by service, maintenance or repair by unauthorised personnel.

If you have any comments on this Guide, please complete and return the form at the
back of the Guide to the address given there. Any other correspondence should be
addressed to:

Customer Services
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN

Information can also be obtained from the Acorn Support Information Database (SID)
. This is a direct dial viewdata system available to registered SID users. Initially,
access SID on Cambridge (0223) 243642: this will allow you to inspect the system
and use a response frame for registration.

ACORN and ARCHIMEDES are trademarks of Acorn Computers Limited.

First published November 1989
Published by Acorn Computers Limited
Part number 0480,354
Issue 1

ii

Contents

Introduction

Introducing MIDI

Programmer's guide to
MIDI

Software interrupts
(SWIs)

Timing

About this Guide 1
A3000 User Port 1
Installing the expansion cards 1

What is MIDI? 3
What the MIDI interface can do 3
Connecting up 4
Making sounds 6

Writing programs 7
Application software 7
Software structure 7
Data format 8
Data types 9
Channel modes 9
MIDI interpreter and sound system driver 10
MIDI ports 11
MIDI *commands 11

General 13
General interface commands 14
Data reception eommands 28
Data transmission commands 31
Service calls 44
Events 45
Programming with software interrupts 46

Timing 47
Reception of special messages 50
Exceptions 51

Contents iii

MIDI interface data
specification

A3000 User Port

Bibliography

End-user licence
conditions for MIDI
List of software
interrupts (SWIs)

Summary specification 53
Summary of status bytes 53

General 55
The A3000 Implementation 56
Incompatibilities with the BBC User Port 56
Using the interface 57
An example 58
Technical specifications 59
User Port address allocations 59
A3000 User Port / MIDI block diagram 59

MIDI 61
A3000 User Port 61

63

65

iv Contents

Introduction

About this Guide

A3000 User Port

Installing the
expansion cards

The MIDI expansion cards available for the Archimedes and A3000 computers
provide a MIDI (Musical Instrument Digital Interface) compatible with the
International MIDI Association specification. MIDI enables you to eonneet
synthesisers, rhythm machines, home computers and sequencers together through a
standard interface.

The MIDI User Guide is intended to provide an introduction to MIDI for first-time
users, as well as a reference source for experieneed users and programmers who may
wish to write software for the MIDI interface.

The Guide documents the MIDI system software used with the A3000 User
Port/MIDI expansion card, the Archimedes MIDI expansion eard and the Archimedes
I/O expansion card (with the MIDI upgrade).

This Guide should be read in conjunction with the RISC OS User Guide and the RISC
OS Programmer's Reference Manual.

Instructions on how to use the A3000 User Port are included in a section at the back
of this Guide.

The A3000 User Port/MIDI expansion card must be fitted by an Acorn Authorised
Dealer. Take your A3000 computer (in its original packaging) to an Acorn Dealer
who will install it for you. The Dealer may make a charge for this service.

The Archimedes MIDI expansion card and the Archimedes I/O expansion card can be
fitted by the user. Follow the installation instructions given in the Expansion card
installation instructions. If you are adding MIDI capability to your Archimedes I/O
expansion card, follow the instructions given in the MIDI module installation
instructions.

Introduction 1

Using the Archimedes
I/O expansion card with
the MIDI module
upgrade

Using MIDI with
RISC OS 2.00

The Archimedes I/O expansion card (with the MIDI module upgrade) is not
guaranteed to receive MIDI data reliably under all circumstances. Under unusual
conditions, the worst-case interrupt latency required by the hardware cannot be met
by RISC OS, and received data can be lost (overrun errors will occur under such
circumstances). This limitation only affects the Archimedes I/O expansion card with
the MIDI module.

The following modules are required for the optimum function of MIDI with RISC
OS 2.00.

IrqUtils – version 0.09

HourGlass – version 2.02

SoundScheduler – version 1.13.

These modules are normally incorporated as part of any MIDI software product
available for the Archimedes and A3000 computers; they are therefore not needed by
end users. However they are available on the RISC OS 2.00 Extras disc, which is
available from Acorn Authorised Dealers. The modules can also be obtained from the
Acorn Support Information Database (SID).

Subsequent releases of RISC OS will have these modules incorporated as part of the
operating system.

2 Introduction

Introducing MIDI

What is MIDI ?

What the MIDI
interface can do

MIDI is the acronym for Musical Instrument Digital Interface. It is a means of
connecting electronic instruments, sueh as synthesisers and drum machines, to each
other and to sequeneers and eomputers, so that they can interact. Thus music can be
stored and edited by a computer, to be played on a synthesiser or rhythm machine, or
a synthesiser can control a rhythm machine via MIDI. This is possible because MIDI
provides a standard form of communication.

Each MIDI instrument will have a transmitter and a receiver, or occasionally just one
of these, using a standard code to eonvey information about keys pressed, note
lengths and a variety of other possible messages, such as which of the different voices
of a synthesiser is to play the note.

These voices are the different programmed sounds whieh the instrument ean make,
such as piano or bongo.

By installing the MIDI interface in your eomputer and connecting a music keyboard,
you can use the computer as a musical instrument. The sound can be played through
the speakers on the computer, through headphones or your hi-fi system.

The eomputer ean also be used to extend the capabilities of the instruments you have,
provided they have M1DI installed. By writing or buying application programs much
more becomes possible. You can write such programs yourself using the high speed
BASIC V on the computer.

Introducing MIDI 3

Connecting up Warning: MIDI sockets carry digital information; audio connections (such as
those from your hi-fi system) must NEVER be made to these sockets as serious
damage could result.

MIDI instruments must be conneeted to your computer via MIDI leads. These may
look the same as your ordinary hi-fi leads, but the eables are different. The MIDI
leads will have a five pin DIN plug on each end, connected by a shielded, twisted-pair
cable, and are available from your local music shop.

Your music keyboard or synthesiser must have MIDI installed. This is sometimes an
optional extra, so cheek before you buy.

Connect the MIDI IN socket on the instrument to the MIDI OUT socket on the MIDI
expansion card, and the MIDI OUT socket on the instrument to the MIDI IN socket
on the expansion eard:

4 Introducing MIDI

To connect more than one instrument at a time the instruments should be fitted with
MIDI THRU sockets. Refer to the instrument user guide for details. You can use the
speakers in the computer to provide the sound, or you can plug personal stereo
headphones into the Headphones 32Ohm socket on the back of your computer, using
a 3.5mm jaek plug. You can also connect this socket to certain inputs on hi-fi
amplifiers. Consult the Welcome Guide for further

Introducing MIDI 5

Making sounds

information. The outputs of various instruments, including the computer, can be
combined in an audio mixer and used to drive a hi-fi system in the normal way.

To check that you have connected your interface satisfactorily, type:

*modules

The system will now list the modules you have available, which should include:

MIDI

If not, your MIDI interface has not been installed correctly. Refer back to your
supplier or check your installation instructions, if you have made the installation
yourself (Archimedes only).

Assuming that MIDI is on the list, type:

*midisound in

Now when you play the music keyboard it will play the computer sound system. You
can either type:

*speaker on

to hear it from the built-in speaker or, for higher quality stereo sound, plug a pair of
headphones or your hi-fi system into the Headphones 32Ohm socket at the back of the
computer.

If, when you type *voices, a number of voices is listed on your screen, then you
can switch your system between these voices using the program change buttons on
your instrument.

6 Introducing MIDI

Programmer's guide to MIDI

Writing programs

Application software

Software structure

The very fast BASIC V enables you to write application programs in BASIC which
use your MIDI interface. To do this, use the software interrupts listed in the next
chapter.

Before writing any major application programs, we recommend that you obtain a copy
of the MIDI specification from the address given in the Bibliography at the end of the
Guide. A useful book on MIDI is mentioned there as well.

The full potential of the MIDI system can be realised using application software. Only
packages specifically written for the RISC OS operating system are suitable. This
chapter should be read in conjunction with the Programmer's Reference Manual.

The RISC OS MIDI interface consists of hardware and software to give an interface
for both input and output of data to MIDI specification 1.0.

The software is in six main parts:

• A low-level interrupt routine which buffers data to and from the UART (
Universal Asynchronous Receiver Transmitter), which transmits and reeeives
the raw MIDI data. This routine also deals invisibly with transmission and
reception of the System Real Time messages used to synchronise the system.

• A combined MIDI interpreter and sound system driver which can be driven
from the incoming or outgoing MIDI data.

• A millisecond routine which time-stamps the incoming MIDI data, and which
can time scheduled outgoing data.

Programmer's guide to MIDI 7

Data format

• A sound interrupt (SIRQ) synchronous routine for background operation, and
which can time scheduled outgoing data.

• A set of SWI (SoftWare Interrupt) calls (listed in the next chapter) to provide an
interface between the application program and the MIDI interface.

• A set of operating system *commands.

The MIDI software is controlled and communicated with using SWI calls, and can also
be controlled, to a limited extent, with *commands and via the MIDI interface. The
software provides low-level support for receiving and transmitting data bytes allowing
great flexibility for an application program.

MIDI messages have one status byte followed by one or two data bytes, except
System Real Time and System Exclusive messages – see below.

• Channel Voice messages contain a four-bit number in the status byte which
addresses the message to one of 16 channels. An instrument is assigned to a basic
channel over which mode messages are sent. If the instrument has several voices
these can be assigned extra channels to control the voices separately.

• System messages are not given channel numbers; there are three types, as follows:

• Common messages are for all the units in a system.

• Real Time messages are for all the units in a system and contain only status
bytes. They can be sent at any time, even between bytes of another message.

• Exclusive messages include a manufacturer's identification code, and any
number of data bytes, terminated by an 'end of exclusive', or another status
byte. Only equipment which recognises the identification will accept the
data, the format of which is specified by the manufacturer.

8 Programmer's guide to MIDI

Data types

Status bytes

Running status

Data bytes

Channel modes

Status bytes are eight bits with the most significant bit (MSB) set (1). These identify
the message type. Status bytes command the receiver to adopt their status, except for
Real Time messages. Unimplemented or undefined status bytes are ignored.

For voice and mode messages, the receiver will remain in the status of the last status
byte until a different one is received. Therefore when many messages with the same
status are being sent, the status byte may be omitted. This is particularly useful for
long strings of Note On/Off messages. Real Time messages will only change the
running status temporarily.

One or two data bytes follow the status bytes, except in Real Time messages. Data
bytes are eight bits, with the most significant bit set to 0. Each status byte must be
followed by the correct number of data bytes, and action will wait until they are all
received.

Mode messages control the way in which Note On/Off information is routed to the
instruments and their voices via the 16 MIDI channels. The mode messages available
for this purpose are defined in the table below. A MIDI receiver or transmitter can
only operate in one mode at a time.

Each receiver is assigned to a basic channel N, and may have a number of voices M
assigned to adjacent channels.

Mode Omni

1 On Poly Voice messages are received from all channels and
assigned to voices polyphonically by the receiver.

2 On Mono Voice messages are received from all voice channels and
control only one voice, set by the receiver,
monophonically.

3 Off Poly Voice messages are received in voice channel N only, and
are assigned to voices polyphonically by the receiver.

Programmer's guide to MIDI 9

MIDI interpreter and
sound system driver

MIDI implementation
chart

4 Off Mono Voice messages are received in voice channels N to N+M-1
and assigned monophonically to voices 1 to M, respeetively.
The number of voices M is specified by the Mono Mode
message, one voice per channel. This means that each voice
in the receiver can be controlled separately by the
transmitter.

Each transmitter is also assigned to a basic channel N. Those without the capacity to
select channels will normally use channel one.

This baekground process allows MIDI data from the MIDI IN or MIDI OUT sockets
to drive the sound system directly, without user intervention, and with the computer
still able to perform other tasks normally. This facility is disabled by default, and is
enabled from the command line using *midisound. The state of this driver does
not affect the data received by MIDI_RxCommand and MIDI_RxByte.

The MIDI interpreter does not respond to notes of very short duration (less than about
20ms). This means that certain drum machines cannot be used to trigger notes on the
computer sound voices.

Program Change messages are interpreted as Sound Voice requests (like
*ChannelVoice). If a Program Change message with a data value greater than the
number of installed sound voices is interpreted; a non-existent voice will be selected
and the sound will apparently stop working. To restart the sound a lower Program
Change data value should be used. Which Voice Channels are affected depends upon
the MIDI Mode and MIDI Basic Channel in the normal way.

An implementation chart for the built-in MIDI interpreter is shown on a separate
sheet accompanying the expansion card, laid out in accordance with the MIDI
specification.

Some MIDI commands are ignored by the MIDI interpreter. These are listed below:

System messages:

• Song Position Pointer

• Song Select

• System Exclusive.

10 Programmer's guide to MIDI

Pitch bend

MIDI ports

MIDI *commands

Real time messages:

• Timing Clock

• Start

• Continue

• Stop

• System reset.

Channel voice messages:

• Control Change 0-121

• Polyphonic Key Pressure (After touch)

• Channel Pressure (After touch)

and all bytes undefined in MIDI specification 1.0.

These commands are, however, available for use by application software.

The pitch bend algorithm used by the sound system driver has the shortcoming that if
the notes are newly triggered while pitch bend is in operation, they will start with the
normal pitch, and will only be pitch changed when the next pitch bend message is
received.

With one MIDI expansion card installed, you will have one MIDI port, numbered 0.
Up to four MIDI ports are supported by the MIDI module, which can be obtained by
installing more MIDI expansion cards. Ports are numbered consecutively, from 0 to 3.
Application software supporting multiple ports should use the SWI MIDI_Init to find
the number of recognised ports currently installed.

MIDI *commands can be divided into two groups:

• Interpreter control

• Timing clock generator control.

These are detailed overleaf.

Programmer's guide to MIDI 11

Interpreter control

Timing clock generator
control

*MidiSound Parameter 1 'in', 'out' or 'off; to specify incoming data,
outgoing data or disable a port.

Parameter 2 (optional) <1-4> to specify MIDI port number.
This enables or disables the MIDI interpreter and specifies
the source of MIDI data.

*MidiTouch Parameter is `on' or 'off. This enables or disables the touch-
sensitivity of the interpreter (responds to Note On velocity).

*MidiChannel Used to set the Basic Channel of the MIDI interpreter.
Parameter is 1-16.

*MidiMode Used to set the MIDI mode of the MIDI interpreter.
Parameter is 1-4.

*MidiStart <time> Used to transmit a Start message and start automatic
transmission of Timing Clock messages every <time>
milliseconds. Parameter, if specified, is integer time in
milliseconds 1- &FFFF, or 0 to leave unchanged.

*MidiStop Used to transmit a Stop message and stop automatic
transmission of MIDI Timing Clock messages.

*MidiContinue Used to transmit a Continue message and to restart
automatic transmission of Timing Clock messages.

12 Programmer's guide to MIDI

Software interrupts (SWIs)

General Software interrupts provide an interface between an application program and the
MIDI interface itself.

Values given for R0 and R1 are the contents of those CPU registers; where no values
are given the command does not use the registers.

SWI calls used for setting up and controlling the MIDI are detailed on the following
pages. They have been divided into the following groups:

• General interface commands

• Data reception commands

• Data transmission commands

• Service calls

• Events.

Software interrupts (SWIs) 13

General interface
commands

On entry

On exit

Example

MIDI SoundEnable

(&404C0)
Enable the MIDI interpreter/sound system driver, so that MIDI data will be
interpreted, and control the sound system. The mode will default to 1 (Omni On:Poly)
, but may be changed under MIDI or SWI control.

R0 = 0 to disable Sound Interpreter. (It is disabled on initialisation).

1 for connection to Port 0, input buffer.

2 for connection to Port 0, output buffer.

3 for connection to Port 1, input buffer.

4 for connection to Port 1, output buffer.

R1 = 1 to enable touch sensitivity of interpreter.

2 to disable toueh sensitivity.

Any other values of R1 ignored at present.

R0 undefined

In BASIC:

SYS "MIDI SoundEnable",1

does the same as:
*MidiSound in

14 Software interrupts (SWIs)

MIDI_SetMode
(&404C1)

On entry

On exit

Set the MIDI channel mode of the internal sound system controller. Use 0 to read
current values.

R0 mode number, 1-4, if 0 then unchanged.

R1 byte 0 = basic channel number N, 1-16, if 0 then unchanged.

byte 1 = number of channels in mode 4, 1-8 (M), if 0 then unchanged.

R0 new (or current) mode number (1-4).
R1 new (or last) settings of N (1-16) and M (1-8).

The possible modes are defined under Channel Modes.

Software interrupts (SWIs) 15

MIDI_SetTxChannel
(&404C2)

On entry

On exit

Set the MIDI channel and port number for subsequent transmitted commands to be
sent on. This applies to all SWI commands prefixed by MIDI_Tx except
MIDI_TxByte and MIDI_TxCommand.

R0 = new ehannel number (1-64), if 0 then unchanged.

1-16 MIDI channels I-16 of receivers connected to MIDI port number 0.

17-32 channels 1-16 connected to port 1.

33-48 channels 1-16 connected to port 2.

49-64 channels 1-16 connected to port 3.

R0 new (or current) channel number.

If the selected MIDI port is not installed, then it is undefined which port this and other
SWIs will use instead. Use MIDI_Init to find the maximum port number installed, and
never exceed it.

16 Software interrupts (SWIs)

MIDI_SetTxActiveSensing
(&404C3)

On entry

On exit

This puts the transmitter into Active Sensing mode, which causes dummy bytes to be
transmitted in the absence of any other MIDI activity for longer than 280ms. The
receiver should automatically switch to Active Sensing mode and expect this activity,
or switch off all voices if it stops. This prevents voices becoming 'stuck on' if the
MIDI cable becomes disconnected. Some MIDI receivers do not support this.

R0 bit 0 = 0 to stop automatic regular transmission of Active Sensing
Messages in requested Port.

= 1 to start automatic regular transmission of Active Sensing
Messages in requested Port.

bits 1-2 = Midi Port Number.

(This differs from the Archimedes MIDI module Version 2).

R0 bits 0-3 corresponding to Midi Ports 0-3; bits set if Transmit Active
Sensing is enabled for this Midi Port.

bits 4-7 corresponding to Midi Ports 0-3; bits set if this Port is receiving
Active Sensing.

Software interrupts (SWIs) 17

MIDI_InqSongPositionPointer
(&404C4)

On entry

On exit

Return the value of the internal Song Position Pointer, which is the value of the MIDI
beat counter divided by six. See the chapter entitled Timing.

Unimportant.

R0 = Song Position Pointer.

R1 = bits set according to current state of MIDI:

bit 0 set if in External Timing Mode (Start message has been received).

bit 1 set if in Internal Timing Mode (Start message has been transmitted.
Timing Clock transmission is automatic).

bit 2 set if in Fast Clock Mode.

bit 3 set if new (version 3) facilities enabled (MIDI FastClock has been
called). This flag is only reset on MIDI_Init with R0=0,
*RMReInit midi or Ctrl-Break.

bit 4 set if in special mode to store System Real Time Messages in
receive buffer.

bit 5 set if in special mode to cause System Real Time Messages not to be
treated in a special way.

Bits 0 and 1 are determined by the current timing mode. See the chapter Timing.

Bits 2 and 3 are set by calling MIDI_FastClock with relevant parameters.

Bits 4 and 5 are set by calling MIDI_Init with bits 30 and 31 of R0 set.

18 Software interrupts (SWIs)

MIDI_InqBufferSize
(&404C5)

On entry

On exit

Return the number of empty bytes in the transmit or receive buffer. These buffers can
fill (rx buffer) or empty (tx buffer) at a maximum rate of 320 microseconds per byte.
Default buffer sizes are:

• Transmit buffer size — 512 bytes

• Receive buffer size — 1024 bytes (
programmable with MIDI_SetBufferSize).

R0 bit 0 = 0 to read rx buffer size.

1 to read tx buffer size.

bits 1-2 = MIDI port number 0-3.

R0 number of bytes free in seleeted buffer.

Software interrupts (SWIs) 19

MIDI_InqError
(&404C6)

On entry

On exit

Return the value of the MIDI error bytes.

Unimportant.

R0 up to four error bytes, corresponding to one byte per installed MIDI
port.

Possible values of the error byte (shown as the ASCII character with the decimal
value following in brackets) are:

'A' (65) Active Sensing failure error (MIDI connection removed, or Active
Sensing transmission was stopped by the transmitter).

'B' (66) Receive data FIFO buffer was (and still may be) full and data has
been lost. The application program should take the data more
quickly.

'O' (79) UART overrun error. This means that the received data arrived, but
was not read from the UART receive register before it was
overwritten by the next data byte. This might occasionally happen
when there is a lot of other processing occurring with the processor
interrupt flag clear (high-numbered screen modes with
simultaneous sound and intensive processor activity might also
occasionally cause this error).

'F' (70) Framing error. This flag is generated by the UART when serial
data arrives which does not fit the expected protocol, ie not
sensible MIDI data.

'V' (86) Received MIDI data has caused the interpreter to attempt to use
more than eight voices of the internal sound system, which are
allocated on a first-come first-served basis.

20 Software interrupts (SWIs)

'T' (84) Transmit data FIFO buffer has overflowed, and data to be
transmitted has been lost. The application program should
transmit data more slowly, or use MIDI_InqTxBufferSize.

'L' (76) Note too low (or too high) for the internal sound system received
by the interpreter and ignored. The lowest note that the sound
system can make is the C four octaves below middle C, or MIDI
value 12. The highest note is MIDI value 96 or three octaves
above middle C.

0 (zero) No error.

NOTES:

• Only the latest error is shown. Previous errors are overwritten.

• Overrun and framing errors are also returned as standard SWI errors by
MIDI_RxCommand and MIDI_RxByte at the time that they read the corrupted
byte.

• The error is cleared when read.

Software interrupts (SWIs) 21

MIDI_IgnoreTiming
(&404DF)

On entry

On exit

This operates as a switch, instructing the system either to ignore any further received
Timing messages: Start, Continue, Stop and Timing Clock, or to revert to normal
reception of them.

R0 = 0 receive messages normally (default).

= 1 ignore received timing messages.

No change.

NOTE: There is a subtle distinction between the mode set by this SWI, where received
Timing Messages are eompletely ignored, and the mode set by calling MIDI_Init with
bit 31 set, which only disables special actions on Timing Message reception. The
messages may still be stored in the reeeive buffer in the latter case, if MIDI_Init is
called with bit 30 set, but not if Ignore Timing mode is set.

22 Software interrupts (SWIs)

MIDI_SynchSoundScheduler
(&404E0)

On entry

On exit

R0 = 0 set normal mode where sound scheduler is synchronised to the
Sound Interrupt (SIRQ).

= 1 set special mode where the sound scheduler is synchronised to
incoming MIDI Timing Clock Messages (prefixed by Start, ended
by Stop). Scheduler time is incremented by one tick for each
Timing Clock message received.

R0 = previous value of SynchSoundScheduler flag.

Software interrupts (SWIs) 23

MIDI_FastClock
(&404E1)

On entry

On exit

User Timer 1

R0 = <0 read current value of fast clock.

= 0 stop fast clock; revert to normal timing.

= >0 = t = Timing Clock Transmission rate.

Reset and start fast clock. Incoming data will be time stamped with
the time in milliseconds shown on this clock. When started with
MIDI_TxStart or *midistart, Timing Clock messages will be
automatically transmitted at a rate of one every t milliseconds. The
transmission will be stopped with SWI MIDI_TxStop or *midistop.

R1 time to reset clock to if R0 >= 0.

R1 previous value of fast clock

The fast clock increments every millisecond.

This SWI should be called at least once by new applications that want to use the MIDI
scheduler.

On calling MIDI_FastClock with R0 > 0, Fast Clock Timing mode is set. In this mode the
value in R1 when calling SWI MIDI_TxCommand will determine the schedule time in
milliseconds, as registered by the Fast Clock. If the value in R1 is zero, then the message
will be sent immediately.

The fast clock uses Timer 1 (the User Timer). Obviously this cannot be used
simultaneously by other software while the Fast Clock is running, or the Fast Clock will
not work correctly.

24 Software interrupts (SWIs)

MIDI_Init
(&404E2)

On entry

On exit

R0 = 0 do an Internal System Reset (reset to power-on state).

> 0 bit 0 set to clear current transmitted running status (ensure status is
included with next transmitted message).

bit 1 set to clear receive buffers and reset midi interpreter.

bit 2 set to clear transmit buffers and reset midi interpreter.

bit 3 set to clear MIDI Scheduler.

bit 4 set to clear current error.

(special mode bits, only cleared by a call with R0=0).

bit 30 set to enable special mode so that received System Real Time
messages will be stored in the receive buffer, so that they can be
read with SWI MIDI_RxCommand and SWI MIDI_RxByte.

bit 31 set to prevent special actions on reception of System Real Time
messages. Use SWI MIDI_IgnoreTiming in preference to this, to
just cause Timing messages to be ignored.

R0 = number of recognised Midi Ports installed.
Subtract one from this number for the maximum port number,
which should not be exceeded.

Certain MIDI recording and replaying applications may need to set bits 30 and 31 so
that they can precisely reproduce the recorded data with the Real Time messages.

Software interrupts (SWIs) 25

MIDI_SetBufferSize
(&404E3)

On entry

On exit

Clears the buffer and then claims the requested buffer size from the RMA. Returns No
room in RMA error (&102) if unable to claim the new buffers, and leaves the
previous buffers intact.

NOTE: This should only be used when the buffers are empty, otherwise data will be
lost.

R0 = 0 for set receive buffer size (nothing else currently supported).

R1 = new buffer size in bytes.

= 0 interrogate current value.

R0 = buffer size in bytes.

R1 = total space in bytes claimed from RMA for new buffers.

= 5 x size x number of MIDI Ports installed for receive buffer (for
each byte received, four bytes of time stamp is also stored)

Use SWI MIDI_Init to just clear the buffers, (R0, bits 1 and 2).

26 Software interrupts (SWIs)

MIDI_Interface
(&404E4)

On exit

(For advanced use only.) Get addresses for more efficient access to critical SWIs.

R0 = workspace pointer, moved to R12 when calling a SWI through
this interface.

R1 = SWI code pointer.

When calling SWIs using this interface, the CPU should be in supervisor mode.

The MIDI SWIs do not support re-entrancy, so they should not generally be called
from an interrupt routine. R11 should contain the SWI offset from chunk base (
MIDI_SoundEnable = 0). R12 should contain the workspace pointer. The addresses
become invalid if the MIDI module is re-initialised, or finalised, so watch for MIDI
service calls to warn of this, and re-call this SWI.

Software interrupts (SWIs) 27

Data reception
commands

On entry

On exit

MIDI_RxByte
(&404C7)

Return the next received MIDI byte, excluding Real Time messages which are
processed internally (see section on special messages). In general,
MIDI_RxCommand should be used in preference to this command, for reduced SWI
time overhead, although this SWI should be used for reading the 'raw' data.

R0 = port number (0-3) to reeeive message from.

= –1 to look at each port in order of increasing port number, until one is
found in which new data has been received, and return that data.

R0 byte 0 = next received MIDI byte.

= 0 if receive buffer empty, or incomplete message received. If entered
with R0= –1, distinguish between these cases by checking the port
number returned in bits 28-31.

bits 24 = 1 if byte reeeived.

bits 28-31 MIDI port number where this byte was received.

R1 = received time (see section on timing).

= 0 if receive buffer empty or clock disabled.

In the case of a low-level error registered by the UART, this SWI returns an error
number:

• &20402 if there was a Framing Error when this byte was received
• &20403 if there was an Overrun Error when this byte was received.

The error number &20404 will be returned if the receive buffer of the interrogated
port overflowed.

The corrupted byte will be returned on the next SWI MIDI_RxByte or
MIDI_RxCommand.

28 Software interrupts (SWIs)

MIDI_RxCommand
(&404C8)

On entry

On exit

Return the next complete MIDI command as a set of bytes (normally excluding
System Real Time). A status byte should always be returned, even when the incoming
data is on running status, except when the receive buffer is empty.

NOTE: System Exclusive messages will be received as one status byte (&F0) and one
data byte, and successive calls to MIDI_RxCommand will treat the system exclusive
as Running Status, with one data byte, until EOX (end of exclusive: &F7) or any
other status byte, exeept System Real Time, is encountered (&80—&F7).

R0 = port number (0-3) message will be received from.

= -1 look at each port in order of increasing port number, until one is
found in which new data has been received, and return that data,
if Midi Message entirely received, or 0 if not or if no port has
received any data.

R0 byte 0 = status.

byte 1 = data byte I, or 0 if none expected.

byte 2 = data byte 2, or 0 if none expected.

bits 24-25 number of bytes in this message = 0-3.

bits 28-31 MIDI port number of port that this message was received by.

= 0 if receive buffer empty, or incomplete message received.

R1 = received time of last byte in message.

= 0 if receive buffer empty or clock disabled.

Software interrupts (SWIs) 29

In the case of a low-level error registered by the UART, this SWI returns the
following error numbers:

• &20402 if there was a Framing Error when a byte in this message was
received.

• &20403 if there was an Overrun Error when a byte in this message was
received.

The error number &20404 will be returned if the receive buffer of the
interrogated port overflowed.

The corrupted byte will be returned on the next MIDI_RxByte or
MIDI_RxCommand.

30 Software interrupts (SWIs)

Data transmission
commands

On entry

On exit

MIDI_TxByte
(&404C9)

Transmit a byte from the MIDI OUT. This will be transmitted, regardless of Running
Status.

R0 byte 0 Byte to transmit.
bits 28-31 Port number to transmit from (0-3).

Unchanged.

Returns error number &20401 if this fails because the transmit buffer is full.

Software interrupts (SWIs) 31

Data transmission
commands with
automatic running
status optimisation

On entry

On exit

Automatic Running Status optimisation applies to all the commands in this section;
that is, the status byte may not be transmitted if the last command had the same
status. However, a limit applies to long chains of commands under Running Status,
and the status byte is periodically retransmitted.

MIDI_TxCommand
(&404CA)

Transmit or schedule on the MIDI schedule queue a complete MIDI command. The
status byte may not be transmitted if Running Status applies. The command will be
ignored and not transmitted if byte 0 is not a status byte (bit 7 set), or if the data
bytes have bit 7 set.

NOTE: The format is the same as MIDI_RxCommand, so that received commands
can be simply retransmitted without decoding or encoding. It can be used to transmit
a MIDI command immediately, or to schedule one to be transmitted at some future
time (if in Fast Clock mode, and Rl>0).

R0 byte 0 = status.

byte 1 = data byte 1, if required by specified status.

byte 2 = data byte 2, if required by specified status.

bits 24-25 (optional) number of bytes in command; only needed for status
undefined in MIDI Specification 1.0.

bits 28-31 port number to transmit from (0-3.)

R1 = schedule time (0 for immediate) in:

Fast cloek time if in Unset or Internal timing modes.

Timing Clock received count time if in External timing mode.

If R1 was non-zero on entry:

R0 = number of scheduler slots free in queue

= –1 if it failed because the scheduler was full.

32 Software interrupts (SWIs)

= –2 if it failed because the schedule time requested was earlier than the
time of the previous event in the scheduler queue.

Returns error number &20401 if this fails because the transmit buffer is full.

All commands will be transmitted in the current MIDI transmission channel defined
by the last MIDI_SetTxChannel.

NOTES:

• The size of the scheduler queue is 1023 commands.

• All calls to RxCommand with non-zero R1, from clearing the scheduler should be
with non-decreasing schedule time. For efficiency, only the schedule time of the
next item on the queue is inspected at each time increment, and items are
removed from the queue in the order they were put in.

• For backwards compatibility, the value of R1 on entry to this routine is ignored if
SWI MIDI_FastClock has not been called since the module was initialised. This
state can be interrogated with MIDI_InqSongPositionPointer. R1, bit 3 is zero if
in 'backwards compatible' mode.

• Scheduling too many commands for the same time will cause an overflow of the
transmit buffer. The maximum size of the transmit buffer (in kbytes) can be read
using SWI MIDI_InqBufferSize. If a transmit buffer overflow does occur with
too many scheduled commands at the same time, it may be necessary to elear the
scheduler using SWI MISI_Init, since it can get into a state where it repeatedly
tries to schedule the commands and fails

Software interrupts (SWIs) 33

On entry

On exit

On entry

On exit

MIDI_TxNoteOff
(&404CB)

Transmit a MIDI Note Off command.

R0 = note number, 0-127 (60 = middle C, 1 unit = 1 semitone).

R1 = key off velocity, 0-127.

No change.

MIDI_TxNoteOn
(&404CC)

Transmit a MIDI Note On command.

R0 = note number, 0-127 (60 = middle C, 1 unit = 1 semitone).

R1 = key on velocity, 0-127.

No change.

34 Software interrupts (SWIs)

On entry

On exit

On entry

On exit

MIDI_TxPolyKeyPressure
(&404CD)

Transmit a MIDI Poly Key Pressure (after touch) command. This will apply to any
one voice and may affect volume, modulation or pitch depending on the setting of the
receiver.

R0 note number, 0-127 (60 = middle C, 1 unit = 1 semitone).

R1 key pressure value, 0-127.

No change.

MIDI_TxControlChange
(&404CE)

Transmit a MIDI Control Change command.

R0 = control number 0-121, 122-127 reserved for channel mode
messages, which can be transmitted using this command, or by
using the Channel Mode SWIs; see the chapter MIDI interface data
specification.

R1 = Control value, 0-127.

No change.

Software interrupts (SWIs) 35

On entry

On exit

MIDI_TxLocalControl

(&404CF)
Transmit a MIDI Local Control command with control number of 122, and R0 having
one of the values defined below.

R0 = 0 local control off.
R0 = 127 local control on.

No change.

MIDI_TxAllNotesOff

(&404D0)
Transmit a MIDI All Notes Off command.

36 Software interrupts (SWIs)

MIDI_TxOmniModeOff

(&404D1)

Transmit a MIDI Omni Mode Off command.

MIDI_TxOmniModeOn
(&404D2)

Transmit a MIDI Omni Mode On command.

Software interrupts (SWIs) 37

On entry

On exit

MIDI_TxMonoModeOn
(&404D3)

Transmit a MIDI Mono Mode On command.

R0 = M where M is the current number of channels 1-16.

No change.

MIDI_TxPolyModeOn
(&404D4)

Transmit a MIDI Poly Mode On command.

38 Software interrupts (SWIs)

On entry

On exit

On entry

On exit

MIDI_TxProgramChange
(&404D5)

Transmit a MIDI Program Change command. The program referred to is the 'voice', 'tone'
 or 'patch' number in the receiver.

R0 = program number, 0-127.

No change.

MIDI_TxChannelPressure
(&404D6)

Transmit a MIDI Channel Pressure command. This will affect all the notes on that
channel, and may alter volume, modulation or pitch depending on the receiver setting.

R0 = pressure value, 0-127.

No change.

Software interrupts (SWIs) 39

On entry

On exit

On entry

On exit

MIDI_TxPitchWheel

(&404D7)
Transmit a MIDI Pitch Wheel command.

R0 = pitch wheel change, 0-16383 (&3FFF). 8192 (&2000) is centre position
value (no pitch change).

No change.

MIDI_TxSongPositionPointer

(&404D8)

Transmit a MIDI Song Position Pointer command. This automatically updates the internal
copy which could affect the time-stamping of received data.

R0 = Song Position Pointer, 0-16383 (&3FFF).

No change.

40 Software interrupts (SWIs)

On entry

On exit

MIDI_TxSongSelect
(&404D9)

Transmit a MIDI Song Select command.

R0 = song number, 0-127.

No change.

MIDI_TxTuneRequest
(&404DA)

Transmit a MIDI Tune Request command.

Software interrupts (SWIs) 41

MIDI_TxStart

(&404DB)
Transmit a MIDI Start command, reset the MIDI beat counter to zero (and the internal
Song Position Pointer), enable automatic transmission of Timing Clock messages every 16
internal microbeats (or else timed by fast clock; see MIDI_FastClock), and disable reception
of Start, Continue, Stop and Timing Clock messages. This affects all installed MIDI ports.

MIDI_TxContinue

(&404DC)
The same as TxStart, but without resetting the beat counter.

42 Software interrupts (SWIs)

MIDI TxStop
(&404DD)

Transmit a MIDI Stop command, and stop transmission of Timing Clock messages, thus
allowing reception of Start, Continue, Stop and Timing Clock messages.

MIDI TxSystemReset
(&404DE)

Transmit a MIDI System Reset command.

Software interrupts (SWIs) 43

Service calls

Sub reason codes

Service_MIDI

(&58)
Service call.

Service_MIDIAlive = 0 module about to be initialised.

Service_MIDIDying = 1 module about to be removed.

Enters module service with R1 = Service_MIDI, and R0 = sub reason code.

This is necessary for advanced use only, where the actual address of the MIDI module or
its workspace is being implicitly or explicitly used.

44 Software interrupts (SWIs)

Events

Sub reason codes

Event_MIDI

(&11)

MIDI_DataReceivedEvent = 0

receive buffer was empty and has received some data.

MIDI_ErrorEvent =1

an error has occurred in the background; use MIDI_InqError to find out
what it is.

MIDI_ScheduleEmptyingEvent =2

the MIDI scheduler will empty within the next 10ms. This event does
not occur in cases where there are fewer than four free slots in the
scheduler when the event would normally be triggered, which will only
occur if more than 1020 commands are scheduled to happen, all within
10ms.

Enters an event handler routine with R0 = Event_MIDI and R1 = sub reason code.

Software interrupts (SWIs) 45

Programming with
software interrupts

In simple BASIC programs, the SWIs may be called as in the following example:

SYS "MIDI TxNoteOn",60,64

The two parameters are the values of R0 and R1. Case is important - upper and lower
case must be used as above. The most efficient way to use these SWIs in BASIC is to
define integer variables at the start of the program.

To find the SWI number from the string, OS_SWINumberFromString:

SYS "OS_SWINumberFromString",0,"MIDI_TxNoteOff" TO
TxNoteOff%

SYS "OS_SWINumberFromString",0,"MIDI_TxNoteOn" TO
TxNoteOn%

SYS "OS_SWINumberFromString",0,"MIDI_InqError" TO
InqError%

Then to use them:

v%=64

a%=60

SYS NoteOn%, a%, v%

key% = INKEY (8O)

SYS NoteOff%, a%, v%

SYS InqError%,0 TO Error%

IF Error% <>0 THEN PRINT CHR$(Error%)

(the line beginning key% provides a delay of 80 centiseconds).

46 Software interrupts (SWIs)

Timing

Timing The timing mode can be:

• Unset

• Internal

• External.

Internal timing mode is set if timing messages are being transmitted.

External timing mode is set if timing messages are currently being received and not
transmitted or ignored.

Three possible types of time-stamp can be returned by RxCommand and RxByte
depending on which of four internal timing modes is current. These four modes are:

• MIDI Timing Clock transmission counting. The time-stamp is the value of the
MIDI beat counter, which is equal to the number of Timing Clock messages
transmitted since the last Start transmitted.

• MIDI Timing Clock reception counting. The time-stamp is the value of the MIDI
beat counter which is equal to the number of Timing Clock messages received
since the last received Start command.

• The sound system beat counter (see the chapter on sound in the RISC OS User
Guide). The time-stamp is the value of the sound system bar/beat counter. The
bar counter is incremented every time the beat counter resets to zero, and the
time-stamp is a combination of the sound system beat value and an incrementing
bar value.

The beat count is off by default, so BEATS must be set to a positive value to set
the beat count in operation, and so give non-zero values for internal BAR/BEAT
time-stamping.

Timing 47

MIDI Timing Clock
transmission counting

MIDI Timing Clock
reception counting

• Fast Clock Timing mode. The Fast Clock is reset and started by SWI
MIDI_FastClock, and incremented every millisecond. The timestamp is set equal
to this count.

NOTE: The types of time-stamp are related to the different time periods, or beats,
used. For the purposes of this guide, a sound system beat, as defined in the RISC OS
User Guide, is referred to as a microbeat, in order to distinguish it from a MIDI beat.

One MIDI beat is equal to 16 microbeats, when microbeats govern the timing of MIDI
beats.

This mode is set by the call MIDI_TxStart, if the fast clock is not running, and any
received Start, Continue, Stop or Timing Clock messages are ignored. Incoming data is
time-stamped with the current value of the MIDI beat counter, the value being returned
in R1 on calling MIDI_RxCommand, or MIDI_RxByte.

The call MIDI_TxStart enables automatic transmission of Timing Clock messages.
They can then be stopped with MIDI_TxStop, and restarted with MIDI_TxContinue.
The frequency can be controlled by programming the sound system tempo, using
Sound_QTempo (or TEMPO in BASIC). A MIDI Timing Clock message will be
transmitted every 16 sound system microbeats. The song position pointer is equal to
the value of the MIDI beat counter divided by six.

For example, if the sound system is programmed to the default tempo of &1000 (=100
per second), then, when enabled by MIDI_TxStart, Timing Clock messages will be
transmitted at a rate of 6.25 per second, and the song position pointer will increment
approximately once per second. For the maximum tempo of &FFFF the pointer will
increment at a rate of 16.66 per second and Timing Clock messages will be transmitted
at 100 per second.

NOTES: 1. The sound system beat counter must be started to enable this mode to work
(for example, BEATS 100 in BASIC). 2. The CLI command *MidiStart enables Fast
Clock Timing mode (see below), and NOT this mode.

When Timing Clock messages are being transmitted, they take priority. If not, any
Timing Clock messages received (preceded by Start) will cause the MIDI beat counter
to increment. This can be prevented by disabling reception of timing messages, using
MIDI_IgnoreTiming with R0=1.

48 Timing

Sound system
bar/microbeat counting

The MIDI beat counter is updated automatically on reception of a Song Position
Pointer message only if the MIDI beat counter is currently being controlled by
received Real Time messages. The MIDI beat counter is set to the received value
multiplied by six. The internal MIDI beat counter is always updated by the call
MIDI_TxSongPositionPointer.

If Fast Clock Timing mode is not enabled, and if Timing Clock messages are neither
being received nor transmitted, which may be because they were never started, or
because they were stopped with a MIDI Stop command, then the received bytes are
given a sound system bar/microbeat time stamp, with the value of microbeat in the
bottom 16 bits, and an incrementing bar count in the top 16 bits. The bar counter is
reset on transmission or reception of a MIDI Stop, or on changing the value of
BEATS (microbeats per bar), or upon incrementing beyond &FFFF.

Queuing of MIDI data to be transmitted on a future microbeat can be done using the
general-purpose sound system call:

Sound_QSchedule

On entry: R0 = the schedule period.

R1 = &F000000 + SWI number to schedule.

R2 = SWI parameter for R0.

R3 = SWI parameter for R1.

On exit: R0 = 0 if SWI successfully added to queue.

R0 < 0 if queue is full and command failed.

NOTE: The queuing time is the value of the sound system microbeat counter and
NOT the MIDI beat counter.

For details of the microbeat timing see the RISC OS User Guide.

The Sound Scheduler may be synchronised to an external source of MIDI Timing
Clock messages by using SWI MIDI_SynchSoundScheduler with R0 = 1.

NOTE: For new applications it is preferable to use the MIDI Scheduler by calling
SWI MIDI_TxCommand with R1 = Schedule time (see Fast Clock Timing mode
below).

Timing 49

Fast Clock Timing mode

Reception of special
messages

Real Time messages

This mode is enabled by calling SWI MIDI_FastClock. Incoming messages will be
stamped with the current Fast Clock time, unless timing messages are being received,
in which case MIDI Timing Clock Reception Counting (see above) will apply.
Scheduling to this time is done using the special MIDI Scheduler by calling the SWI
MIDI_TxCommand with the schedule time in R1. This mode is automatically set by
the CLI command *MidiStart.

Most MIDI messages when received have no further effect than to be stored in the
receive buffer to be read by the SWIs MIDI_RxCommand and, MIDI_RxByte, or by
the MIDI interpreter. Certain messages, however, have other side-effects, and some
are not stored in the receive buffer at all, making them invisible to the application,
except by their side-effects. This behaviour can be reprogrammed if required using
MIDI_Init with special bits set.

Song Position Pointer as a side-effect updates the internal MIDI beat counter to the
received value multiplied by six.

System Real Time messages, except for System Reset, are invisible to the application
except in their side-effects.

Side-effects on receiving System Real Time messages are:

Start If Timing Clock messages are not being transmitted, ie the
call MIDI_TxStart has not been made since the last Stop,
then reset the internal MIDI beat eounter, and the Song
Position Pointer) and enable received Timing Clock
messages to increment it.

Timing Clock If external timing is enabled (see Start) then increment the
MIDI beat counter. The Song Position Pointer is
incremented on every sixth Timing Clock message received.

Stop Disable external clocking. Received Timing Clock will have
no further effect.

Continue The same as Start, without resetting the MIDI beat counter.

Active Sensing This will set the receiver into Active Sensing mode, so that if
no message is received for more than 300ms for any reason (
for example if the MIDI cable is

50 Timing

Exceptions

Removing sound modules

Operating system

User timer

pulled out), then all MIDI-triggered notes are turned off.
The transmitter should send regular Active Sensing status
messages, when enabled, in the absence of any other
activity. An application program can be warned of an
Active Sensing timeout by polling the error flag, or by
enabling the MIDI error event.

It is the task of the application program to deal with exceptions and errors. For
example, when Note On messages have been sent via the MIDI, and then an error
occurs, or escape is pressed, the program must automatically send a matching set of
Note Off messages, to avoid notes becoming stuck on. For this reason, if you are
using the Sound Scheduler to schedule MIDI data, use Sound_Qlnit only with great
care to avoid losing Note Off messages and leaving notes on in the receiver. Similar
considerations apply to the MIDI Scheduler of course.

If a sound module is removed for any reason, the MIDI module may stop functioning
normally. If this occurs, replace the sound module, reinitialise ALL Sound modules
and Voice modules in ascending order of module number and type *RMReInit
MIDI.

The MIDI module is fully RISC OS compatible. It is NOT fully compatible with the
Arthur OS.

The User Timer (IOC timer 1) is used by the Fast Clock. This means that other
software cannot use this timer while in Fast Clock timing mode, or if it does not use
the correct claim SWI (OS_ClaimDeviceVector), but writes to it directly, it will make
the fast clock go wrong.

Timing 51

52 Timing

MIDI interface data specification

Summary specification

Data rate

Summary of status
bytes
Channel voice messages

Channel mode messages

System messages

MIDI equipped instruments contain a receiver and a transmitter, the receiver being
optoisolated. It interprets and acts on MIDI commands. The transmitter sends
messages in MIDI format via a line driver.

31.25 (+/- 1%) Kbaud, asynchronous. There is a start bit, eight data bits and a stop bit,
 so each serial byte consists of 10 bits lasting 320 microseconds.

Status D7—D0 No. of Data bytes Description

&8n 2 Note Off

&9n 2 Note On (velocity=0, note off)

&An 2 Polyphonic Key Pressure (after touch)

&Bn 2 Control Change if data byte 1 in the range 0-121

&Cn 1 Program Change

&Dn 1 Channel Pressure (after touch)

&En 2 Pitch Wheel Change

&Bn 2 Channel mode message if data byte 1 in the
range 122-127

&F0 any System Exclusive

&Fs 0 to 2 System Common

&Ft 0 System Real Time

Where n = N-1; N is channel number.
s = 1 to 7
t = 8 to 15

MIDI interface data specification 53

54 MIDI interface data specification

A3000 User Port

Genera
l

This section describes the User Port on the A3000 User Port/Midi expansion card. A
similar User Port for the Archimedes computer is available on the Archimedes I/O
Expansion card, which is supplied with its own documentation.

The A3000 User Port is compatible with the User port on the I/O expansion card for
the Archimedes computer, and largely compatible with the User Port fitted to BBC
Model B and Master 128 computers, and enables you to connect your A3000
computer to the wide range of peripheral equipment already available for these
computers.

It consists of 8 data lines and two control lines from half of a 65C22 Versatile
Interface Adapter chip (VIA). The VIA contains 16 internal registers, and these are
mapped into memory. On the BBC Microcomputer and on the A3000 computer, legal
access to these registers is made by using the two OSBYTE calls which read and
write to SHEILA, numbers 150 and 151.

The signals available on the connector are the 8 data lines PB0 to PB7 on pins 6, 8,
10, 12, 14, 16, 18 and 20 respectively, and the two interrupt/handshake/shift register
control lines CBI and CB2 on pins 2 and 4 respectively.

When used for data transfer using handshaking, the CB2 signal is a 'data ready'
output to the peripheral, and the CBI signal is a 'data taken' input from the peripheral.

When used in interrupt mode, CB1 and CB2 cause the IRQ line of the VIA to go low.
However, interrupts from the VIA are not normally supported. See below.

Serial data can be shifted into or out of the CB2 pin under control of either an
internal timer or from an external clock applied to CB1.

A3000 User Port 55

The A3000
implementation

Incompatibilities with
the BBC User Port

The pin-out of the User Port 20-pin IDC connector is shown overleaf:

1 +5v 2 CB1 11 0v 12 PB3

3 +5v 4 CB2 13 0v 14 PB4

5 0v 6 PB0 15 0v 16 PB5

7 0v 8 PB1 17 0v 18 PB6

9 0v 10 PB2 19 0v 20 PB7

The User Port is implemented using half of a 65C22 VIA chip. As on the BBC
Microcomputer, the VIA registers are memory mapped, and control is exercised in
the same way through OSBYTE calls 150 and 151, which read from and write to the
I/O page SHEILA. It cannot be assumed that SHEILA is mapped into memory at a
specific location, so direct access to the User Port through writing to or reading from
specific addresses does not work.

The VIA chip on the expansion card is running at 2MHz instead of the BBC
Microcomputer's 1MHz device. This means that the internal timers of the VIA are
running twice as quickly as expected. If the shift registers are being used under
control of the internal timer, then these too run twice as fast.

Power which may be taken from the User Port must not exceed 500mA.

The interrupt signal from the VIA is supported, but a suitable interrupt handler for
the A3000 computer must be written.

56 A3000 User Port

Using the interface

Legal commands The interface must be used through the legal BASIC and RISC OS commands. Any
software which tries to access specific memory locations in the earlier BBC
Microcomputer I/O space will not work.

OSBYTE calls 150 and 151, however, use the 6502 registers on the BBC
Microcomputer and so are implemented slightly differently on the A3000 computer.

In general, parameters passed in A on the BBC Microcomputer are passed in the least
significant byte of R0 on the A3000 computer. Those passed in X are now passed in
the LSB of RI, and those passed in Y are now passed in the LSB of R2.

*FX commands still work as on the BBC Microcomputer, the parameters being
passed in the correct registers automatically.

The legal commands are as follows:

• OSBYTE 150 Read a byte from SHEILA

• OSBYTE 151 Write a byte to SHEILA.

The 16 VIA registers which are memory mapped to the SHEILA I/O space have
offsets &60 to &6F hex (96 to 111 decimal).

On entry: R0 contains the OSBYTE number.

R1 contains the offset in SHEILA.

R2 contains the byte to be written (for the write command).

On exit: R2 contains the byte which was read (for the read command).

A3000 User Port 57

An example The User Port is controlled via the 16 registers of the VIA chip which are mapped
into the I/O space SHEILA at offsets &60 to &6F. For example, to write &FF to
DDRB (data direction register B).

10 osbyte%=6 :REM SYS 6 is equivalent to osbyte

20 writebyte%=151 :REM osbyte number for write byte to
SHEILA

30 offset%=&62 :REM offset in SHEILA of DDRB

40 byte%=&FF :REM byte to put in DDRB

5O SYS osbyte%,writebyte%,offset%,byte%

The same example in assembly language is shown below:

10 REM write &FF to User Port DDRB

20 osbyte%=6 :REM SWI 6 is equivalent to OSBYTE

30 writebyte%=151 :REM osbyte number for Write byte to

SHEILA

40 offset%=&62 :REM offset in SHEILA of DDRB

50 byte%=&FF :REM byte to put in DDRB

60 DIM code% 100

70 P%=code%

80 [

90 STMFD R13!,{R0-R12,R14} \ save registers on stack

100 MOV R0,#writebyte% \ put osbyte number in RO

110 MOV R1,#offset% \ put offset in R1

120 MOV R2,#byte% \ put byte to be written in R2

130 SWI osbyte% \ execute osbyte call

140 LDMFD R13!,{R0-R12,PC} \ pull registers from stack
\ and return to BASIC

150]

160 CALL code%

58 A3000 User Port

Technical specification

User Port address
allocation

A3000 User Port / MIDI
block diagram

Min Typ Max Units

Operating voltage 4.5 5.0 5.5 V

Supply current to expansion card 50 100 mA

+ current supplied from User Port

Output drive capability 1 TTL i/p

Input load 1 TTL i/p

Output current (+5V) 500 mA

There is a SWI instruction which returns the absolute address location of the User
Port / MIDI upgrade in the memory map. The SWI can be called either with its name
(I/O_Podule_Hardware) or its number (&40500). On exit R1 contains the base
address of the upgrade hardware. All other registers are preserved. The user port VIA
is &2000 above this base address, and the VIA registers are four bytes apart.

A3000 User Port 59

60 A3000 User Port

Bibliography

MIDI

A3000 User Port

The MIDI Specification Document (no. MIDI-I.0, August 5th, 1983), is available
from:
International MIDI Association
11857 Hartsook Street
North Hollywood
CA91607
USA.

This specification is included in:
MIDI for Musicians by Craig Anderton, AMSCO Publications
(ISBN 0 8256 1050 8).

Music through MIDI by Michael Boom, Microsoft Press (ISBN 1 55615 026 I).

65C22 VIA Data Sheet (Rockwell).

Bibliography 61

62 Bibliography

End-user licence conditions for MIDI

1. Definitions

2. Licence

The following expressions have the meanings given here:

`Acorn' means Acorn Computers Limited, being either owner of all intellectual
property rights in the Software, or having the right to grant licences of the Software.

`Developer' means any third party software developer who retains copyright in the
Software.

`Documentation' means the printed user documentation supplied with the Software
inside the pack.

`Software' means the programs contained in object-code form on the disc(s) or ROM(
s) supplied with these conditions:

Acorn grants you a personal non-transferable non-exclusive licence (or sub-licence),
as follows:

(1) You may copy the Software for backup purposes, to support its use on one stand-
alone Acorn computer system.

(2) You must ensure that the copyright notices contained in the Software are
reproduced and included in any copy of the Software.

(3) You may not:

(i) copy only part of the Software; or

(ii) make the Software or the Documentation available to any third party
by way of gift or loan or hire;

(iii) incorporate any part of the Software into other programs developed or
used by you; or

(iv) copy the Documentation.

End-user licence conditions for MIDI 63

3. Term

4. Limited warranty and
disclaimer of liability

5. General

This licence remains in effect unless you terminate it:

(1) by destroying the Software and all copies, and the Documentation, or

(2) by failing to comply with the Conditions.

(1) Acorn warrants the disc(s) and/or ROM(s) upon which the Software is supplied to
be free from defects in materials and workmanship under normal use for a period
of ninety (90) days from the date of purchase, as evidenced by a copy of your
receipt. Your Acorn Authorised Dealer will replace a defeetive disc or ROM if
returned within ninety (90) days of purchase.

(2) The Software is supplied 'as is'; neither Acorn nor the Developer makes any
warranty, whether express or implied, as to the merchantability of the Software or
its fitness for any particular purpose.

(3) In no circumstances will Acorn be liable for any damage, loss of profits, goodwill
or for any indirect or consequential loss arising out of your use of the Software,
or inability to use the Software, even if Acorn has been advised of the possibility
of such loss.

These conditions supersede any prior agreement, oral or written, between you and
Acorn relating to the Software.

64 End-user licence conditions for MIDI

List of Software Interrupts (SWIs)

General interface
commands

Data reception
commands

Data transmission
commands

MIDI_SoundEnable &404C0 14
MIDI_SetMode &404C1 15
MIDI_SetTxChannel &404C2 16
MIDI_SetTxActiveSensing &404C3 17
MIDI_InqSongPositionPointer &404C4 18
MIDI_InqBufferSize &404C5 19
MIDI_InqError &404C6 20
MIDI_IgnoreTiming &404DF 22
MIDI_SynchSoundScheduler &404E0 23
MIDI_FastClock &404EI 24
MIDI_Init &404E2 25
MIDI_SetBufferSize &404E3 26
MIDI_Interface &404E4 27

MIDI_RxByte &404C7 28
MIDI_RxCommand &404C8 29

MIDI_TxByte &404C9 31
MIDI_TxCommand &404CA 32
MIDI_TxNoteOff &404CB 34
MIDI_TxNoteOn &404CC 34
MIDI_TxPolyKeyPressure &404CD 35
MIDI_TxControlChange &404CE 35
MIDI_TxLocalControl &404CF 36
MIDI_TxAllNotesOff &404D0 36
MIDI_TxOmniModeOff &404D1 37
MIDI_TxOmniModeOn &404D2 37
MIDI_TxMonoModeOn &404D3 38
MIDI_TxPolyModeOn &404D4 38
MIDI_TxProgramChange &404D5 39
MIDI_TxChannelPressure &404D6 40

List of Software Interrupts (SWIs) 65

Service calls

Events

MIDI_TxPitehWheel &404D7 40
MIDI_TxSongPositionPointer &404D8 40
MIDI_TxSongSelect &404D9 41
MIDI_TxTuneRequest &404DA 41
MIDI_TxStart &404DB 42
MIDI_TxContinue &404DC 42
MIDI_TxStop &404DD 43
MIDI_TxSystemReset &404DE 43

Service_MIDI &58 44

Event_MIDI &11 45

66 List of Software Interrupts (SWIs)

Reader's Comment Form

MIDI User Guide

We would greatly appreciate your comments about this Guide, which will be taken into account for the next issue:

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Cut out (or photocopy) and post
to:

Dept RC, Technical Publications
Acorn Computers Limited
645 Newmarket Road
Cambridge CB5 8PB.

Your name and address:

This information will only be used to get in touch with you in case we wish to
explore your comments further:

67

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76

