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This module gives an introduction to the RISC processor technology which lies behind the 
phenomenal speed and power of the Acorn Archimedes/A3000. It charts the development of the 
conventional microprocessor over the years, points out where this development has caused 
problems, and shows how RISC technology solves them. It also provides an introduction to 
the other Acorn custom chips which are used in Archimedes/A3000, and carry out almost all of 
the tasks needed to transform a processor into a usable computer.



Early Microprocessors

Over the last twenty years, we have seen a massive increase in the size, complexity and 
power of microprocessors. The earliest microprocessors, such as the Intel 4004, appeared 
in the early 1970s. They were very limited, compared with modern designs, by two things: 
the width of their data busses and the complexity of the instructions which they could 
execute.

Data Bus Width

The 'width' of a processor's data bus determines the amount of data which it can process in a 
single instruction. The earliest processors had 4-bit data busses, which meant that each 
operation could work on numbers in the range 0-15, or a very limited range of memory 
addresses. Of course, this isn't enough for real-world problems: very rarely will a bank 
balance be within 0.015 pence of zero, or will a book be less than 15 characters long.

In order to deal with problems like this, our 4-bit micro had to perform multiple-precision 
arithmetic. In order to add up a couple of numbers, it would perform long addition in very 
much the same way as we do, adding pairs of digits and keeping track of carries. Each 
addition takes a fixed length of time (around 2 microseconds), and in order to cope with 
real-life numbers it would have to perform several of them.

Instructions

Another problem with these early processors was that they could only understand simple 
instructions. If you wanted to multiply a pair of numbers together, you had to write a little 
program to do it, again in a very similar way to how we perform long multiplication. As you 
may remember, long multiplication takes a human longer than long addition, and the same 
holds true for micros - it may take several hundred instructions to multiply two numbers 
together on a simple processor.



Microprocessor Development

There are a number of approaches to microprocessor development which can result in 
more powerful processors. Over the last ten years, these have been combined to increase 
typical processing speeds from 0.05 MIPS (millions of instructions per second) to around 10 
MIPS: a 200-fold improvement.

Increase instruction speed. If the processor can execute instructions faster, 
then it can process data faster. There is a practical limit on the speed at which 
instructions can be executed, which is the speed at which instructions can be 
fetched from memory. Memory operations typically take (at the moment) 100- 
200ns, down from 400-500ns ten years ago. However, the use of caches has 
improved apparent memory access times to around 20ns, giving maximum 
instruction execution rates of 30MHz now as opposed to 1 MHz 10 years ago. 
Note that instruction execution rate is not equal to clock speed - processors 
may take several clock cycles to execute a single instruction.

Increase processor data bus width. If the processor can process more data 
per instruction, then it will need to perform fewer instructions to process a 
given amount of data, and will hence take fewer instructions. Processor bus 
widths have increased from a typical 8 bits ten years ago to 32 bits now, giving 
an apparent fourfold increase in throughput. In practice, the improvement 
gained may be more than this, as operations such as multiply become very 
much simpler with larger words.

Add more instructions. Extra instructions may also help to make the processor 
more powerful. If it can multiply two numbers together itself, then, at the very 
least, it can lose the overhead associated with fetching the instructions needed 
before from memory. It is difficult to quantify the effect of adding more 
instructions to a processor's repertoire.

Rethink the instruction set. In the light of experience, it may appear that 
programmers want different instructions from those provided by the 
processor's designers. This knowledge may be profitably used in future 
design.



CISC Architecture

Undoubtedly, the most successful processor (in terms of volume) of the 1980s has been Intel'
s 8086 family, as used in IBM PCs. The original 8086 has been extensively developed, 
and the latest version, the 80486, offers a 25-50 times speed improvement whilst being 
entirely code-compatible with the original.

The original 8086 is an example of a CISC (Complex Instruction Set Computer) processor. It can 
execute a wide variety of powerful instructions, and has a 16-bit data bus. Its little brother, the 
8088, which appeared in the original IBM PC, had only got an 8-bit data bus, but its internal data 
path was 16-bit. This is a compromise between the processing power afforded by having a 16-bit 
data path in the processor, and the cost advantages of only having to provide an 8-bit memory 
system.

A couple of generations further on lies the 80386. The 80386 is a 32-bit processor at heart, with a 
32-bit data bus. It can perform full 32 bit arithmetic, including multiplication and division. It 
provides the memory management facilities that are needed to allow proper multi-tasking.

This inherently powerful processor is severely handicapped by the requirement that it be able to 
run the same software as the 8086. For this reason, it has to have, for example, a set of 16-bit 
arithmetic instructions as well as its 32-bit ones. All of its extra facilities have had to be added 
around what was already there.

One of the outcomes of the above is that the chip is somewhat tricky to program directly (in 
assembler). It has a mind-boggling number of instructions to remember, which makes finding 
the best way of performing a given action rather tricky. It has little quirks which make life for 
confused programmers difficult. For instance, the original 8-bit arithmetic instructions in the 8086 
had one bit in the instruction code which was not used; the 80386 uses this to determine whether 
the instruction is 8-bit or 32-bit. This would be fine, except that the 80386 also has a flag in its 
status register which, if set, turns 8-bit instructions into 32-bit ones and vice versa. This is the sort 
of thing which produces obscure and hard-tofind bugs.



More on the 80386

Microprocessors make use of registers, which are held on the processor and used to hold operands 
for arithmetic operations, results from arithmetic operations, loop counters, memory 
addresses, etc. The 80386 is quite well-endowed with these. However, they all have specific 
functions - a register which can be used as a memory address cannot be used as an 
arithmetic register, etc. This reduces the chip's flexibility - for some applications, a 
number of pointers into different areas of memory may all be needed at once, and for others, 
a number of operands for an arithmetic operation may be wanted. The 80386 doesn't, despite 
its broad repertoire of instructions, have the flexibility required.

The complex design of the 80386 brings a number (over 1000, at the last count) of bugs in the chip 
itself. The complexity of the chip makes it extremely difficult to test satisfactorily, especially when 
operations may interact and bring to light obscure problems. You may remember that early 80386's 
had a bug in the 32-bit multiply instruction. This wasn't found for a number of months, mostly 
because people weren't using it. There are a couple of reasons for this: firstly, the chip was (and 
still is) used almost exclusively to run 8086 code, and secondly that programmers had found that 
the 80386 would multiply numbers together faster if they wrote a little program to do the 
multiplication rather than using the instruction provided.

The observation was made back in the late 1970's that these problems might occur if chips 
continued to get more complex. The major problems are:-

Adding more instructions does not necessarily make the chip faster or easier to 
program

Adding more instructions definitely does make the chip harder to design and to test, 
and more complex, which results in an unreliable, expensive chip for the consumer.

For these reasons, an alternative philosophy to CISC was proposed: RISC (Reduced 
Instruction Set Computers), where the microprocessor would understand a small set of carefully 
chosen instructions, and execute them extremely fast.



RISC

How can a simple processor be faster than a complex one? It would seem that, given a 
simple processor, all that needs to be done to make it more powerful is to add extra 
instructions which do their jobs faster than the equivalent sequence of simple instructions on the 
basic processor. Extra instructions can't slow the processor down, can they?

Well the answer is that, in fact, adding extra instructions to a processor can slow it down. A basic 
architecture for instruction execution is shown in the diagram below:

Adding extra instructions increases the complexity of the 'Decode' phase of instruction execution. 
The more options it has, the longer it will take. But the real point at which adding instructions 
to the processor slows it down is when the instructions are sufficiently complex that they cannot 
be executed directly in hardware, but instead have to be interpreted by programs running 
on the processor hardware. This 'indirect' form of instruction execution produces what is 
known as a 'microcoded' processor.

The instruction code and data are 
fetched from the machine 's  
memory.

The pattern of bits which make up the 
instruction are examined and the 
processor set up for..

executing the instruction - the 
action specified by the instruction is 
performed.



Microcode

Microcoded processors are slower than their simpler alternatives in the same way as an interpreted 
computer language will be slower than a compiled one. The instruction execution looks 
something like this:

The simple instruction execution which we saw earlier has grown another phase - the microcode 
execution phase. Microcode is the name given to 'sub-machine code' which is actually implemented 
by the processor hardware, with the instructions which the processor appears to execute 
implemented as microcode programs.

The fetch and decode of the instruction from the outside world are essentially 'wasted' time in this 
design. Executing the microcode for the instruction may take several tens of cycles (it's not 
unusual for an 80386 instruction to take longer than 20 cycles to execute).

There is a tradeoff between hardware complexity and execution speed. For instance, 
complex hardware can multiply a pair of numbers together in a single cycle, whereas a 
simpler hardware design will take several. The microcode to interpret a processor's 
instructions is stored on the chip, in ROM. The space thus occupied, which tends to be considerable, 
could possibly be put to better use making the existing instructions faster.



The 80:20 Rule

Many aspects of life show 80/20 (or 90/10, etc.) splits - 10% of the country's population hold 90% of 
its wealth, and so on. The same tends to hold true for processors - 80% of the processor's time is 
spent executing 20% of its instructions. There are a few reasons for this:-

The simple instructions (load a word from memory, call a subroutine) tend to be 
heavily used as they are the most useful instructions provided. Others, such as 
division instructions, tend to be used much less frequently.

Most code which processors execute wasn't written by humans, but by 
compilers. A compiler is a computer program which takes another program in a high-
level language and translates it into the machine code of the processor on which it is 
to be run. Compilers aren't very clever - they tend to only use the simple 
instructions provided by the machine.

For the common CISC processors, the 80x86 and 68x00, most of their time is spent 
running code written for the lowest member of the family (the 8086 or 68000) which, 
of course, doesn't use the more complex instructions provided by the later models.

Again, would not the space used on the chip by the microcode for these unused instructions be 
better spent speeding up the ones which are used all of the time?

The concept of a reduced instruction set computer was first evolved at Stamford University in 
1976. They produced a theoretical design on paper for a RISC processor which had roughly 
the power of a 68000, but this was at the time of 6502's and 280's. More recently, RISC has caught 
on with most leading chip companies: Intel has produced the i860 and Motorola the 88000. 
Neither of these have really found their way into mainstream computing, although the i860 
has seen some use in graphics accelerator cards and is now shipped on the colour card for the NeXT 
machine.

Some companies have released machines based around RISC processors, notably IBM with 
their RT/6150, recently re-vamped as the RS/6000 in an attempt to sell some, Sun with their 
successful range of SPARC-based workstations, and Acorn.



The ARM

The ARM (Acorn RISC Machine) is Acorn's own RISC processor, and is used in the 
Archimedes/A3000 machines. Acorn scored several notable firsts with the ARM and 
Archimedes; in particular, they produced the world's first 32-bit RISC micro, and it cost less 
than £1000, which, in 1987, was an achievement.

The ARM is a 32-bit RISC processor. It was designed by Acorn, and mass-produced by 
VLSI Technology. It's now the second-best selling RISC processor in the world - at the 
time of writing (December 1990), Inmos's Transputer holds the lead (350,000 units), 
Acorn's ARM comes next (140,000 units) and Sun's SPARC comes third.

How does the ARM compare with other processors in terms of processing power, chip 
complexity and cost? Well...

Processor Cost Transistors Clock MIPS

6502 £2.50 20,000 2MHz 0.1
80386 £300.00 300,000 33MHz 3.5
80486 £650.00 1,200,000 25MHz 10
ARM2 £20.00 25,000 8MHz 4
ARM3 £100.00 100,000 30MHz 13.5

System Cost Graphics MIPS

'386 PC £1,400 VGA 3.5
'486 PC £4,000 VGA 10
RS/6000 £15,000 None 22.5
A3000 £800 VGA+ 4
A540 £3,000 SuperVGA+ 13.5

So, in terms of price per MIP, the ARM chip is comfortably ahead of the competition. It's 
also the leader in terms of MIPS per watt, which makes it useful for powerful battery-
operated systems, such as the forthcoming Active Book.



ARM Technical Information

The ARM is a 32-bit pipelined RISC processor. You should already be familiar with the 
concepts of 32-bit and RISC, but what is pipelining?

Remember that executing an instruction on a processor uses a number of 'phases' - the instruction 
has first to be fetched, then decoded and finally executed. These three phases use different bits 
of the chip's circuitry. Using the processor to process just one instruction at a time is actually 
rather wasteful, as only 1/3rd of the chip is being used at any given instant.

A pipelined chip takes advantage of the fact that the three instruction execution phases are 
essentially separate to increase the effective speed of the chip by processing three 
instructions at once. At any given moment, it will be executing one instruction, decoding the next 
and fetching the one which it is going to execute in two instruction's time. This reduces the 
number of cycles taken to execute each instruction from three to one - tripling the speed of the 
processor.

There's only one problem - the processor needs to know where the next-but-one instruction is 
coming from, and that is not always possible. Most of the time, however, the processor will be 
executing instructions from memory in order, and hence it's a good guess that the next-but-one 
instruction to execute will be the next-but-one in memory.

If this proves not to be the case, because the processor has executed a 'branch' instruction, then the 
contents of the pipeline are invalid, and need to be cleared. This process is known as 'flushing' the 
pipeline, and, after a branch, it will obviously take a couple of cycles to refill the pipeline before the 
processor can start executing instructions again. Note that this is only as bad as having no 
pipeline, not worse!

Branch instructions are therefore more expensive to execute than other types of instruction. This 
might not seem to be a serious problem on the face of it, but a study has shown that every third 
instruction executed by a compiled program on a VAX (CISC minicomputer) is a branch. It would 
therefore seem to be a good idea to attempt to find ways by which the number of branches in the 
code could be reduced.



Conditional Execution

Consider the following code:

CMP R1,#1
BNE sub1
ADD R2,R2,#1
B continue .
sub1
SUB R2,R2,#1 .
continue
...

This code compares a register (a variable) with 1, and either increments or decrements 
another depending on the outcome of the comparison. In the case where the R1 <> 1, it will take 
5 cycles to run, or if R1 = 1, it will take 6 cycles. A significant amount of the time is spent refilling the 
pipeline after each branch instruction.

The ARM allows every instruction to be executed conditionally. This allows bits of code such 
as the one above to be written much more concisely:

CMP R1,#1
ADDEQ R2,R2,#1 ;Only executed if R1 =1
SUBNE R2,R2,#1 ;Only executed if R1 <> 1

This code will always execute in three cycles. The speedup is entirely due to losing the 
branch instructions, allowing the pipeline to remain full all the way through the code. 
Incidentally, code to perform the same operation on an 8086:

c m p ax, 1
bne sub1
add dx,1
jmp continue
sub1:
sub dx,1
continue:

Well designed RISC processors may allow more compact code to be written than CISC processors!



ARM's Addressing Modes

The ARM supports a number of powerful addressing modes (ways of getting data from memory.) 
Examples of some of these, with their 8086 equivalents, follow:

LDR R1, [R2],#4 ;Loads R1 from the address given by R2, and then adds 4 to R2 In 
8086:
mov ax, [bx]
add bx, 4

LDR R1, [R2,#4] ;Loads R1 from the address given by (R2+4) In 
8086:
mov ax, [bx+4]

LDR R1. [R2,#4]! ;Adds 4 to R2, and then loads R1 from the resultant address
add bx, 4
mov ax, [bx]

LDR R1, [R2,R3,LSL#4] ;Loads R1 from (R2+16" R3)
In 8086:
mov cl, 4
shl dx, cl
mov di, dx
mov ax, [bx+di]

There are, of course, cases where the 8086's addressing modes result in more compact code 
than the ARM's: in particular, the 8086 can add together two registers and a constant offset to 
generate a memory address. The ARM can either add together two registers, or a register and a 
constant.

You may feel that the comparison between the 8086 and the ARM is a little unfair, as the 8086 is 
an older processor than the ARM and only 16-bit, as opposed to the ARM's 32. This is true, 
but the 8086 is a more complex processor (at the circuit level) than that ARM, and it can also be 
argued that comparing a 300,000 transistor processor (the 80386) with a 25,000 transistor ARM is 
slightly unfair, too!



 Subroutine Calls

Most processors provide some sort of subroutine call/return mechanism. Traditionally, this 
has been achieved by the use of a stack, which is handled by the processor, and provides a 
pair of instructions to call and return from a subroutine. There will usually be instructions to 
transfer the contents of registers to (push) and from (pop) the stack, as it is a convenient 
place to store the contents of registers which the subroutine would like to use but the calling 
program would like to see preserved.

The ARM doesn't provide a stack. Instead, it provides instructions to allow a stack to be 
implemented easily (see above), and a subroutine call mechanism which makes use of one 
of the ARM's registers, R14. When a subroutine call is executed, the return address for the 
subroutine is placed in R14, which is known as the link register. This method has a couple 
of advantages over the sack-based approach: it's simpler, as the processor doesn't have to 
know about stacks, and faster, as no memory access has to take place to store the return 
address on the stack, or retrieve it on returning from the subroutine. It does have 
disadvantages, though - a subroutine may not call any other subroutines before it has 
saved the link register, as otherwise its own return address would be corrupted.

The. ARM provides multiple register load/store instructions, which can be used to implement a 
stack and for saving temporary registers and the link register during subroutine execution, e.
g.

.Subroutine
STMFD R13!, {R0-R3,R14} ;Save registers and return address

LDMFD R13!, {R0-R3,PC} ;Restore registers and return.
In 8086: 
Subroutine:
push ax 
push bx 
push cx 
push dx

pop dx 
pop cx 
pop bx 
pop ax 
ret



ARM's Arithmetic Instructions

ARM's arithmetic instructions operate on a `register-to-register' basis - i.e. they take their 
operands from a pair of registers and store the result in a third. Example:

ADD R1, R2, R3 ; R1 = R2+R3

This contrasts with the 8086, which only allows the specification of two operands, that 
which is to be operated on and what to operate on it with. The 8086 can, however, perform 
arithmetic directly on operands in memory. This takes longer to do - two memory accesses 
are needed, one to fetch the operand and one to write it back.

add ax,10 ; ax = ax+10
add [dx], 100 ; add 100 to the memory location pointed to by dx.
ARM code for the second of these would be:
LDR ' R0,[R1]
ADD R0,R0,#100
STR R0,[R1]
The ARM does provide enough registers that this type of operation is not often needed.

The ARM provides a full set of arithmetic instructions, including addition, subtraction, AND, 
OR, EOR, Bit Clear (AND NOT) and moves. One instruction type which appears to be 
missing is the binary shift type (e.g. shift left or right), which is particularly useful for 
multiplying and dividing numbers by powers of two.

The last operand in any arithmetic instruction may be shifted right or left by either a given 
amount or by the contents of a register. This makes the arithmetic instructions particularly 
powerful, as they can often incorporate what would be two separate operations into a single 
instruction. The provision of the shifted often removes the need for a `multiply' instruction, e.g.

ADD R1,R2,R3,LSL#4 ;R1 = R2+16*R3
And one which you might like to verify by hand:
RSB 'R1,R2,R2,LSL#5
RSB R1,R1,R1,LSL#6
ADD R1,R2,R1,LSL#3
MOV R1,R1,LSL#6 ;R1 = R2*1000000



ARM3

The processing speed of an ARM2-based system is limited by the bandwidth of the memory system, 
which determines the rate at which instructions can be fed to the processor. In order to 
overcome this bottleneck, the ARM3 processor has been developed.

The ARM3 processor adds a 4k on-chip cache to the ARM2. The cache is an area of highspeed (
around 15nS) memory, in which the last few instructions exectued by the processor are stored. The 
hope is that the next instruction required will be found in the cache, from where it can be retrieved 
very quickly, rather than from main memory. The presence of the cache allows the ARM3 to run at 
speeds in excess of 30MHz, with an instruction execution rate in practice of 10-15 MIPS.

Like pipelining, the cache requires to predict the future - the next instruction to be executed has to 
be found in the cache for any speedup to occur. Pipelining relies on the fact that coderuns in 
straight lines most of the time; cacheing takes a slightly broader view of a program and relies 
on code running in loops.

Most code runs in loops. For instance, to look for the string 'Dave' in another, a program might 
compare 'Dave' with thefirst four characters of the string, and the the second four, until it either 
reaches the end of the string (fail) or finds a match. This operation would typically be 
performed as a loop.

The first time through the loop, the code has all to be fetched from main memory, and so the 
cache provides no benefit at all. After the initial pass, and assuming that the loop is less than 
4k long (most are), all of the instructions will be fetched from the cache. In real programs, 98% or 
more of instructions are fetched from the cache on an ARM3.

The cache is '64-way set associative,' which means that 64 distinct blocks of 16 bytes may be 
cached. The 80486 only has a 4-way cache, making it less effective if a number of different 
areas of memory are being accessed in quick succession (e.g. if a loop calls more than a couple of 
subroutines.)



Support Chips

A complete computer system cannot just be built around a processor chip. It needs things 
like a screen display, a keyboard and some sort of mass storage (floppy or hard disk.) 
Some system memory (RAM/ROM) is also desirable. The ARM doesn't provide all of these 
facilities itself, and so Acorn have designed another three chips which, together with ARM, 
make up the 'ARM chip set.'

MEMC is a memory controller chip, which handles memory map decoding, 
ROM, RAM and I/O access each at various speeds, page mode (fast) RAM 
access, virtual-to-real address translation for protected multi-tasking and 
processor clocking.

VIDC is a custom, programmable video display generator, which can produce 
displays of resolutions of up to and beyond 800x600 in up to 256 colours from 
a palette of 4096 and replay 8 channels of sampled sound in stereo at up to 
33KHz through internal dual 8-bit log DACs.

IOC is a custom, programmable I/O controller which handles peripheral 
decoding and timing, controls interrupts, drives the keyboard, provides an IIC 
interface and produces a few uncommitted I/O lines.

These three chips allow a complete ARM-based system to be built with just the addition of 
RAM, ROM and the desired set of peripheral circuitry. Some other items need to be 
provided, such as a system clock and some buffering on the video output lines, but these 
are not at all complex.



MEMC

MEMC (short for MEMory Controller) provides the hardware needed to access memory on 
an ARM-based system.

Address decoding. The area of memory which the processor can access is 
split into various areas, including a RAM area, a ROM area and an I/O area. 
MEMC is responsible for looking at the address generated by the processor 
and working out which area it's for.

ROM access timing. ROM chips come in different speeds, with access times 
ranging from about 450nS to 100nS. In order to accommodate this variation, 
MEMC can generate different cycle timings when ROM is being accessed.

RAM refresh. The RAM on the system is 'dynamic' - it forgets what it's been 
told to remember! This might seem catastrophic, but it only forgets after a little 
while (10mS or so) and has circuitry to 'refresh' its memory. This is driven by 
MEMC.

RAM address generation. Dynamic RAM chips need to be given an address in 
two halves (this reduces the number of address pins needed on the package 
and helps keep the chip small and cost low.) This 'address multiplexing' is 
performed by MEMC, which also generates the necessary timing strobes.

Fast RAM access. Dynamic RAM chips are arranged in such a way that it is 
generally quicker for them to access successive memory locations than 
random ones. Most of the time, processor and video accesses to RAM are 
sequential, and MEMC makes use of this to almost double the effective speed 
of the RAM.

DMA. Handling the system RAM, MEMC is ideally placed to control DMA (
direct access to system RAM by peripherals,) This feature is used to allow 
the video display and sound samples to be held in system RAM, rather than in 
a separate area of memory.



Protected Multi-Tasking

When attempting to run more than one program on a computer at once ('multi-tasking'), it is 
desirable to protect them from each other. In the normal run of things, with software which works 
perfectly, this protection isn't needed, but in the real world, perfect software is not often come 
across.

Mainframes in the 1970's used (and still do) 'virtual machines' to run multiple tasks on a single 
computer. Each task which is running appears to have the whole computer (give or take some 
memory) to itself. This eases the programmer's job - he doesn't have to worry about any other 
tasks - and gives protection. This system is implemented on the 80386, and also on ARM 
systems by MEMC.

So how do we make a computer look like several smaller ones? MEMC has internally a 'page 
translation table' which is used to map addresses produced by ARM ('virtual' addresses) 
onto addresses in RAM ('real' addresses.) This needs to be reprogrammed during task 
switches, in order to 'map out' the task which has just finished running and 'map in' the new one.

In this diagram, the system's memory is 
represented by the column on the right. It 
contains two virtual machines, each 
running a single task. When a task is 
be ing run,  the addresses f rom the 
processor are translates by the 'page 
translation table' in MEMC, which allows 
the tasks to think that they occupy the 
same area in memory.

MEMC's page translation has 128 entries. Each 
entry specifies where 1/128th of the system 
memory (a page) should appear in the 
processors memory map. In order to 
translate addresses, MEMC attempts to 
find a table entry which matches the 
processors address.



VIDC

VIDC (VIDeo Controller) is the chip responsible for producing video displays and sound. It is 
highly programmable, in terms of both screen resolution, colours and scanning rates. In particular, it 
can produce screen displays of up to 1056x256 on a standard monitor, in 2, 4, 16 or 256 colours; or 
800x600 plus on a multisync monitor, or, with a small amount of extra circuitry, 1152x984 
monochrome on a 'workstation' monitor.

VIDC also provides support for a single hardware 'sprite', which is used to display the 
desktop pointer, amongst other things. MS Windows apparently spends 25% of its time just moving 
its pointer around its desktop, as it has to do it in software.

Sound is produced by replaying samples (like a CD) through a pair of DACs. VIDC 
supports up to 8 channels of sound, and can set the stereo position for each channel 
independently. The usual playback rate on an Archimedes/A3000 is 20kHz, giving a 
bandwidth for the sound system of around 8kHz. This isn't hi-fi, but it's significantly better than a 
telephone or MW/LW radio broadcasts.

The video frame and sound samples are stored in main memory. This contrasts with the PC 
world, where the video system sits on a separate card and the video controller has local memory. 
There are pros and cons for each system, but the V!DC system scores on speed of picture update 
and releasing screen memory for programs when it's not being used, but loses because the 
processor has to share its RAM with the screen, which may slow it down.

Screen addressing is cunningly done not by V!DC, but by MEMC. MEMC is then 
responsible for arbitration between processor, screen and sound accesses to main 
memory, and already has all of the hardware needed to generate RAM addresses onboard.

VIDC also provides support (but not complete circuitry) for genlocking and video overlay. Genlocking 
is the name given to a process of synchronising two video sources, so that they scan frames 
together. It is a prerequisite for video overlay, which involves switching between video 
sources to cause one to appear to be overlaid on the other. Uses include the addition of 
scrolling credits to video programmes, and the addition of teletext-style subtitles.



IOC

The ARM provides no special signals for interfacing to peripherals. Hence they are 'memory-
mapped' - each peripheral occupies a few memory locations which the processor can 
access. Peripherals may also need to be accessed at a slower speed than memory: 
where RAM may have a 60nS cycle time, a peripheral chip may not leave much change out 
of a microsecond.

MEMC (see above) decodes out peripheral accesses by the processor. But it doesn't work 
out which peripheral is to be accessed; neither does it know how long it should take. These 
tasks are carried out by IOC.

IOC is also responsible for handling interrupt requests from peripherals to ARM. 
Peripherals signal to the processor that they want attention by sending an interrupt signal; 
this is much more efficient than having the processor poll peripherals every so often. The 
processor has only got two interrupt inputs, though, and hence cannot distinguish which 
one of the (several) peripherals in the system has generated the interrupt. Therefore, 
peripherals signal interrupt requests to IOC, which checks to see if interrupts from that 
particular peripheral are allowed and passes the request on to the processor if they are. 
The processor can then interrogate IOC to see which peripheral requested the interrupt, 
rather than having to poll all of the peripherals to find out.

The keyboard interfaces directly to IOC down a bidirectional serial link. IOC also controls 
the RTC (real-time clock) chip via a pair of its I/O lines, which are used to implement an IIC 
bus. This bus, originally designed for use in teletext TVs and video recorders, now has a 
wide variety of possible customers - as well as RTCs, programmable frequency generators 
and latches, IIC may allow you to program your video to run in slow reverse record 
mode...try doing that from the front panel!

IOC provides a few more uncommitted I/O lines, which may be used directly for controlling 
simple hardware, and a number of timers, which can be used to interrupt the processor 
after a given time or at a given rate. One of these is used to update the machine's internal 
clock - that's why it tends to be about 30 minutes out after the machine has been on for 24 
hours. The RTC is, however, accurate to a few seconds a year.
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