
reference manual 

ARM Evaluation System 

Acorn OEM Products 





Cambridge LISP 

Part No 0448,011 
Issue No 1.0 

15 August 1986 



© Copyright Acorn Computers Limited 1986 

Neither the whole nor any part of the information contained in, or the product 
described in, this manual may be adapted or reproduced in any material form except 
with the prior written permission of the copyright holder. The only exceptions are as 
provided for by the Copyright (photocopying) Act, or for the purpose of review, or 
in order for the software herein to be entered into a computer for the sole use of the 
owner of this book. 

Within this publication the term 'BBC' is used as an abbreviation for 'British 
Broadcasting Corporation'. 

• The manual is provided on an 'as is' basis except for warranties described in 
the software licence agreement if provided. 

• The software and this manual are protected by Trade secret and Copyright 
laws. 

The product described in this manual is subject to continuous developments and 
improvements. All particulars of the product and its use (including the information in 
this manual) are given by Acorn Computers in good faith. 

There are no warranties implied or expressed including but not limited to implied 
warranties or merchantability or fitness for purpose and all such warranties are 
expressly and specifically disclaimed. 

In case of difficulty please contact your supplier. Every step is taken to ensure that 
the quality of software and documentation is as high as possible. However, it should 
be noted that software cannot be written to be completely free of errors. To help 
Acorn rectify future versions, suspected deficiencies in software and documentation, 
unless notified otherwise, should be notified in writing to the following address: 

Customer Services Department, 
Acorn Computers Limited, 
645 Newmarket Road, 
Cambridge 
CB5 8PD 

ii 	 Cambridge LISP 



All maintenance and service on the product must be carried out by Acorn Computers. 
Acorn Computers can accept no liability whatsoever for any loss, indirect or 
consequential damages, even if Acorn has been advised of the possibility of such 
damage or even if caused by service or maintenance by unauthorised personnel. This 
manual is intended only to assist the reader in the use of the product, and therefore 
Acorn Computers shall not be liable for any loss or damage whatsoever arising from 
the use of any information or particulars in, or any error or omission in, this manual, 
or any incorrect use of the product. 

Econet® and The Tube® are registered trademarks of Acorn Computers Limited. 

ISBN 1 85250 006 

Published by: 
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN, UK 

Cambridge LISP 	 iii 



Contents 

Part I 

1. Introduction 	 2 
1.1 Installing LISP 	 3 
1.2 Running LISP 	 3 
1.3 Start-up options 	 4 
1.4 Use of space 	 5 
1.5 An example session with Cambridge LISP 	 6 
1.6 Finding out what is available 	 7 
1.7 Compatibility with Acornsoft LISP 	 8 

2. Preparing programs 	 9 
2.1 Special characters 	 9 
2.2 Case 	 9 
2.3 Defining functions 	 10 
2.4 Macros 	 10 
2.5 Error recovery 	 11 

3. The LISP editor 	 12 
3.1 Editor commands 	 13 
3.2 Elementary moving 	 14 

3.2.1 Find and move 	 15 
3.2.2 Structure modification 	 15 
3.2.3 Reformatting the screen 	 16 
3.2.4 Eval loop and leaving the editor 	 16 

3.3 Entering an s-expression to the editor 	 16 
3.3.1 Hash Variables 	 17 
3.3.2 Miscellaneous features 	 17 
3.3.3 Limitations 	 17 

4. Implementation features 	 18 
4.1 Preserve 	 21 
4.2 Load-on-call facility (FASL) 	 22 

5. Input and output 	 24 
5.1 I/O Routines 	 24 

5.1.1 Open/Close 	 24 
5.1.2 wrs/rds 	 24 
5.1.3 Printing24  

5.2 Reading 	 26 

iv 	 Cambridge LISP 



Part II 

6. Functions and variables 	 29 
6.1 Argument types 	 30 
6.2 Characters 	 32 
6.3 Specialised variables 	 33 
6.4 Atoms and values 	 34 
6.5 Dotted pair functions 	 37 
6.6 Tagged cons cells 	 40 
6.7 List processing functions 	 42 
6.8 List equality and searching 	 45 
6.9 Pointer replacement functions 	 49 
6.10 List manipulating functions 	 50 
6.11 Creation of symbols 	 53 
6.12 Flags and property lists 	 54 
6.13 Function definitions as values 	 56 
6.14 Vector operations 	 57 
6.15 The AVL module 	 59 
6.16 Arithmetic functions 	 60 
6.17 Basic arithmetic operations 	 64 

6.17.1 Modulo arithmetic functions 	 67 
6.17.2 Rational arithmetic operations 	 69 
6.17.3 Trigonometric calculating functions 	 70 

7. Control structures 	 71 
7.1 Common LISP control structures 	 74 

8. Loops 	 76 
9. Logic functions 	 78 

9.1 Bit-level operations 	 78 
10. I/O and file handling 	 81 

10.1 Files 	 81 
10.2 Printing 	 83 
10.3 The programmable reader 	 87 
10.4 Syntax 	 89 

10.4.1 Character level syntax 	 91 
10.5 Interacting with the LISP supervisor 	 92 
10.6 Saving work 	 93 

11. Evaluating functions 	 94 
11.1 Declarations and binding 	 96 
11.2 Function definition 	 98 
11.3 Compiler functions 	 102 

Cambridge LISP 



12. Editor entry points 	 104 
13. Error control 	 105 
14. Debugging in LISP 	 107 

14.1 Tracing functions 	 107 
14.2 Tracing memory use 	 109 
14.3 Timing functions 	 111 

15. Miscellaneous functions 	 112 
15.1 Graphics functions 	 114 

16. Appendix A 	 116 
16.1 Error Messages 	 116 

17. Appendix B 	 121 
17.1 Bibliography 	 121 

vi 	 Cambridge LISP 



Part I 

Cambridge LISP 	 I 



1. Introduction 

This is a guide to Acorn Cambridge LISP running under the Executive on 
Acorn ARM computers. This section describes the main features of the 
Acorn Cambridge LISP, and comments on the facilities provided. Please 
note that this manual is not a tutorial; appendix B contains several 
references to such texts. Throughout this manual, except where an alternative 
meaning is obvious, LISP refers to the Acorn ARM implementation of 
Cambridge LISP. 

Cambridge LISP was originally developed to provide support for an ongoing 
research project in computer algebra. It is intended for running experimental 
programs, and so it makes a policy of checking for exceptional cases (e.g. 
car or cdr of atoms) and tries hard to provide clear and concise 
diagnostics. The expectation that the system would be used for writing parts 
of algebra systems has led to the inclusion of an arithmetic package that 
puts consistency above efficiency: integers can grow to be any size, the 
normal arithmetic primitives accommodate rational numbers, and there is a 
well-defined interface between exact and floating point number 
representations. The system provides a number of character handling 
facilities; can select and use several input/output streams, and has a built-in 
LISP prettyprinter. 

To a large extent, the system is compatible with a proposal for a LISP 
standard that was put forward by Professor A.C. Hearn and others of the 
University of Utah and the Rand Corporation. A short bibliography is 
provided in appendix B. 

2 	 Cambridge LISP 



Introduction 

For users coming to Cambridge LISP from other dialects of LISP, your 
attention is drawn to the following points: 

(1) function definition is performed with the functions de or df; 

(2) the function associated with an identifier is its value; 

(3) the distinct value and function definition cells of other LISP dialects 
are not supported. 

1.1 Installing LISP 
Acorn Cambridge LISP for the ARM is distributed on ADFS floppy discs. 

1.2 Running LISP 
To run LISP, type 

Lisp -image <image file name> 

at the ARM prompt. The keyword `-image' must be supplied, followed by 
the full (or relative) pathname of the directory which contains the image 
files. On the distributed LISP system, the image directory is '$.Lib.Image' 
on the ADFS. 

If -identify is specified, you will be given an indication of the store in use, 
then an initial store image is loaded from the directory image. As more 
complex use is made of LISP, the various store preservation functions can 
be used to produce customised versions. For example, if the REDUCE 
system is available and is in the current directory, typing: 

LISP -image reduce 

will run REDUCE. 

The process of customisation takes the form: 

LISP -image oldimage -dump newimage 

Then, when the LISP function (preserve) is called, the store image in 
oldimage is copied to newimage, together with updates made before the call 
to (preserve) 

Cambridge LISP 	 3 



Chapter 1 

1.3 Start-up options 
The options available at the point of starting LISP are: 

-from 
If present expects a file name to use as the standard input to LISP. 
The default is the terminal. 

-to 
If present expects a file name to use as the standard output to LISP. 
The default is the terminal. 

-image 
If present expects the name of a directory in which to find the 
initial store image and fast load modules. The default is $.i. 

-dump 
If present expects the name of a directory in which to put the store 
image and fast load modules generated in the run, by use of module 
and preserve. The default is the image directory. 

-leave 
Expects a number of bytes (in units of 1024) that LISP will leave 
for the ARM to use as workspace. This should normally not be 
needed. The default is 20. 

-store 
Expects a number of bytes (in units of 1024) that LISP will use for 
this run. It is useful to give exactly reproducible runs, or to see how 
well some program would behave if used with a smaller computer 
than the one you have. 

-identify 
This option enables a few lines of start-up information to be 
displayed on entering LISP. This gives the version number, the 
amount of space used up by LISP, the image size, the date and time 
the store image was created, and how much store was used. 

-help 
Displays help information: a brief synopsis of the start-up options. 

4 	 Cambridge LISP 



Introduction 

1.4 Use of space 
LISP will attempt to acquire as much space as it can, leaving a little behind 
for other operating system activities. This behaviour can be changed by use 
of options as described above. If -identify has been specified, messages 
produced at the start and finish of each run give some indication of how 
much store is used and how much was available. If garbage collection 
becomes too frequent, more store is needed. There is no need to tell LISP 
how to allocate the store it is given - it has its own flexible scheme so that, 
for example, neither stack nor freestore can run out while there is some of 
the other left. Note also that the LISP compiler does not take up much space 
until it is used, and it can be removed using excise when it is finished 
with. 

Cambridge LISP 	 5 



Chapter 1 

1.5 An example session with Cambridge LISP 
The following example shows the dialogue during a short session with LISP. 
A few variables to configure the environment are set, a short LISP function 
is defined and tested, and some function definitions are read in from a file. 

Lisp -image $.Lib.Image -identify 

Acorn Cambridge Lisp entered in about 4030 Kbytes 

Store image was made at 09:55:48 	on 12-Mar-86 

Lisp version - 1.05\1.05\1.05 12-Mar-86 	image size 	105716 bytes 

Started at 15:33:45 on 14 Jun 86 after 0.01+9.15 secs - 7.7% store used 

(setq !•comp nil) 

> nil 

(de flatten (L) (cond 

((null L) nil) 

((atom L)(list L)) 

(t(nconc (flatten (car Ll) 

(flatten (cdr 

> flatten 

(flatten 'al 

> (a) 

(compile '(flatten)) 

> **128 bytes 170 ms compiling flatten 

> (flatten) 

(flatten 'la) 

> (a) 

(flatten '((a)((1 2 3)1((((1) 

> (a 1 2 3 1 1) 

6 	 Cambridge LISP 



Introduction 

• End of file detected 

> END OF RDF 

(stop) 

> End of Lisp run after 19.50+14.49 secs - 66.1% store used 

The sign > is not a LISP prompt, but a signal that what follows is an 
evaluation returned by LISP. 

1.6 Finding out what is available 
There are three ways of finding out what is available in Cambridge LISP. 
First, try something and see if it works. Many of the functions provided 
have the same specifications as those in other LISP dialects as described in 
various textbooks and reference manuals. In particular, the Standard Lisp is 
close to this implementation. See the references in appendix B. 

The second suggestion for checking what might be available is to look at the 
object list. LISP keeps the names of all atoms - and hence all functions -
that it knows about in a structure known as the object list. 

The function oblist which does not need any arguments, returns a list of 
all items held in this structure. It is a sort of index to the collection of 
available functions. 

The third and best method is to consult Part II of this manual. Particular 
incompatible or especially useful features of the Cambridge system are noted 
below. See also appendix B for references to other documents which 
describe similar Cambridge LISP systems, for example, most of the 
functions provided have essentially the same specification as the versions 
defined in either the LISP 1.5 users manual or the Stanford LISP reference 
manual. 

Cambridge LISP 	 7 



Chapter 1 

1.7 Compatibility with Acornsoft LISP 
Acornsoft LISP (see appendix B) is a small version of LISP for the BBC 
Microcomputer. You will find that most Acornsoft LISP programs run under 
Cambridge LISP after modest changes are made. 

Acornsoft uses upper case identifiers and accordingly *lower should be set 
to t in Cambridge LISP: 

(setq !*lower t) 

Acornsoft uses defun to define both eval/spread and noeval/nospread 
functions; the distinction being made by the format of the parameters in the 
definition. You may equate functions by typing: 

(setq defun de) 

Lastly, the hyphen `-' in Acomsoft LISP is not defined as a break character. 
You may wish to edit your source or to use set syntax to redefine this. 
Using PRIM in Acornsoft LISP to tidy up the use of break characters in your 
program text is advised. 

8 	 Cambridge LISP 



2. Preparing programs 

2.1 Special characters 
LISP is normally used in an interactive fashion with program material being 
entered on line. When it is desired to import program material from other 
LISP systems, or to generate material off line, it is important to remember 
that many characters have a meaning assigned to them by the read functions 
of the system. 

See setsyntax for a description of the initial definitions. ! used as a prefix 
causes the character immediately following to be accepted without special 
interpretation. This is useful, for example, in specifying pathnames which 
include a dot, for example, 

(rdf 'lspdir!.tsp) 

Enclosing a file name in double quotes will also cause the following name 
to be taken literally, for example, 

(rdf "lspdir.tsp") 

If an identifier is desired which includes a hyphen, there are two courses of 
action: 

(a) write it as a double!-barrelled!-word 

(b) call (setsyntax "-" break! -character nil) then write the 
double-barrelled-name without the need for the exclamation marks. 

2.2 Case 
Cambridge LISP is case sensitive and all supplied functions are named in 
lower case. When handling program material referencing store LISP 
functions it may be advantageous to set the variable *lower to t to enable 
continued references to the upper case versions of their names: 

(setq !*lower t) 

(SETQ FOO T) 	 this now equivalent to (setq foo t) 

Cambridge LISP 	 9 



Chapter 2 

2.3 Defining functions 
The function rdf will read in a source text file and execute the statements 
found there. The particular functions used to define functions and macros for 
example, de df may not prove compatible with LISP source text from all 
other LISP systems. 

The normal way of defining functions will be to use (de ... ) and (df 
...) . The format for these is: 

(de <function name> (arg1 arg2) 
<body>) 

as in: 

(de mycons (a b) (cons a b)) 

As well as functions that have their arguments spread out, it is possible to 
define functions which expect an evaluated list. These are sometimes known 
as lexprs . In Cambridge LISP they are defined, for example, by 

(de mylfunc 1 
(mapcar 1 (function print))) 

If the LISP compiler is available in the image directory and the global flag 
*comp is non-nil, de automatically invokes the compiler. Note that de is a 
special form, and you do not have to put quote marks in front of its 
arguments. 

Functions which do not evaluate their arguments can be defined using df or 
dcf: for details see section 10.2. 

2.4 Macros 
As well as functions, there are also macros. The body of a macro is 
evaluated to give a form that is then evaluated. For example: 

(dm if (u) 
(list 'cons 

(list (cadr u) (caddr u)) 
(list 't 'caddr u)))) 

is an approximation to the definition of the if conditional. 

10 	 Cambridge LISP 



Preparing programs 

The functions that define new functions (that is, de, df and dm) will print a 
warning message when they redefine an existing function or macro. 

Note that some other LISP systems use constructions built around the word 
fexpr, to achieve the effect of df. fexpr is not part of Cambridge LISP. 

A bound variable list that is in fact a single (non-nil) atom is treated 
specially by both lambda and lambdaq. The variable is bound to the 
complete list of arguments given to the function, and there is no check or 
constraint on how many arguments are given. This makes it reasonably easy 
to define functions like list and plus which can cope with any number of 
arguments. An atomic variable list for a lambdaq is illegal; the only valid 
format for the parameter field is a list with a single entry. 

2.5 Error recovery 
Some errors cause entry into an iterative break-loop, which prompts for a 
character which will determine a variety of ways of exiting the loop. These 
are explained in the prompt: 

Lisp break> 

Q to quit, A to Abort, C to Continue, or . <expression> 

Cambridge LISP 	 11 



3. The LISP editor 

The Cambridge LISP full-screen editor described in this document is a 
powerful structure editor written entirely in LISP. It may be invoked via two 
functions: the first of these, a edit, edits the s-expression given as its 
argument. The edited copy is returned. fedit edits the definition of a 
function given the function's name as an argument; the display portion of 
the editor has been especially tuned for editing function definitions. 

As well as edit existing functions, fedit can be used to create new ones, 
specifying the type of the function as an optional second argument, that is, 

(fedit myfunction fexpr) 

The editor sets up a template for the function, and the user fills in its 
definition using the normal editor commands. If myfunction already exists, 
the second argument is ignored, and the editor entered as normal. 

On exit from fedit, the edited function is compiled if the variable *comp 
is currently set to a non-nil value. The function is also checked to see if it 
has been changed from an expr/lexpr to a fexpr (or vice versa), and if 
so a warning message is printed that unexpected effects might occur on calls 
to the function from compiled code. 

12 	 Cambridge LISP 



The LISP editor 

3.1 Editor commands 
The editor commands are designed around the concept of the 'current 
s-expression', which is visible on the screen at all times, the first character 
of which is highlighted by an inverse-video block (the 'edit pointer'). The 
current s-expression can be any one of the following: 

(1) an atom 

(2) a LISP list starting with an opening parenthesis 

(3) The cdr (tail) of a LISP list; in this case the inverse-video block is 
over the blank immediately before the car (head) of the current 
s-expression. 

Initially, on entry to the editor, the current s-expression is the whole of the 
structure being edited and the screen resembles: 

( lambda(a b) 

(cond 

((null a) b) 

(cons 

(car a) 

(append & b) ) ) ) ) 

Cambridge LISP 	 13 



Chapter 3 

The three lines at the top of the screen form a menu containing the more 
important (mostly single character) editor commands; then the structure 
being edited is displayed (in this case a function definition). The ampersands 
(&) indicate detail that has had to be suppressed for the structure to fit on 
the VDU screen. 

3.2 Elementary moving 
When the arrow keys are pressed, the edit pointer does not move from 
character to character like a cursor in a text editor, but jumps from one 
s-expression to the next. The best way to familiarise yourself with the edit 
pointer's style of movement is to experiment. 

In addition to using the arrow keys, there are several commands to move the 
edit pointer around, and thus make other parts of the structure the current 
s-expression. They are: 

h 	- Move to the head of the current s-expression. 

t 	- Move to its tail. 

u 	- Move up one level; inverse of head and tail. 

b 	- Move back up to the beginning of the smallest enclosing list. 

14 	 Cambridge LISP 



The LISP editor 

3.2.1 Find and move 
The next four commands perform more complicated location changing, the 
first two prompting at the bottom of the screen for an s-expression for the 
command to find. 

If 	- Look for and move to the next occurrence (in print order) of the 
user-specified s-expression. The area in which the search takes place 
starts at the s-expression immediately after the current one, and the 
search begins at the end of the function, as it appears on the screen. 

lk 	- Look for and move to the next occurrence (in reverse print order) 
of the user-specified s-expression, the search beginning with the 
s-expression immediately before the current one. 

1 	- Repeat the last look for command. 

ma 	- Insert a mark at the current edit position. The mark is a new 
GENSYM ed atom of the form M00<n>. 

MO 	- Move to a previously set up mark. 

3.2.2 Structure modification 
The following commands perform structure modifying operations: 

d 	- Delete the current s-expression. 

r 	- Replace current s-expression with a user-specified s-expression 
read from the bottom of the screen. See also section 2.2.4 below 
headed 'hash variables'. 

c 	- Repeat the last structure modification. 

i 	- Insert a user-specified s-expression at the edit pointer, performing 
a cons of the user's expression with the current s-expression. 

s 	- Splice in a user-specified list at the edit pointer. If the current 
s-expression is an atom, it is replaced by the elements in the new 
list. 

Cambridge LISP 	 15 



Chapter 3 

n 	- Undo the last structure modification command. A record is kept of 
all the modifications made to the structure, and successive undo 
commands will restore the function to its state prior to editing. 

x 	- Explode the current s-expression so that it can be modified using 
one of the commands above. 

3.2.3 Reformatting the screen 
The next three commands change the appearance of the screen: 

- Reinitialise screen, and redisplay (useful if the screen has been 
messed up for some reason). 

zi 	- Zoom in and display current s-expression in more detail. The 
command will work only when the edit pointer is not at the top of 
the screen. 

zo 	- Zoom out; opposite of zoom in. The zoom is not allowed if it 
would cause the current s-expression itself to be supressed as a 
detail. 

3.2.4 Eval loop and leaving the editor 
The final three commands allow the user to enter a read-eval-print loop 
while still inside the editor, and allow the user to terminate the edit session 
and exit: 

e 	- Enter a read-eval-print loop; typing 'fin' terminates the loop and 
causes the editor to be re-entered. 

w 	- Windup and update edited structure. 

q 	- Quit and do not update structure. 

3.3 Entering an s-expression to the editor 
The 'find', and some of the structure modification commands, require the 
user to enter an s-expression; in these cases 'the user is prompted at the 
bottom of the screen by ?. The s-expression input can cover as many lines 
as desired, the (delete)key deleting the last character typed (even back across 
previous lines), and (tab)inserting three spaces. Typing (escape) at  any point 
completely abandons the current command. 

16 	 Cambridge LISP 



The LISP editor 

3.3.1 Hash Variables 
For convenience, in 'cut and paste' operations, the editor sets up the variable 
#0 to contain the current s-expression, and, if it is a list, #1, #2, ... to 
contain the values of the top-level elements of it. There is also the command 
'#' which sets the value of the variable # to be the current s- expression at 
the time the command was issued. The values of these #- variables are 
substituted into each s-expression and typed wherever they occur in it. These 
#-variables are also available in the read-eval-print loop inside the editor 
invoked by the eval command. 

3.3.2 Miscellaneous features 
The editor stores the name of the last function it edited in the global 
variable **edit -last -function, and if the function editor is called 
without being given the name of a function, it re-edits the last one. 

The menu of editor commands displayed at the top of the screen can be 
changed by altering the contents of the global variable **edit-menu. The 
variable must contain a list of strings, each not longer than the width of the 
screen, each string to go on one line. The position on the screen of the 
structure being edited is automatically adjusted depending on how much 
space the menu takes up. 

Since there is the facility to enter a supervisor loop within the editor, it is 
possible (and sometimes very useful) to enter the editor within that loop and 
thus edit at a second (or even higher) level. To help the user keep track of 
which level he is in, and the name of the function he is editing at each 
level, the editor maintains this information in the variable **edit -level. 

The editor maintains a list of all the functions that have been edited in the 
current LISP session in the global variable **edit-functions. Thus it is 
easy to keep track of which functions have been changed and so need to be 
written back out to disc at the end of a session. 

3.3.3 Limitations 
The editor cannot deal with re-entrant LISP s-expressions. Currently it 
cannot express vectors or strings adequately for easy editing of their internal 
constituents. 

Cambridge LISP 	 17 



4. Implementation features 

Cambridge LISP is a value cell system. This means that for each identifier 
in any LISP program there is a single word used to hold the current value of 
that variable. When variables get bound or unbound, the contents on the 
value cell will be updated appropriately. This scheme has the advantage of 
being efficient and lends itself to graceful error recovery. For interpreted 
code, this mechanism provides what in Cambridge LISP is referred to as 
fluid scope rules (this is known as special in some other LISP dialects). 
The visible manifestations of a value cell LISP implementation are: 

(a) A name can only be associated with one value at once. If you try to 
use a local variable called car it will not be possible to get at the 
built-in function car while within the scope of your local variable. 

(b) Function definition and cset are variants of set. If you assign to a 
name not bound as a local variable, your assigned value will be stored 
globally. 

(c) Functions used as functional arguments should not reference free 
variables. This rule can be relaxed if you understand the technicalities 
and possible consequences of not keeping to it. 

When LISP is given something to evaluate it has to decide what to do about 
the function it is given. The Cambridge system works in the following way: 

(i) if the 'function part' is a list of the form (lambda ...) or (lambdaq 

) or if it is the entry-point of a piece of compiled program, LISP 
processes it directly; 

(ii) otherwise LISP replaces the function part by its value and goes back 
to step (i). 

Thus functions get repeatedly evaluated until they make sense. All the LISP 
built-in functions are variables that have been given initial values that are 
the entry-points of the corresponding pieces of code. It is an error to try to 
apply an expression that does not turn into a recognizable function when 
evaluated enough times - LISP can detect this in most simple cases, but can 
sometimes go into a loop. It must be stressed that this loop has the same 
status as any other non-terminating program; this constitutes a user error and 
not a failure in the LISP system. 

18 	 Cambridge LISP 



Implementation features 

Some other systems will only evaluate function parts once, or perhaps twice 
before demanding that a recognizable form has been reached. 

The symbol lambdaq is used in Cambridge LISP when a function must 
avoid evaluating its arguments too early. The use of lambdaq is like that of 
lambda except that it inhibits the evaluation of its arguments. Thus a 
function rather like the built-in quote can be redefined by: 

(setq my! -quote '(lambdaq (a) a)) 

Within the body of a function introduced in this way, eval can be called to 
get arguments explicitly evaluated. 

The Cambridge LISP interpreter implements the implied progn feature of 
many LISP systems, where the function progn can be omitted in nearly all 
circumstances. If a function is given too few arguments, then additional 
arguments of nil are supplied. If too many arguments are given, then excess 
arguments are ignored, after they have been evaluated in the case of eval 
functions. 

Serious users of LISP will need to invoke the compiler to convert their 
programs from S-expressions into hard executable machine code. This 
process normally saves store and results in functions that run much faster. 
The compilation process however takes some liberties with LISP semantics, 
and so can not be used indiscriminately. To use the compiler at all, an 
image directory containing the module lspcomp must be available to the 
LISP system. 

If fl, f2 ... are functions that have just been defined, a call: 

(compile ' (fl f2 ...)) 

will replace the definitions of the functions with compiled code that is 
essentially equivalent. Also functions defined using de or df can be 
compiled automatically if the variable *comp is set to true. 

Cambridge LISP 	 19 



Chapter 4 

The compiler has two major semantic differences from the interpreter 
intended to make compilation more effective: 

(a) In compiled code, variables bound either by lambda or by prog are 
treated as being local to the function binding them unless they have 
been specially declared fluid. Thus if use is made of free variables, 
those variables should be declared using a call 

(fluid ' (v1 v2...)) 

before compilation is attempted. 

(b) The compiler freezes some assumptions and knowledge about routines 
called by the function being compiled. These assumptions can 
sometimes lead to inconsistencies if the user attempts to redefine 
functions later. The compiler will not treat calls to user-defined special 
forms (that is, functions defined using df or dm) properly unless the 
special form has been defined before any attempt is made to compile a 
call to it. 

These restrictions arise because the compiler generates open code or special 
calling sequences for many standard LISP functions: certain function names 
are treated specially and cause the compiler to generate fixed sequences of 
orders irrespective of what definition the user thinks should be associated 
with the name. These include car, cdr, cons, putv, getv, the integer 
arithmetic routines: iplus, iminus and so on, and a few more. A complete 
list is given in the table below. If one of these is redefined, it will alter the 
behaviour of interpreted code but will not affect compiled code in any way. 
In all other cases, redefining a function will cause all references to that 
name to use the new definition. 

Note again that if a variable is to be bound in one function but used in 
another (or if it is to be treated as a global variable), then before any 
function mentioning the variable is compiled, a declaration of the following 
form should be obeyed: 

(fluid '(var1 var2 ...)) 

20 	 Cambridge LISP 



Implementation features 

The declaration can be removed after compilation by a corresponding call to 
unfluid. note that fluid takes the place of declarations known as 
special and common in wpagetems. When all user functions have been 
compiled, a substantial amount of space can be recovered by telling LISP to 
throw away the compiler. This is done by calling excise with argument 
lspcomp. 

Functions fixed by the compiler 

apply 	 car 	 cdr 
cdifference 	cminus 	cons 
cplus 	 ctimes 	equal 
flagp 	 gensym 	get 
getd 	 getv 	 iaddl 
idifference 	ileftshift 	ilogand2 
ilogor2 	 ilogxor2 	iminus 
iplus2 	 irightshift 	isub1 
itimes2 	 ncons 	 putv 
rplaca 	 rplacd 	rplacw 
xcons 

4.1 Preserve 
Particularly when developing a large program, it is useful to be able to 
dump the state of LISP to a disc file, then pick it up again in a later run. 
The function used for this is called preserve, and (preserve) writes a 
store image to the file with the name lsproot in the dump (or image, if no 
dump was specified) directory. 

After preserve has been executed LISP stops, even if the call to 
preserve was embedded deep in some other functions. On restart all 
information about what was happening when preserve was called is lost. 
preserve will write to a member lsproot together with any other members 
defined by the FASL facility. If image and dump are the same, then the 
previous lsproot is renamed bakroot before the store is dumped. 

Cambridge LISP 	 21 



Chapter 4 

Store images can only be loaded at the very start of a LISP run, and on 
entry to LISP the parameter image will give the directory in which to find 
the store image which is loaded. Thus: 

LISP -IMAGE $.OLDIMAGE -DUMP $.NEWIMAGE 
. 	. 	. 

(preserve) 

dumps a store image to the directory $.newimage, and 

LISP -IMAGE $.NEWIMAGE 
. 	. 	. 

reloads it and continues with the computation. If preserve writes out a file 
successfully, LISP will stop with a return code of at least 200 to signal this 
fact. 

(preserve 'initialsupervisor) 

is a form that can be used to package systems in a secure way. When the 
image file is reloaded, the user-supplied function initialsupervisor will 
be called rather than the standard LISP supervisor. If initialsupervisor 
is exited, then LISP will stop. 

4.2 Load-on-call facility (FASL) 
The following functions provide a load-on-call facility in LISP. note that all 
code is loaded from members of the directory called 'image' (unless the call 
has designated another directory for that function) and any generated code is 
written to the same directory, unless a dump has been specified in the call to 
LISP. The file names Isproot, bakroot, and lsperrs should be avoided, as 
these are used by the basic system. Various other modules with names 
beginning with 'Isp' are part of the base system. 

(module membemame) 
Until further notice the compiler will write Fast Load (FASL) data 
for functions it compiles to the file membername in directory 
'dump'. These files will be written as binary data. If membername 
is given as nil, or not given, fast output is switched off and the 
compiler produces code in store. 

22 	 Cambridge LISP 



Implementation features 

(excise membername) 
If membername is the name of a fas1file that has been loaded, 
(excise membername) replaces the definitions of all functions in 
that file with references to their disc versions. This frees the space 
that was consumed by the compiled code bodies. If excise is 
called with no arguments, it purges all loaded modules. 

(preserve) 
Write a file lsproot to image (or dump as described above) in a 
format suitable for LISP to reload it at the start of a subsequent run. 
If the store image is being written to image, then the previous 
image is renamed as bakroot. preserve will also close the output 
to a module thereby removing the necessity for a (module nil). 
After executing preserve, LISP stops. 

The loading of modules is monitored if the appropriate value is given to 
verbos: after (verbos 3) a message is displayed each time a module is 
loaded from disc or removed from main memory. 

Cambridge LISP 	 23 



5. Input and output 

Input and output in LISP are based on the idea of selectable streams. At the 
start of a run, the stream designated -from (the default is the terminal) is 
opened and selected for input, and -to (default terminal) is opened and 
selected for output. All streams must be created by open before use: open 
returns as its result a LISP object that can be used to refer to a file; 
although this will often be a LISP atom that names the file, this fact should 
not be relied on. 

5.1 I/O Routines 

5.1.1 Open/Close 
(open filename [input/output]) 
(close file handle) 

These open or close a stream. A stream must be opened before it can be 
selected. The second argument to open specifies whether the stream will be 
read from or written to. The value returned by open is a file handle for use 
with close,rds,wrs. 

5.1.2 wrs/rds 
(wrs filehandle):[select for writing] 
(rds filehandle):[select for reading] 

rds and wrs affect all input and output (a possible exception being 
diagnostics which should always appear on the terminal); in particular, data 
to be read in, and LISP statements for execution are not kept separate. 

5.1.3 Printing 
There are four printing styles available in LISP. The first of these is 
intended to produce output that can be read back into LISP at a later stage, 
and so strings are printed with " marks around them and any unusual 
characters in atoms get prefixed with escape marks that is, !. 

24 	 Cambridge LISP 



Input and output 

To use this print style: 

prin 	 prints an atom or list (and does nothing else) 

print 	 as prin but then ends the print line 

printm 	as print but it attempts to leave a left margin when an 
expression takes many lines to print. 

The next set of routines print in a way that is useful when the program is 
trying to produce non-LISP-like output. They merely print the characters of 
atoms and strings without any extra markers. 

princ 	 basic print routine 

printc 	as princ followed by call to terpri 

printcm 	as printc but leaves a left margin of specified width. 

On occasions it is useful to produce circular structures. The previous print 
styles will go into an infinite loop if they are asked to print such a list. This 
family however are safe, but more expensive. 

prin1 	 basic print for looped structure 

print1 	as prin1 terminated by a terpri 

printc1 	as prin1 with no escapes 

The last style of printing is for the display of LISP programs, and provides a 
consistent style of indentation. 

superprint 	print with indentation 

For explicit control of layout on the page, the following functions are 
available: 

terpri 	end a record (with a newline) 

eject 	 as terpri but prints 'end-of-page' (sends character with 
code 12, that is, formfeed) 

linelength 	sets the logical width of paper that can be used by print 

ttab 	 tab to specified column 

xtab 	 tab by a given number of columns 

Cambridge LISP 	 25 



Chapter 5 

5.2 Reading 
The read routines are: 

tyi 	 get ascii code of next character 

readch 	get next character 

read-token 	gets next atom, and sets a variable !*token!-type!* 
to a classification code for it 

read 	 get next s-expression or atom. 

Characters obtained by calls to readch can be classified by the predicate 
functions: 

digit 	is it 0,1,2,3,4,5,6,7,8 or 9? 

liter 	is it A,B,... ,Z,a,b,...,z? 

breakp 	detects blank, comma, brackets and so on. The exact 
definition depends on effects of previous calls to 
setsyntax. 

Characters can be packed in a buffer, and then assembled into complete 
atoms: 

clearbuff 	 clear the buffer (must be called first) 

pack 	 puts characters in the buffer 

mkatom 	 convert buffer contents to an atom 

numob 	 convert buffer contents to a number 

mkstring 	 converts buffer into a string 

Notes 
numob will fail if the buffer contents are anything other than a sensible 
string of digits, possibly with a leading sign. 

pack must not be called before clearbuff has been used to set the buffer 
boffo to a standard initial state. 

read either called explicitly by the user or called by the system to read in 
some more LISP program destroys the buffer contents. Therefore pack and 
so on should only be called from within a nest of routines that both start 
and finish the atom assembly process. 

26 	 Cambridge LISP 



Input and output 

explode takes any argument and returns a list of characters, the characters 
being those that prin would produce if it were handed the list or atom. In 
particular explode converts numbers into characters. 

explodec is like explode but makes a list of the characters print would 
have produced. 

compress is an inverse of explode. 

Cambridge LISP 	 27 



Chapter 5 

Part II 

28 	 Cambridge LISP 



6. Functions and variables 

In this section, each function is provided with a prototypical header line, and 
each formal parameter is given a name and suffixed with its permitted type. 
Lower case tokens are names of classes and upper case tokens are parameter 
names referred to in the definition. The type of the value returned by the 
function (if any) is suffixed to the parameter list. If it is not commonly used, 
the parameter type may be a specific set enclosed in brackets I...). For 
example: 

(putd FNAME:id, TYPE:ftype, 

BODY:(lambda function -pointer}):id 

putd is a function with three parameters. The parameter FNAME is an 
identifier to be the name of the function being defined. TYPE is the type of 
the function being defined, and BODY is a lambda expression or a 
function-pointer. putd returns the name of the function being defined. 

Functions which accept formal parameter lists of arbitrary length have the 
type class and parameter enclosed in square brackets indicating that zero or 
more occurrences of that argument are permitted. For example: 

and([U:any]):extra-boolean 

is a function which accepts zero or more arguments which may be of any 
type. The type of the function is specified after the header. An eval type 
function receives its arguments ready evaluated and a noeval function 
receives unevaluated arguments. Normally this is dealt with by the system, 
but the distinction is important when apply is being used as the user must 
ensure that the arguments are already in the correct form. 

spread type functions have their arguments passed in one-to-one 
correspondence with their formal parameters. 

nospread functions receive their arguments as a single list. 

Cambridge LISP 	 29 



Chapter 6 

6.1 Argument types 
note that functions will not necessarily give an error with an argument of a 
type other than that specified, but the results should not be relied upon. 

list 
A list with each member being a dotted pair. that is, ( (a . b) (c.d) 

- • - ) 

atom 
Any type of number, string, id, vector, function. 

boolean 
The set of global variables t and nil, or their values t and nil. 

constant 
All atoms except ids. 

extra-boolean 
Any value in the system, all except nil having the interpretation t. 

ftype 
The class of definable function types. The ids expr, fexpr, subr, 
fsubr and macro. 

function 
Anything that can be used as a function for example, lambda 

expression, pointer to binary code, id which is defined as a function. 

id 
Equivalent to the normal LISP atom, with a property list and value 
so it can be bound or assigned to. Numbers, vectors and so on are 
treated specially as they do not need this full mechanism and so 
cannot be used where an id is specified. 

logical 
Integers that can be represented in one word that is, less than 
2**24. Arguments of this type can be passed to any function that 
expects a number or integer but the type of the result will not 
necessarily be a logical value. 

30 	 Cambridge LISP 



Functions and variables 

sinteger 
Signed integers that can be represented in one word that is, modulus 
less than 2**24. Arguments of this type can be passed to any 
function that expects a number or integer but the type of the result 
will not necessarily be a logical value. They are used extensively by 
the compiler, and there are a class of functions to handle them. 

integer 
Signed integers that can be of any size. 

n-mod-p 
Integers reduced mod p where p is set by setmod. 

number 
All items of type integer, floating, rational. 

string 
a string of characters enclosed in " ". 

Cambridge LISP 	 31 



Chapter 6 

6.2 Characters 
The character '.' is used in the input notation for lists, and if a and b are 
any structures, (a . b) represents a dotted-pair with a as its car and b as 
its car. To use the atom '.' see the entries under '!' and period. 

Parentheses are used in LISP input to form lists. To use the atom 
( see the entries under ! and spar. 

Braces are used as super parentheses. A will close sufficient 
opening parentheses to reach either a or top level, whichever 
comes first. 

! is the default escape character, which causes the following 
character to be treated as an ordinary letter. This means that 
characters with special properties, such as • t• or , can be 
used as part of an identifier. See setsyntax (page XX) for how 
to change the escape character and for a list of characters that 
have special properties initially. 

$cr$ 	Value is carriage return. 

$eof$ 	readch returns a special marker when it reaches the end of a 
stream. The initial value of $eof$ is this value, and a program 
might read: 

(setq a (readch)) 

(cond ((eq a $eof$) (go ENDSTREAM) )) 

$eol$ 	readch returns a newline character object when it reads to the 
end of a line. The initial value of Seoi$ is this atom. (prin 

$eol$) therefore has the effect of terpri. 

$ff$ 	Value is a form feed character object. 

32 	 Cambridge LISP 



Functions and variables 

*echo 	The variable *echo controls echoing of input within read. 

*echo 	effect 
nil 	no echo 
pretty 	formatted printing as reading progresses 
t 	 character by character echo 

The calls to read made by the LISP supervisor (read/eval/printloop) 
have *echo controlled by (prarg n). The initial value is nil. See prarg 
(section 10.5). 

6.3 Specialised variables 
Many variables with names beginning with * and & are for internal use and 
should not be modified. The variables documented below are the ones most 
likely to be useful to the general user. 

*comp 
Type: Variable 

When the variable *comp is true, function definitions are compiled. 
See de, df and dm. The default is t. 

*pgen 
Type: Variable 

When true the compiler generates an assembly listing. The form of 
the listing is not compatible with standard assembler, and is only 
for checking purposes. 

*lower 
Type: Variable 

When true, all upper case letters are translated to their lower case 
equivalent. 

*raise 
Type: Variable As *lower but forces characters into upper case. 

Cambridge LISP 	 33 



Chapter 6 

*plap 
Type: Variable 

The compiler generates an intermediate macro form that is machine 
independent. When *plap is true this form is printed. 

6.4 Atoms and values 

t 

The atom t is the standard LISP representation of 'true', and most 
built-in LISP predicates will return either t for true or nil for 
false. t should not be used as a name for a local or bound variable. 

nil 
nil is an identifier that LISP uses in a variety of special ways. It is 
therefore not possible to use it either as a function name or a 
variable name. The first special use is that all lists normally 
terminate with a reference to the atom nil, and so (abc) is 
`really' (abc . nil) . The effect of this on the normal 
programmer is that the test null, as used to see if the end of a list 
has been reached, can be seen to be equivalent to (eq xx nil). 
The second special use of nil is as the standard denotation for 
`false'. All LISP predicates will return nil for false (most will 
return t for true). nil is used so often in LISP programs that it has 
been defined to stand for itself, and so it is possible to write (cons 
a nil) rather than (cons a (quote nil)). 

(null U:any):boolean 
Type: eval, spread 

Returns t if u is nil. 

34 	 Cambridge LISP 



Functions and variables 

(setq variable:id value:any):any 
Type: noeval, nospread 

setq is the normal assignment operator in LISP. The value of the 
current binding of variable is replaced by the value of VALUE. 
variable must not be t or nil (or an error occurs). 

(set EXP:id VALUE:any):any 
Type: eval, spread 

EXP must be an identifier or a type mismatch error occurs. The 
effect of set is replacement of the item bound to the identifier by 
VALUE. If the identifier is not a local variable or has not been 
declared GLOBAL, it is automatically declared fluid. EXP must not 
evaluate to t or nil otherwise an error occurs because t or nil cannot 
be changed. 

(unset U:id):any 
Type: eval, spread 

Is equivalent to (set U indefinite! value) but returns the old 
value of the variable. 

(boundp U:id):boolean 
Type: eval, spread 

Returns t if U is the name of a variable that has either been bound 
by prog or as an argument of a function, or has been given a value 
by set . 

Cambridge LISP 	 35 



Chapter 6 

csetq, pts 
For compatibility with older LISP Systems, these are synonyms for 
setq and set respectively. pts is a synonym for set. 

(atom U:any):boolean 
Type: eval, spread 

Returns t if U is an atom, including any type of constant (see 
constantp) . If atom is true, then car or cdr would be illegal. 

(idp U:any):boolean 
Type: eval, spread 

Returns t if U is an id (that is, an atom that is not a constant). 

comma 
Initial value of comma is the atom ','. See description of blank and 
dollar. 

36 	 Cambridge LISP 



Functions and variables 

6.5 Dotted pair functions 
Dotted pairs are the primitive data type in LISP. They are the product of 
functions from the cons class. The following are fundamental functions for 
their manipulation and creation: 

(cons U: any V: any) :dotted-pair 
Type: eval, spread 

Returns a dotted-pair (or cons-cell) which is not eq to anything 
preexisting and has U as its car part and V as its cdr part. 

(consp U:any) :boolean 
Type: eval, spread 
	Check if U is a list created by cons. 

(car U:dotted-pair):any 
Type: eval, spread 

(car (cons a b)) 
> a 

The left part of U is returned. An error occurs if U is not a dotted-
pair. 

(cdr U:dotted-pair) :any 
Type: eval, spread 

(cdr (cons a b)) 
> b 

The right part of U is returned. An error occurs if U is not a 
dotted-pair. 

	

Cambridge LISP 	 37 



Chapter 6 

caaaar 
Type: eval, spread 

Any name of the form cxxxxr where x represents the characters 'a' 
or 'd' is treated as a combination of the basic functions car and 
cdr. Thus (caddr U) is equivalent to (car (cdr (cdr U))). 
The present implementation allows up to four letters between the 'c' 
and the `e, so caaaar to cddddr are provided for. These are the 
possible combinations: 

car 	caar 	caar caaaar cdaddr 
cdr 	cadr 	caadr caaadr cddaar 

cdar 	caddy caaddr cddadr 
cddr 	cdddr cadddr cdddar 

cdaar cdaaar cddddr 
cddar cdaadr caadar 
cdadr cdadar cadadr 
cadar caddar cadaar 

(carcheck N: integer) :integer 
Type: eval, spread 

Normally, compiled code is produced that is safe, in that it checks 
to see that all car and cdr operations are legal. This involves a 
cost (about 6% of the size of compiled code), and so an option is 
provided to inhibit this check. (carcheck n) directs the compiler 
to check at level N, where N = 0 means no checking N = I 
requests checking that is safe, but unable to provide very clear 
diagnostics when something does go wrong (overhead = 4 bytes per 
access), and N = 2 is both safe and informative. The previous level 
of checking is returned. carcheck also controls the level of 
checking performed by compiled versions of a few other low-level 
functions such as putv and getv. It is strongly recommended that 
(carcheck 2) be used even with programs that are thought to be 
fully debugged; the overhead is modest and the extra sensitivity 
substantial. If ultimate performance calls for (carcheck 0) this 
option should be used for just a few of the most time-critical 
functions. 

38 	 Cambridge LISP 



Functions and variables 

(profile U:integer) 
Type: eval, spread 

After a call to profile, the LISP compiler will generate code that 
includes statistic gathering orders to order U. The default (U=0) 
collects no statistics. With U=I counts are collected at the 
entrypoint to each routine. With U=2, counts are collected near each 
conditional branch, and each label in the compiled code. The 
statistics gathered can be accessed by readcount or (more 
commonly) by mapstore. 

(car !-nil ! -legal U:boolean) :boolean 
Type: eval, spread 

After a call of (car! -nil!-legal t) the forms (car nil) and 
(cdr nil) (which would both normally result in errors) evaluate 
to nil. This facility is provided to ease the problems of transferring 
certain MacLISP and InterLISP code to the Cambridge system. 

Cambridge LISP 	 39 



Chapter 6 

6.6 Tagged cons cells 

(acons U:any V:any):list 
Type: eval, spread 

Cambridge LISP permits the creation of tagged cons-cells and their 
subsequent identification. This function is like cons but produces a 
different internal tag. This can be checked with the functions 
aconsp or constype. Similarly 

(bcons U:any V:any):list 
(ccons U:any V:any):list 
(dcons U:any V:any):list 
(econs U:any V:any):list 
(fcons U:any V:any):list 
(gcons U:any V:any):list 
(hcons U:any V:any):list 

(aconsp U:any):bookan 
Type: eval, spread 

Checks to see that U is a cons-cell created by acons. Similarly 

(bconsp U:any):boolean 
(cconsp U:any):boolean 
(dconsp U:any):boolean 
(econsp U:any):boolean 
(fconsp U:any):boolean 
(gconsp U:any):boolean 
(hconsp U:any):boolean 

For example: 

(aconsp (bcons 'a 'b} 
> nil 

(constype U: i st ) :integer 
Type: eval, spread 

constype returns an integer in the range [0..8] depending on 
whether U is a node created by cons, acons, . . . . , hcons. 
For example: 

(constype (econs 'a 'b} 
> 5 

40 	 Cambridge LISP 



Functions and variables 

(changetype L: list T: integer) :list 
Type: eval, spread 

changetype causes the pair L to be of type determined by T. t=0 
gives a normal type, t...1 gives an acons, . . . , t=8 gives 
an hcons. Values of t outside the range [0..8] give an error. 

(xcons U:any V:any):dotted-pair 
Type: eval, spread 

This is the same as See ncons and cons 

(ncons U:any):dotted-pair 
Type: eval, spread 

Is the same as (cons U nil) . See cons, xcons. 

Cambridge LISP 	 41 



Chapter 6 

6.7 List processing functions 

(list [U:any]):list 
Type: noeval, nospread 

A list of the evaluation of each element of U is returned. 

(progn (setq x 5} 
(list 'the 'value 'of 'x 'is x } 

> (the value of x is 5 ) 

(list! * [U:any]):list 
Type: macro 

A list made up of the arguments given, with the last one used as 
the final tail of the list. Thus 

(list!* p q r) 

has the same effect as 

(cons p (cons q r}} 

(append U:list V:list):list 
Type: eval, spread 

Returns a constructed list in which the last element of U is followed 
by the first element of V. The list U is copied, v is not. 

(append ' (a b c} ' (d e f} 
> (abcdef} 

(conc [U:anylist]):any-list 
Type: noeval, nospread 

The lists passed to conc are concatenated by modifying the 
structures, so not using up store. nconc is similar to conc but only 
allows for two arguments. See also append. 

(setq 11 ' (a b c} 
(setq 12 ' (d e f} 
(setq 13 ' (g h i) 
(conc 11 12 13} 
> (a b c d e f g h i) 

12 now has value (d efgh i) 

42 	 Cambridge LISP 



Functions and variables 

(nconc U:list V:list):list 
Type: eval, spread 

Concatenates V to U without copying U. The last car of U is 
modified to point to V. 

(copy U:any):any 
Type: eval, spread 

copy takes a list and returns one that has the same gross structure, 
but which does not share store with the original. The function will 
fail if the list to be copied has been made cyclic through the use of 
rplaca or rplacd. . copy does not duplicate atoms or vectors: 
the copying operation is confined to lists as made up using cons. 

(reverse U:list):list 
Type: eval, spread 

Returns a copy of the top level of U in reverse order. 

(reverse ' (a b (c d) e)) 
> (e (c d) b a) 

(reversewoc U:list):list 
Type: eval, spread 

reversewoc reverses a list without creating a copy, and so is 
destructive. It can be used to great effect in building lists which 
naturally are calculated in a left to right fashion where it can 
replace repeated uses of append. See reverse. 

(progn (setq vl '(a b c d e f) 
(setq v2 (reversewoc v1)) 
v1) 

> (a) 

v2 has value (f edcb a) 

Cambridge LISP 	 43 



Chapter 6 

(younger U:list V:list):boolean 
Type: eval, spread 

Returns t if U and V are both lists and U was created by a cons 
that took place after the cons that made V. This provides a cheap, 
consistent but rather arbitrary order relation on list structures. 

(orderp U:any V:any):boolean 
Type: eval, spread 

This is a predicate defining a self-consistent order relation between 
lists. That is if (orderp a b) and (orderp b c) are both true 
then (orderp a c) as true. If U and V are identifiers this relation 
reduces to alphabetic order. For more complex structures the details 
of the ordering should not be relied upon. 

44 	 Cambridge LISP 



Functions and variables 

6.8 List equality and searching 

(eq U:any V:any):boolean 
Type: eval, spread 

Returns t if U points to the same object as V (it tests for equal 
pointers). eq is not a reliable comparison between numeric 
arguments in general, but is correct for integers with absolute value 
<2**24. For portability this should not be relied upon. 

(equal U:any V:any):boolean 
Type: eval, spread 

Returns t if U and V are the same. Dotted-pairs are compared 
recursively to the bottom levels of their trees. Vectors must have 
identical dimensions and equal values in all positions. Strings must 
have identical characters. Function pointers must have eq values. 
The test equal is close in meaning to requiring that the two 
expressions look alike when printed 

(eqcar U:any V:any):boolean 
Type: eval, spread 

This is equivalent to (eq (car U) V) except that if U is atomic it 
returns the answer nil. 

(assoc U:any V:alist):(dotted-pair nil) 
Type: eval, spread 

If U occurs as the car portion of an element of the alist V, the 
dotted-pair in which U occurred is returned, else nil is returned. 

(progn (setq key 2) 
(assoc key ' ((0 . key0) 

(1 . key].) 
(2 . "you got it"} 

> "you got it" 

(atsoc U:any V:alist):(dotted pair nil) 
Type: eval, spread 

atsoc is exactly assoc except that it uses eq to test if a tag has 
been found instead of equal See also sassoc . 

Cambridge LISP 	 45 



Chapter 6 

(sassoc U:any V:alist FN:function):any 

Returns the same result as (assoc U V) if U is present in V, 
otherwise the evaluation of FN is returned. 

(member A:any B:list):extra-boolean 
Type: eval, spread 

Returns nil if A is not a member of list B, otherwise returns the 
remainder of B whose first element is A. The function equal is 
used to compare list elements. 

(member 'c '(a b c de f} 
> (c d e f) 

(memq A:any B:list):extra-boolean 
Type: eval, spread 

Same as member but an eq check is used for comparison. 

(deleq U:any V:list):list 
Type: eval, spread 

As delete but uses eq rather than equal as the test. 

(delete U:any V:list):list 
Type: eval, spread 

Returns V with the first top level occurrence of U removed from it. 

(union U:list V:list);list 
Type: eval, spread 

Returns a list of all the items from U and V. If some item is in 
both U and V it will only occur once in the union list. See append 
for list merging/concatenation that does not remove duplicate 
entries, and xn below for list intersection. 

(setdiff U:list V:list):list 
Type: eval, spread 

Returns the set difference between two lists; that is those members 
of U are not members of V using a member test. 

46 	 Cambridge LISP 



Functions and variables 

(sort U:any-list PREDICATE:id):any-list 
Type: eval, spread 

The list U is sorted with respect to the given predicate, for example 
(sort ' (7 5 9 1 5) 'greaterp) returns (9 7 5 5 1). 

(sort ip U:any-list PREDICATE:id):any-list 
Type: eval, spread 

As sort, but the input list is overridden with the result. 

(sublis X:alist Y:any):any 
Type: eval, spread 

The value returned is the result of substituting the cdr of each 
element of the alist X for every occurrence of the car part of that 
element in Y. 

(sublis ' ((a . A) (b. b)) ' ( a a bab b)) 
> (aab ab b) 

(subst U:any V:any W:any):any 
Type: eval, spread 

The value returned is the result of substituting U for all occurrences 
of V in W. 

(xn U:list V:list):list 
Type: eval, spread 

Returns the set intersection of the lists U and V, that is, those 
members of U that are also in V. See also union. 

(last U:list):any 
Type: eval, spread 

Returns the last element of the list U; for instance if U is the list 
(a b c d e), then E is returned. last should not be given an 
atomic argument. But note: 

(last ' (a b c . e} 
> c 

Cambridge LISP 	 47 



Chapter 6 

(length X:any):integer 
Type: eval, spread 

The top level length of the list X is returned. 

(length '(1 (2 3) 4) 
> 3 

(length '(1 2 .3} 
> 2 

(pair U:list V:list):alist 
Type: eval, spread 

U and V are lists which must have an identical number of elements. 
If not, an error occurs. Returned is a list where each element is a 
dotted-pair, the car of the pair being from U, and the car, the 
corresponding element from V. 

(pairp U:any):boolean 
Type: eval, spread 

Returns t if U is a dotted-pair. 

(neq U:any V:any):boolean 
Type: eval, spread 

neq is equivalent to (not (equal U V)). 

48 	 Cambridge LISP 



Functions and variables 

6.9 Pointer replacement functions 
The following group of functions operate directly on the data structures 
given as arguments rather than on copies. Accordingly, they do not cause 
memory to be exhausted, but if used unwisely will damage data and 
program irreparably. 

(rplaca U:dotted-pair V:any):dotted-pair 
Type: eval, spread 

The car portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (v. b) is returned. An error occurs if U is 
not a dotted-pair. 

(setq 1 ' (1 2 3 4} 
(prog (11) 

(cond { (setq 11 (member 3 1)) (rplaca 11 'a} 
( t nil) 

leaves I with value (1 2 a 4) 

(rplacd U:dotted-pair V:any):dotted-pair 
Type: eval, spread 

The cdr portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (a . V) is returned. The type mismatch 
error occurs if U is not a dotted-pair. 

(rplacw U:dotted-pair V:dotted-pair):dotted-pair 
Type: eval, spread 

Equivalent to rplaca (rplacd U (cdr V)) (car V)) In 
general the print and so on, forms of the printing functions should 
be used to print the results of these functions especially where 
circular structures may be created. 

Cambridge LISP 	 49 



Chapter 6 

6.10 List manipulating functions 

(compress U:id-list):(atom)-(vector) 
Type: eval, spread 

U is a list of single character identifiers which is built into a 
Standard LISP entity and returned. Numbers, strings, and identifiers 
with the escape character prefixing special characters are 
recognized. Identifiers are interned on the obi ist . If an entity 
cannot be parsed out of U or characters are left over after parsing, 
an error occurs. 

(compress ' (A B C} 

> ABC 

(explode U:any):id-list 
Type: eval, spread 

Returned is a list of single-character identifiers representing the 
characters that print as the value of U. The characters that appear in 
the list are those that would be produced if U were handed to 
prin. 

(explodec U:any):id-list 
Type: eval, spread 

As explode but no escape characters are produced in ids (c.f. 
princ). 

(exploden U:any):integer-list 
Type: eval, spread 

As explode but the list is of the internal codes of the characters 
rather than the characters. 

SO 	 Cambridge LISP 



Functions and variables 

(explodecn U:any): integer-list 
Type: eval, spread 

As explodec but the list is of the internal codes of the characters 
rather than the characters. 

erg explode 	explodec 	explodecn 	exploden 

123 	(!1 !2 !3) 	(!1 !2 !3) 	(49 50 51) 	149 SO 51) 

'cat (c a t) 	(c a  t) 	 (99 97 116) 	(99 97 116) 

"cat" (!" c a t "!) (c a t) 	 (99 97 116) 	(34 99 97 116 34) 

(pack U:any V:any):nil 
Type: eval, spread 

The function pack converts its argument into a string of characters 
and places these in the atom assembly buffer boffo. Subsequently 
the characters placed in boffo can be turned into a real LISP 
identifier or number through calls to mkatom or numob. boffo must 
be initialised by a call of clearbuff before pack is used. Note 
that the standard LISP read and print routines clear boffo. That is, if 
the result of pack is printed, the buffer is then empty, causing a 
subsequent mkatom to fail. If pack is given a non-nil second 
argument, it forces all the characters it packs into lower case. 

(packbyte U:any):nil 
Type: eval, spread 

As pack but acting on internal codes. 

(clearbuff) :nil 

This is a routine with no arguments that clears an internal buffer 
boffo which is used for constructing atoms. It must be called before 
an attempt is made to use pack and so on. See pack, numob, 
mkatom. 

(numob) :number 

If the characters placed in the buffer boffo (by pack and so on.) 
represent a number, numob will form that number as a proper LISP 
object. If mkatom had been called instead of numob it would have 
created an identifier that had the same print format as a number but 
which had the properties of a variable rather than of a number. 

Cambridge LISP 	 Si 



Chapter 6 

(mkatom) :id 
Type: eval, spread 

If a sequence of characters have been assembled in the buffer boffo 
0)y calls to clearbuff and/or pack), mkatom can be used to form 
the LISP ide,ntifier made out of the characters. mkatom consults 
LISP's internal hash tables and name lists (se,e oblist) and makes 
certain that identifiers are defined uniquely by their printnames. 

(mkstring):string 

Creates a LISP string from the characters in boffo. 

(progn (clearbuff) (pack 123) (pack 456) (numob) 	> 123456 

(progn (clearbuff) (pack 'abc) (pack 'def) (mkstring) > "abcdef. 

(progn (clearbuff) (pack 'abc) (pack 'def) (mkatom) 	> abcdef 

52 	 Cambridge LJSP 



Functions and variables 

6.11 Creation of symbols 

(gensym) :id 
Type: eval, spread 

This creates an identifier which is not interned on the oblist and 

consequently not eq to anything else. 

(eq (gensym) (gensym) 
> nil 

(gensymi U:id):id 
Type: eval, spread 

This generates a symbol in the same way as gensym does, but 
forces the printname of the generated atom to start with the given 
identifier. See also symnam 

(symnam U:id):id 
Type: eval, spread 

symnam takes one argument which must be an identifier. Until 
symnam is called again, this identifier will be used to provide the 
initial part of the print representation of atoms created by gensym. 
Note that, for internal reasons, there is a store-use penalty in using 
more than a few dozen different symnams. See also gensym1. The 
value returned is the previous value. 

Cambridge LISP 	 53 



Chapter 6 

6.12 Flags and property lists 

(flag U:id-list V:id):nil 
Type: eval, spread 

U is a list of ids which are to be flagged with V. The effect of 
flag is that flagp will have the value t for those ids which were 
flagged. Both V and all the elements of U must be identifiers or the 
type mismatch error occurs. 

(flagp U:any V:any):boolean 
Type: eval, spread 

This returns t if U has been previously flagged with V, else nil. It 
returns nil if either U or V is not an id. 

(get U:any IND:any):any 
Type: eval, spread 

This returns the property associated with indicator IND from the 
property list of U. Returns nil if U or IND are not ids. get cannot 
be used to access functions (use gets instead). 

(put U:id IND:id PROP:any):any 
Type: eval, spread 

The indicator IND with the property PROP is placed on the 
property list of the id U. If the action of put occurs, the value of 
PROP is returned. If either of U and IND are not ids the type 
mismatch error will occur and no property will be placed. put 
cannot be used to define functions (use putd instead). 

(setplist U:id PLIST:alist):alist 
Type: eval, spread 

This replaces the property list of U with PLIST. The function 
returns the previous property list owned by U. 

(pli st U:id):plist 
Type: eval, spread 

The function plist called with one argument that is an identifier 
returns the property list of that atom. The format of such a property 
list is a list of flags (see flag, flagp) and dotted pairs of (name 
. property) . (See also put, get). 

54 	 Cambridge LISP 



Functions and variables 

(remprop U:any IND:any):any 
Type: eval, spread 

Removes the property with indicator IND from the property list of 
U. Returns the removed property or nil if there was no such 
indicator. 

(remflag U:id-Iist 
Type: eval, spread 

Removes the flag V from the property list of each member of the 
list U. Both V and all the elements of U must be ids or the type 
mismatch error will occur. nil is returned. 

(progn 

(flag '(atm1 atm2) 'myFlag) 
(put 'atm1 'cost 1000) 
(put 'atm2 'price 2000) 
(print (plist 'atm1)) 
(print (plist 'atm2} 

prints ((cost . 1000) myFlag) 
((price . 2000) myFlag) 

(oblist) :id-list 

Returns a lexicographically ordered list of all the atoms that can be 
reached by read. However it should be Noted that the object list 
in Cambridge LISP is a collection of balanced trees, so rplac 
operations on the value of oblist will have no effect on the object 
list. 

(remob U:id):id 
Type: eval, spread 

If U is present on the oblist it is removed. This does not affect U 
having properties, flags, functions and the like. U is returned. 

Cambridge LISP 	 55 



Chapter 6 

6.13 Function definitions as values 

(puts FNAME:id TYPE:ftype BODY:function):id 
Type: eval, spread 

Creates a function with name FNAME and definition BODY of type 
TYPE. This should be one of the symbols expr or fexpr. If putd 
succeeds, the name of the defined function is returned. The effect of 
putd is that getd will return a dotted-pair with the function's type 
and definition. Likewise the globalp predicate will return t when 
queried with the function name. If function FNAME already exists 
(and messages are enabled by (verbose t)) a warning message 
will appear: 

*** FNAME redefined 

The function defined by putd will be compiled before definition 
(changing exprs to subrs and fexprs to fsubrs) if the *comp 
global variable is non-nil. 

(getd FNAME:any): (nil dotted-pair) 
Type: eval, spread 

If FNAME is not the name of a defined function, nil is returned. If 
FNAME is the name of an xsubr, then the dotted-pair (xsubr . 
function-pointer) is returned where the function-pointer is that 
associated with FNAME. If FNAME is the name of an xexpr then 
the dotted-pair (xexpr . lambda) is returned, the lambda 
expression being the definition of the function. If FNAME is the 
name of a macro then the dotted pair (macro . lambda) is 
returned with lambda being the body of the macro. 

56 	 Cambridge LISP 



Functions and variables 

6.14 Vector operations 

(mkvect UPLIM:integer):vector 
Type: eval, spread 

Defines and allocates space for a vector with UPLIM + I elements 
accessed as O...UPLIM. Each element is initialised to nil. An error 
will occur if UPLIM is less than zero, or if there is not enough 
space for a vector of this size. 

(mkvect 4) 
> 	nil,nil,nil,nil,nil 

Note the printing convention used 

(vectorp U:any):boolean 
Type: eval, spread 

Returns t if U is a vector. 

(getv V:vector INDEX:integer):any 
Type: eval, spread 

Returns the value stored at position INDEX of the vector V. The 
Type mismatch error may occur and an error occurs if the INDEX 
does not lie within 0... (upbv V) inclusive. 

(putv V:vector INDEX:integer VALUE:any):any 
Type: eval, spread 

Stores VALUE into the vector V at position INDEX. VALUE is 
returned. A type mismatch error may occur, and if INDEX does not 
lie in 0 ...upbv (V) an error occurs. 

(upbv U:any):integer 
Type: eval, spread 

Returns the upper limit of U if U is a vector, or 0 if it is not. 

Cambridge LISP 	 57 



Chapter 6 

(prog (V) 
(setq v(mkvect 3)) 
(putv v0 "a b c") 
(putv v1 34) 
(putv v2 t) 
(putv v3 29) 
(print V) 
(print (upbv V} 

prints 

> %<"a b c",34,t,29 %> 
> 3 

(stringconcat U:string V:string):string 
Type: eval, spread 

Returns the concatenation of the strings U and V. 

(stringconcat "abc" "def"} 
> "abcdef" 

(stringp U:any):boolean 
Type: eval, spread 

Returns t if U is a string. 

58 	 Cambridge LISP 



Functions and variables 

6.15 The AVL module 
The avltree module provides an efficient balanced tree lookup and deletion. 
It is used in the printing of circular lists (see printl, prinl, printcl) 

and the maintenance of the LISP oblist. The functions of interest to the user 
are documented below. The trees produced by this module make use of the 
acons, bcons, and so on, functions, and are not general LISP trees. 

(avl-add KEY:any TREE:avltree ORDER:function):avltree 
Type: eval, spread 

The KEY is added to the avl balanced tree, using order as the 
ordering predicate. ORDER must be an eval/spread function of two 
arguments. This form of adding to the tree uses an equal test. To 
print the tree in order see values-in-tree. 

(avl-delete KEY:any TREE:avltree ORDER:function):avItree 
Type: eval, spread 

The KEY is deleted from the avltree. 

(avl-lookup KEY:any TREE:avltree ORDER:function):boolean 
Type: eval, spread 

The KEY is looked up on the tree using an equal test. 

(avlq-add KEY:any TREE:avltree ORDER:function):avltree 
Type: eval, spread 

The KEY is added to the avlbalanced tree, using ORDER as the 
ordering predicate. ORDER must be an eval/spread function of two 
arguments. This form of adding to the tree uses an eq test. To print 
the tree in order see values-in-tree. 

(avlq-delete KEY:any TREE:qvltree ORDER:function):avltree 
Type: eval, spread 

The KEY is deleted from the avltree. 

(avlq-lookup KEY:any TREE:avltree ORDER:function):boolean 
Type: eval, spread 

The KEY is looked up on the tree using an eq test. 

(values-in-tree T:avl-tree):list 
Type: eval, spread 

values-in-tree returns the list of value in the avltree in order. 

Cambridge LISP 	 59 



Chapter 6 

6.16 Arithmetic functions 
Acorn Cambridge LISP supports arithmetic operations over four classes of 
numeric atoms: 

small integers in the range -2**24 to +2**24 

integers of any size 

floating point numbers 

rational numbers 

It supports the usual operations over these, and additionally can 
perform modulus arithmetic over the small integers. A convenient 
naming convention has grown up whereby arithmetic operations are 
named for example, add1 and iaddl; the i-prefix indicating the 
use of the function on integer arguments. c- and m-prefixes are 
likewise used to indicate functions specialised to handle arithmetic 
modulo n where n is a number set by setmod. A number of 
functions are supplied for type testing and conversion. 

(fix U:number):integer 
Type: eval, spread 

Returns an integer which corresponds to the truncated value 
of U. The result of conversion retains all significant 
portions of U. If U is an integer it is returned unchanged. 

(fixp U:any):boolean 
Type: eval, spread 

Returns t if U is an integer (a fixed number). 

(float U:number):floating 
Type: eval, spread 

The floating point number corresponding to the value of 
the argument U is returned. Some of the least significant 
digits of an integer may be lost due to the implementaion 
of floating point numbers. float of a floating point 
number returns the number unchanged. If U is too large to 
represent in floating point an error occurs. 

60 	 Cambridge LISP 



Functions and variables 

(floatp U:any):boolean 
Type: eval, spread 

Returns t if U is a floating point number and nil otherwise. 

(digit U:any):boolean 
Type: eval, spread 

Returns t if U is a digit, otherwise nil. Note that a digit is 
a character and not a number. (that is, U=!2 returns t but 
U=2 returns nil). 

(eqn U:any V:any):boolean 
Type: eval, spread 

Returns t if U and V are eq or if U and V are numbers 
and have the same numeric value after any necessary 
conversions have been performed. Floating point numbers 
are eqn only if they have, bit for bit, the same internal 
representation. There is no allowance made for rounding 
error, and so eqn on floating point arguments should be 
used only when this precise comparison is required. 

(geq U:number V:number):boolean 
Type: macro 

Returns t if U >= V. 

(evenp U:number):boolean 
Type: eval, spread 

Returns t if U is an even integer. 

(greaterp U:number V:number):boolean 
Type: eval, spread 

Returns t if U is strictly greater than V, otherwise returns 
nil. 

(igreaterp U: in teger V: integer): integer 
Type: eval, spread 

Similar to greaterp but only works for small integers. 
When appropriate, it may be faster than greaterp. 

Cambridge LISP 	 61 



Chapter 6 

(ilessp U:integer V:integer):integer 
Type: eval, spread 

Similar to lessp but only suitable for small integers. 

(imax [U:integer]):integer 
Type: noeval, nospread 

Similar to max but only suitable for small integers. 

(imax2 U:integer V:integer):integer 
Type: eval, spread 

Similar to max2 but only suitable for small integers. 

(imin [ U:integer])integer 
Type: noeval, nospread 

Similar to min but only suitable for small integers. 

(iminusp U:integer):boolean 
Type: eval, spread 

Similar to minusp but only suitable for small integers. 

(imin2 U:integer V:integer):integer 
Type: eval, spread 

Similar to mine but only suitable for small integers. 

(izerop U:integer):integer 
Type: eval, spread 

Similar to zerop but will not recognize floating point zero. 
See iadd1 (page XX). In fact (izerop xx) (eq xx 
0) . 

(lessp U:number V:number):boolean 
Type: eval, spread 

Returns t if U is strictly less than V, otherwise returns nil. 

(max { U:number])number 
Type: noeval, nospread 

Returns the largest of the values in U. If two or more 
values are the same the first is returned. 

62 	 Cambridge LISP 



Functions and variables 

(max2 U:number V:number):number 
Type: eval, spread 

Returns the larger of U and V. If U and V are the same 
value U is returned (U and V might be of different types). 
This function is used in the expansion of max. 

(min [U:number]):number 
Type: noeval, nospread 

Returns the smallest of the values in U. If two or more 
values are the same the first of these is returned. 

(minusp U:number):boolean 
Type: eval, spread 

Returns t if U is a negative number, otherwise nil. 

(mint U:number V:number):number 
Type: eval, spread 

Returns the smaller of its arguments. If U and V are the 
same value, U is returned (U and V might be of different 
types). This function is used in the expansion of min. 

(numberp U:any):boolean 
Type: eval, spread 

Returns t if U is a number (integer, rational or floating). 

(onep U:any):boolean 
Type: eval, spread 

Returns t if U is the number 1 or 1.0: There is no error if 
the item is not numeric. The effect is like (eqn U 1). 

(smallp U:number):boolean 
Type: eval, spread 

Returns t if U is an integer that can be stored as a single 
word. 

(zerop U:number):boolean 
Type: eval, spread 

Returns t if U is a number and it is either the integer 0 or 
the floating point number 0.0. See onep. 

Cambridge LISP 	 63 



Chapter 6 

6.17 Basic arithmetic operations 
All the routines with names ixxxx where xxxx is the name of an 
arithmetic operation, are index mode operations. They must only be 
called with arguments that are integers less than 2**24, and must be 
called in such a way that the result will satisfy the same constraints. 
Failure to adhere to these constraints (for example, overflow 
conditions, bignum inputs,...) may not be detected and may lead to 
inconsistent behaviour. The routines do not necessarily check their 
arguments' types or ranges, but will at least never return a value 
that will not print as a small number. The LISP compiler can turn 
these routines into reasonably efficient in-line code, which should be 
much faster than use of the more general arithmetic routines. It 
must be stressed that only small numbers are valid and this 
constraint is not checked by the system. 

(abs U:number):number 
Type: eval, spread 

Returns the absolute value of its argument. 

(add1 U:number):number 

( i add1 U:integer):integer 
Type: eval, spread 

Returns the number U incremented by 1. Equivalent to, but 
faster than, a call to (plus U 1). See also sub1 . 

(subs  U:number):number 

(isub1 U:integer):integer 
Type: eval, spread 

If U is a number then U-1 is returned. If U is not a 
number then an error is given. The effect is the same as 
(difference U 1) but is faster. 

(di fference U:number V:number):number 

(idifference U:integer V:integer):integer 
Type: eval, spread 

Returns U - V. 

64 	 Cambridge LISP 



Functions and variables 

(minus U:number):number 

(iminus U:integer):integer 
Type: eval, spread 

Returns - U. 

(plus [U:number]):number 

(iplus [U:integer]):integer 
Type: noeval, nospread 

Forms the sum of all its arguments. 

(plus2 U:number V:number):number 

(iplus2 U:integer V:integer):integer 
Type: eval, spread 

Returns the sum of U and V. This function is used in the 
expansion of plus. 

(times [U:number]):number 

(itimes [U:integer]):integer 

Returns the product of all its arguments. 

(itimes2 U:integer V:integer):integer 

(t imes2 U:number V:number):number 
Type: eval, spread 

Returns the product of U and V. 

(quotient U:number V:number):number 

(iquotient U:integer V:integer):integer 
Type: eval, spread 

The quotient of U divided by V is returned. If U and V are 
integers the result will be an integer and (remainder U 

V) will be the corresponding remainder. An error occurs if 
division by zero is attempted. 

Cambridge LISP 	 65 



Chapter 6 

(remainder U:number V:number):number 

(i remainder U:integer V:integer):integer 
Type: eval, spread 

If both U and V are integers, the result is the integer 
remainder of U divided by V. If either parameter is floating 
point, the result is the difference between U and V * (U/V) 
all in floating point. The sign of the remainder is always 
the same as the sign of V. An error occurs if V is zero. 

(divide U:number V:number):dotted-pair 
Type: eval, spread 

The dotted-pair (quotient . remainder) is returned. 
The quotient part is computed the same as by quotient 

and the remainder the same as by remainder. An error 
occurs if division by zero is attempted. 

(random) :integer 

Returns a random integer in the range 0 to 2**24-1. The 
pseudo-random sequence used is initialised to a number 
based on the time of day LISP was run. The seed can be 
fixed by an option at load time: "-opt Rnnn" sets the 
initial seed to nnn. 

(sqrt U:number):number 

(isqrt U:integer):integer 
Type: eval, spread 

Returns the square root of U. If U is an integer that is a 
perfect square the result will be an integer, otherwise 
floating point. 

(gcd U:integer V:integer):integer 
Type: eval, spread 

The positive integer that is the greatest common divisor of 
U and V is returned. 

66 	 Cambridge LISP 



Functions and variables 

6.17.1 Modulo arithmetic functions 
The functions supplied for modulo arithmetic are described below. 
A naming convention exists whereby functions which begin with a 
c perform arithmetic mod p in the range [0,p-1] ; those functions 
which begin with an m perform arithmetic mod p yielding results in 
the range [-p/2,p/2]. The integer p is usually but not always a prime 
number. It is set by setmod. 

(setmod U:integer):integer 
Type: eval, spread 

(setmod p) sets the modulus for the cplus and mplus 
families of modulus arithmetic functions. (setmod ()) 
returns the current modulus without resetting it. 

( cdifference U:n-mod-p V:n-mod-p):n-mod-p 
Type: eval, spread 

The result is U - V, with all numbers reduced mod p in the 
range [0,p-1]. See also indifference. 

(mdifference U:n-mod-p V:n-mod-p):n-mod-p 
Type: eval, spread 

Returns U - vmod p in the range [-p/2,p/2]. See also 
cdifference and sO OIL 

( cmi nu s U:n-mod-p):n-mod-p 
Type: eval, spread 

Returns -U mod p. 

(mminus U:n-mod-p):n-mod-p 
Type: eval, spread 

Returns -U mod p. 

(cmod U:integer):n-mod-p 

(mmod U:integer):n-mod-p 
Type: eval, spread 

These reduce the integer U mod p in the range [0,p-1] or 
[-p/2,p/2] respectively. 

Cambridge LISP 	 67 



Chapter 6 

(cplus U:n-mod-p V:n-mod-p):n-mod-p 

(mplus U:n-mod-p V:n-mod-p):n-mod-p 
Type: eval, spread 

Return U + V mod p. 

(cquotient U:n-mod-p V:n-mod-p):n-mod-p 

(mquotient U:n-mod-p V:n-mod-p):n-mod-p 
Type: eval, spread 

Return the quotient of U and V mod p. 

(crecip U:n-mod-p):n-mod-p 

(mrecip U:n-mod-p):n-mod-p 
Type: eval, spread 

Return the reciprocal of U mod p. 

(crimes U:n-mod-p V:n-mod-p):n-mod-p 

(mt imes U:n-mod-p V:n-mod-p):n-mod-p 
Type: eval, spread 

Return U * V mod p. 

68 	 Cambridge LISP 



Functions and variables 

6.17.2 Rational arithmetic operations 

(numq U:number):integer 
Type: eval, spread 

Returns the numerator of the number U. If U is not a 
rational the value returned is the argument. Giving numq a 
non numeric argument is an error. 

(denq N:number):integer 
Type: eval, spread 

If N is a LISP number, its denominator is returned. If N is 
not rational its denominator is the integer 1. See numq. 

(rational U:number V:number):rational number 
Type: eval, spread 

Divides U by V, leaving the result as an exact fraction. If 
either U or V is floating point, it will be converted to 
rational number form before the division is attempted. 

(setq pi (rational 22 7) 	> (22/7) 
(numq pi ) 	 > 22 
(denq pi ) 	 > 7 
(times 4 pi) 	 > (88/7) 

(rat ionalp U:any):boolean 
Type: eval, spread 

Returns t if U is a rational number, and nil otherwise. 

(recip U:number):number 
Type: eval, spread 

recip finds the reciprocal of a number by calling 
(quotient 1 U). In this sense the reciprocal of any 
integer other than + or -1 will be zero. 

Cambridge LISP 	 69 



Chapter 6 

6.17.3 Trigonometric calculating functions 

(arccos U:number):number 
Type: eval, spread 

(arcsin U:number):number 
(atan U:number):number 
(cos U:number):number 
(cot U:number) :number 
(sin U:number):number 
(tan U:number) :number 

(exp U:number):number 
Type: eval, spread 

exp calculates the exponential of the argument which must 
be numeric. The result is a floating point number 

(expt U:number V:number):number 
Type: eval, spread 

Returns U raised to the V power, where V cannot be an 
integer of unlimited precision. (that is, V can be a floating 
point number or small integer). A floating point U to an 
integer power V does not have V changed to a floating 
number before exponentiation. 

(log U:number):number 
Type: eval, spread 

As exp except that the function is the natural logarithm. 

(login U:number):number 
Type: eval, spread 

As log except that the function is logarithm to the base 
10. 

70 	 Cambridge LISP 



7. Control structures 

Acorn Cambridge LISP supports a wide variety of control structures both for 
transfer of control at a local level and at a global level. The conditional 
form is the primitive local operator. 

(cond [U:cond-form]):any 
Type: noeval, nospread 

A cond-form is a list of the form (predicate expression ... 
expression). The predicate of each U is evaluated until a non-nil 
value is encountered. The sequence of expressions following this 
predicate are evaluated and the value of the last one becomes the 
value of cond. If all the predicates evaluate to nil, then the value 
of cond is nil, and if no expressions follow a predicate, the value 
returned if this predicate succeeds is the value of this predicate. 

(select U:any [V:pair] W:any):any 
Type: macro 

V is an association list. U is compared for equality with the 
successive cars of V, and when found, select returns the 
evaluation of the cdr. If there is no match then W is evaluated, 
select expands into a cond function. 

(prog VARS:id-list [PROGRAM:(id any}]):any 
Type: noeval, nospread 

VARS is a list of ids which are considered fluid when the prog is 
interpreted, and local when compiled. The prog 's variables are 
allocated space when the prog form is invoked, and are deallocated 
when the prog is left. prog variables are initialised to nil. The 
PROGRAM is a set of expressions to be evaluated in order of their 
appearance in the prog function. Identifiers appearing in the top 
level of the PROGRAM are labels which can be referenced by go. 

The value returned by the prog function is determined by a 
return function, or nil if the prog "falls through" that is, the flow 
of execution is not affected by any transfers to labels by go. 

Cambridge LISP 	 71 



Chapter 7 

(go LABEL:id) 
Type: noeval, nospread 

go alters the normal flow of control within a prog function. The 
next statement of a prog function to be evaluated is immediately 
preceded by LABEL. A go may only appear in the following 
situations: 

(1) At the top level of a prog referencing a label which also 
appears at the top level of the same prog. 

(2) As the consequent of a cond item of a cond appearing on the 
top level of a prog. 

(3) As the consequent of a cond item which appears as the 
consequent of a cond item to any level. 

(4) As the last statement of a progn which appears at the top 
level of a prog or in a progn appearing in the consequent of 
a cond to any level subject to the restrictions of 2 and 3. 

(5) As the last statement of a progn within a progn or as the 
consequent of a cond to any level subject to the restrictions 
of 2, 3 and 4. 

An error occurs if LABEL does not appear at the top level of the 
prog in which the go appears or if the go has been placed in a 
position not defined by the rules. See also casego. go cannot be 
used for non-local transfers of control. For such facilities see 
throw. 

(return U:any) 
Type: eval, spread 

Within a prog, return terminates the evaluation of a prog and 
returns U as the value of the prog. The restrictions on the 
placement of return are exactly those of go. Improper placement 
of return results in an error. 

72 	 Cambridge LISP 



Control structures 

(de iterativeFactorial (n) 
(prog (x) 

(setq x 1) 
L 

(cond ((zerop n) (return x )) 
( t (setq x (times x n)) 

(setq n (sub1 n} 
(go L} 

(casego U:any [V:(any label)]) 
Type: noeval, nospread 

A case is a list of the form (value label) where both value 
and label are atoms. U is evaluated (once) and its value compared 
in turn against the value in each case. If a match is found, control 
is transferred to the label, as if a (go label) had been obeyed. If 
none of the values match, the entire casego construction is taken 
to have the value nil, and no transfer of control occurs. The value 
and label of each case are not evaluated and so must be literal 
values. casego must occur in a context where go would be legal. 

(progn [U:any]):any 
Type: noeval, nospread 

U is a set of expressions which are executed sequentially. The value 
returned is the value of the last expression. 

(prog1 [U:any]):any 
Type: eval, spread 

Evaluates its arguments in order and returns the value of U. 

(prog2 [U:any]):any 
Type: eval, spread 

prog2 is like progn except that it may only be used to combine 
two expressions. It is provided for compatibility with other LISP 
systems. 

The catch and throw functions in Acorn Cambridge LISP provide the 
ability to transfer control to an enclosing function other than by the normal 
process of function evaluation and return. 

Cambridge LISP 	 73 



Chapter 7 

(catch TAG:id EXP:any FAIL:any) 
Type: noeval, spread 

catch provides a method of non-local transfer of control. EXP is 
evaluated; if within this a throw is evaluated with the tag TAG, 
then catch will exit with the value of the throw (or the value of 
FAIL if given). 

(throw TAG:id VAL:any) 
Type: macro 

Used in conjunction with catch, this provides a form of non-local 
control. Control continues from the last catch in the execution path 
that has the tag TAG, and the catch returns the value VAL. 

7.1 Common LISP control structures 
The following functions are based on Common LISP functions. Refer to a 
Common LISP Manual for extra detail. 

(let ( (v1 val1) (v2 val2...)) body I..bodyn) 
Type: macro 

Equivalent to lamda expressions binding variablel to valuel and 
then evaluating the sequence body. let performs all the bindings in 
parallel. Thus 

(let ( ( x y) (y x)) ...) 

temporarily swops the value of x with the value of y. 

let* 
Type: macro As let but performs bindings sequentially. 

(do ( (var1 init1 inc1)(var2 init2 inc2)...) 
(exitcondition resultvalue) bodyl...) 

Type: macro 

do binds var2 to init2 and obeys the body until the condition is 
true. The expression (inc2..) is used to establish new values for 
var2. do updates values in parallel. 

74 	 Cambridge LISP 



Control structures 

do* 
Type: macro 

As do but updates variables sequentially. 

(loop bodyl 	bodyn) 
Type: macro 

The body iterates until a return is obeyed. Within a loop, the 
forms 

(while condn val) 
(until condn val) 

may be used to provoke exits. These are not part of common LISP 
but are extensions based on Acornsoft LISP. 

(if cond value) 

(if cond then-value else-value) 
Type: macro 

This is a simple conditional that may prove easier to use than cond. 

(when cond bodyl 	bodyn) 

(unless cond bodyl 	bodyn) 
Type: macro 

Further conditionals, useful when several actions are to be 
performed, when some conditionals are satisfied. 

(dolist (var init -list result) bodyl ...) 

Type: macro 

Obey the body with the variable bound to items from the list; then 
return the specified result. 

(dotimes (var count result) body1...) 
Type: macro 

Obey the body with the variable bound to 0,1,..[count - 1]. 

(dolist (x '(0 1 2) 'done) (print (times x x))) 
(dotimes (x 3 'done) (print (times x x)) 

have the same effect. 

Cambridge LISP 	 75 



8. Loops 

The map functions of LISP provide the capacity for iterative operations over 
data structures. The functions mapc, mapcar and mapcan apply a given 
function to successive cars of a given list, thereby processing each top 
level element of the list; the functions map, maplist and mapcon apply 
the given function to successive cdrS of the given list. The functions 
maplist and mapcar return copied lists of the results of these multiple 
applications; mapcon and mapcan use replacdS to modify the list of 
accumulated results. 

There are also a collection of similar functions which have arguments in 
MacLISP order and support mapping over multiple lists. These are: 
cl:mapc, 	cl:mapcan, 	cl:mapcar, 	cl:mapcon, 	c1:map1, 
c1:maplist. 

(map x:list FN:function):any 
Type: eval, spread 

Applies FN to successive cdr segments of X, that is, X, (cdr 
X) , (cddr X) ... The list X is returned. 

(mapc X:list FN:function):any 
Type: eval, spread 

FN is applied to successive car segments of list X (that is, (car 
X) , (cadr X), (caddy X) ...) . The list X is returned. 

(mapcan X:list FN:function):any 
Type: eval, spread 

A concatenated list of FN applied to successive car segments of X 
is returned. Note that FN must return a value that is a list for 
mapcan to work. 

(mapcar X:list FN:function):any 
Type: eval, spread 

A constructed list of FN applied to successive car segments of list 
X is returned. 

76 	 Cambridge LISP 



Loops 

(mapcar '(1 2 3) (lambda (x)(plus x x) 
> (2 4 6) 

(mapcon X:list FN:function):any 
Type: eval, spread 

A concatenated list of FN applied to successive cdr segments of X 
is returned. (that is, X, (cdr X), (cddr X) ...) . Note that FN 
must return a value that is a list. 

(maplist X:list FN:function):any 
Type: eval, spread 

A constructed list of FN applied to successive cdr segments of X 
is returned. 

(maplist '(abcdef) (lambda (x) (compress x} 
> (abcdef bcdef cdef def of f) 

Cambridge LISP 	 77 



9. Logic functions 

The functions and, or, and not are commonly used to implement a 
control structure analogous to some coed form. For bit level comparisons 
see logand and logor 

(or [U:any]):extra-boolean 
Type: noeval, nospread, Base Type: noeval, nospread 

U is any number of expressions which are evaluated in order of 
their appearance. When one is found to be non-nil, it is returned as 
the value of or. If all are nil, nil is returned. 

(and [U:any]):extra-boolean 
Type: noeval, nospread 

and evaluates each U until a value of nil is found or the end of the 
list is encountered. If a non-nil value is the last value, it is returned, 
otherwise nil is returned. 

(not U:any):boolean 
Type: eval, spread 

If U nil, return t else return nil (same as null function). 

9.1 Bit-level operations 
Acorn Cambridge LISP supports bit level logical operations over integers. 
These functions are constrained to work on small integers in the range 
[0,2**24]. Versions of these functions with names prefixed by i may 
compile into in-line code, but do not check their arguments as thoroughly as 
the more general versions. 

(logand [U:logical]):logical 

( ilogand [U:logical]): logical 
Type: noeval, nospread 

The result returned is the logical AND of all the arguments. Ilogand 
accepts only quantities with 24-bit values as arguments. 

78 	 Cambridge LISP 



Logic functions 

(logand2 U:logical V:logical):logical 

(ilogand2 U:logical V:logical):logical 
Type: eval, spread 

logand2 behaves like logand except that it expects exactly two 
arguments. Compiled references to logand get converted into 
sequences of calls to logand2. 

(logor [U:logical]):logical 

(ilogor [U:logical]):Iogical 
Type: noeval, nospread 

logor forms the logical (that is, bitwise) OR of a sequence of 24 
bit values, and is otherwise similar to logand. 

(logor2 U:logical V:logical):logical 

(ilogor2 U:logical V:logical):logical 
Type: eval, spread 

Like logor, but expecting exactly two arguments. See logand2. 

(logp U:number):boolean 
Type: eval, spread 

Returns t if U is an integer in the range 0 to 2**24-1, that is, if the 
binary representation of U is at most 24 bits long and so U can be 
used directly in logand, logor and so on. 

(logxor [U:logical]):logical 

(ilogxor [U:logical]):logical 
Type: noeval, nospread 

As logand and logor, but forms the bitwise exclusive or (non-
equivalence) of its arguments. 

(logxor2 U:logical V:logical):logical 

(ilogxor2 U:logical V:logical):logical 
Type: eval, spread 

Like logxor but expecting exactly two arguments. 

Cambridge LISP 	 79 



Chapter 9 

(leftshift U:logical V:integer):logical 
Type: eval, spread 

The 24-bit value U is shifted left by V places, keeping only the 
bottom 24 bits of the result. If the second argument is negative, a 
right shift is indicated. See also logand, logor and logxor. 

(ileftshift U:integer V:integer):integer 
Type: eval, spread 

Similar to leftshift but will not accept a negative second 
argument. irightshift is provided for right shifts. See iaddl. 

(irightshift U:integer V:integer):integer 
Type: eval, spread 

Since ileftshift can not accept a negative second argument, this 
routine is provided. It shifts a (small) number right. See 
ileftshift, iplus. 

80 	 Cambridge LISP 



10. I/O and file handling 

10.1 Files 

At any one time, Acorn Cambridge LISP has one file selected for input and 
one for output. Reading and printing use these two files. Functions are 
provided to open and to select new streams. 

(open FILE:any HOW:id):any 
Type: eval, spread 

Open the file with the name FILE for output if HOW is eq to 
output, or input if HOW is eq to input. If HOW is APPEND the 
file is opened for output and left positioned so that new output is 
written after any previous contents. After calls to pds input and 
pdsoutput, FILE is treated as the name of a member of the 
directory specified by these calls. Alternatively, FILE can be a list 
consisting of the name of the directory and the membername 
required. If a third argument, of the same form as FILE, is given to 
open the effect is the same as close performed on the third 
argument followed by open performed on the first. If the file is 
opened successfully, a file-handle is returned. This handle should be 
used to refer to the file when using other I/O routines. An error 
occurs if HOW is something other than input, output or append, or 
if the file cannot be opened. 

input, output, append 

flag values, used as the second argument to open. 

(close FILE:any):any 
Type: eval, spread 

Closes the file with file-handle FILE, releasing store used for 
buffers and control blocks. FILE can refer to a member of a 
directory (see open). nil is returned. An error occurs if the file 
cannot be closed. The functions rds and wrs provide a temporary 
diversion for input and output streams. 

Cambridge LISP 	 81 



Chapter 10 

(rds FILE:any):any 
Type: eval, spread 

Input from the currently selected input file is suspended and further 
input comes from the file with name FILE. If FILE is nil, the 
standard input device is selected. When end of file is reached on a 
non-standard input device, the standard input device is reselected. 
When end of file occurs on the standard input device the Standard 
LISP reader terminates. rds returns the name of the previously 
selected input file. 

(wrs FILE:any):any 
Type: eval, spread 

Output to the currently active output file is suspended and further 
output is directed to the file with file-handle FILE. The file named 
must have been opened for output. If FILE is nil, the standard 
output device is selected. wrs returns the file-handle of the 
previously selected output file. 

A default directory for connection is specified by pdsinput and 
pdsoutput 

(pdsinput FILE:any):nil 
Type: eval, spread 

Causes calls to open, rds and close to refer to members of the 
directory with name FILE. This returns nil. 

(pdsoutput FILE:any):nil 
Type: eval, spread 

As pdsinput but for open, wrs and close. 

82 	 Cambridge LISP 



I/O and file handling 

10.2 Printing 

(prettyprint U:any):any 
Type: eval, spread 

Print the LISP expression U in an indented style. 

(prin U:any):any 
Type: eval, spread 

The value of U is printed with any special characters preceded by 
the escape character. The value of U returned. 

(princ U:any):any 
Type: eval, spread 

The value of U is printed with no escape characters. The value of U 
is returned. 

(princ1 U:any):any 
Type: eval, spread 

As princ but ensures that printing starts at the beginning of a line. 

(princs U:any):any 
Type: eval, spread 

The same as princ except that it prints a newline before U if the 
line is not at the beginning. 

(prinhex U:number V:integer):number 
Type: eval, spread 

The number U is printed in hexadecimal in a field width V. 

(prin1 U:any):any 
Type: eval, spread 

Like prin but treats circular lists correctly. 

Cambridge LISP 	 83 



Chapter 10 

(print U:any):any 
Type: eval, spread 

The value of U is printed, with escape characters, followed by a 
new line. print will fail if given cyclic structures, and there is no 
guarantee that the output it produces will be acceptable to the read 

function - in particular gensym s and binary code print legibly, but 
not in a way where they can be re-input 

(print '!*comp) 
prints !*comp 

(printc U:any):any 
Type: eval, spread 

As for print but with no escape characters. 

(printc '!*comp) 
prints *comp 

(printcm U:any N:integer):any 
Type: eval, spread 

As for printc but leaving a left margin of size non line overflow. 

(printl U:any):any 
Type: eval, spread 

Prints circular lists without looping for ever. Reference points are 
labelled in the output with %%Ln: and referred to by %%Ln. 

(printm U:any N:integer):any 
Type: eval, spread 

As for print but leaving a left margin of size N on line overflow. 

(superprinm U:any N:integer) 
Type: eval, spread 

Same as superprint but leaves a left margin of width N. 

84 	 Cambridge LISP 



I/O and file handling 

(superprint U:any):any 
Type: eval, spread 

Prints U in an indented format (if it will not all fit on one line) 
which is intended to make the structure of the list more readily 
visible. The detailed print style is tuned for the display of LISP 
programs, and so some words (for example, prog, lambda, quote) 
are treated specially by superprint, forcing it to split lines in 
standardized places. The value returned is the argument. 

(superprintm U:any N:integer) 

Type: eval, spread 

Same as superprint but leaves a left margin of width N, and 
terminates with a number of newlines. 

(tyo U:integer) 
Type: eval, spread 

Prints the character with internal code U. 

(tyo 65) 

prints an A 

(bintyo U:integer) 
Type: eval, spread 

As tyo, but sends the character uninterpreted to the VDU driver. 
This may be required if graphics or full-screen output is to be 
performed. 

(terpri) :nil 

The current print line is terminated (that is, a new line is started). 

(eject) :nil 

Causes a skip to the top of the next output page if the destination 
supports carriage controls. 

Cambridge LISP 	 85 



Chapter 10 

(linelength LEN: (integer nil}):integer 
Type: eval, spread 

If LEN is an integer, the maximum line length to be printed before 
the print functions initiate an automatic terpri is set to the value 
LEN. The initial linelength is 72 characters. If LEN is nil, the 
current linelength is returned but is not reset. Values of the line 
length less than 24 are not permitted. 

(iposn):integer 

iposn always returns zero. It is intended to record the line on the 
page. 

(out radix RADIX:integer):nil 
Type: eval, spread 

Sets the radix that will be used when printing subsequent integer 
values. Legal arguments are 2,8,10 and 16 (decimal). Note that only 
small numbers are printed under control of this option - numbers 
bigger than 2**24 are always printed in decimal. 

(posh) :integer 

Returns the number of characters in the output buffer (ie. position 
in output line). When the buffer is empty, 0 is returned. 

(ttab U:integer):nil 
Type: eval, spread 

Enough spaces are printed to move the next character position in 
the line to U. 

(xtab U: integer) :nil 
Type: eval, spread 

Prints U spaces on the current line. 

86 	 Cambridge LISP 



I/O and file handling 

10.3 The programmable reader 

(tyi) :integer 

Reads one character and returns its internal code. 

(tyipeek) :integer 

Returns the internal code for the next character in the input without 
reading it. that is, a subsequent call to tyi will return this 
character. 

(tyiq) :integer 

As tyi but does not echo what it reads. 

(bintyi) :integer 

As tyi but returns character without local editing or interpretation 
of control characters. 

(read) :any 

Returns the next expression from the file currently selected for 
input. Valid input forms are: dot-notation, list-notation, numbers, 
function-pointers, strings, and identifiers with escape characters. 
Identifiers are interned on the oblist. read returns $eof$ when 
the end of the currently selected input file is reached. 

(read-token) :atom 

Reads one symbol and sets the variable *token-type* to one of 
number, symbol or break-character. 

(read-tokenq) :atom 

As read-token but does not cause echo. 

(readch) :id 

Returns the next character from the file currently selected for input. 
If all the characters in an input record have been read, the id $eol$ 
is returned. If the file selected for input has all been read, the id 
$eof$ is returned. Note that the normal LISP escape character 
conventions and macro expansion do not operate in character by 
character reading. 

Cambridge LISP 	 87 



Chapter 10 

(readchq) :id 
Type: Llspread 

As readch but does not cause echo. 

(readq) :any 

As read but does not cause echo. 

(ascii CODE:integer):character 
Type: eval, spread 

Returns the character corresponding to the given internal code for 
example, (ascii 48) returns the character 

(character N:integer):integer 
Type: macro 

character gives the character corresponding to the integer N by 
reading the character-atom-table. 

character-atom-table 

A table of characters used by the reader and by character. It 
translates from internal code to ASCII, and allows synonyms. 

fin 
The atom fin is used to mark the end of a LISP program, and it is 
recommended that most files end with the sequence: 

fin ) ) ) ) ) ) ) ) ) )))))))))) )))))))))))) 

If fin is omitted, the system will stop on end-of-file, but will print 
a warning message to this effect. 

88 	 Cambridge LISP 



I/O and file handling 

10.4 Syntax 
The LISP system read functions are driven by the syntactic properties of the 
characters encountered. The syntax properties are defined by a read-syntax 
table. A copy of the existing one can be made by the function (copy-
syntax-table <table>) and the free variable read-syntax-table 
rebound. 

(setsyntax U:chars V:property W:value):chars 
Type: eval, spread 

U specifies a character or characters that are to be given special 
properties with respect to input. U can be a single-character id, a 
list of such ids or a string, which is treated as a list of characters. V 
specifies the property and if W is non-nil this property is set up for 
each character. If W is nil then the property is cancelled for the 
given characters. V can take the following values. The value 
returned is that of U. 

escape 	 enables the character to force any character 
following it to be treated as a letter. 

break-character 	causes the character to terminate identifiers. 

digit 	 initially applies to 0 	9, not wise for user to 
change! 

lowercase 	 initially applies to a 	z, not wise for user to 
change! 

macro 	 value should be a function, which is called (with 
no arguments) whenever the character is 
encountered in the input. The result returned by 
this function becomes an element of the list being 
read. 

splice 	 as for macro except a list of items to include in 
the list being read is expected to be retuned from 
the function. A special case is when the function 
returns nil, when the macro character plus 
anything read by the function are ignored by the 
main reader. (This is how comments are 
implemented.) 

Cambridge LISP 	 89 



Chapter 10 

The characters that have special input properties initially are: 

ignore 	 $eol$, $U$, blank, tab 

break-character 	 $eol$, 	$ff$, 	blank, 	tab, 	$eof$ 
(.)0#$%&=- \{}+;,*:0?/ 

escape 

digit 	 0123456789 

may-start-number 	 +-. 

upper case 	 ABCDEFGHIJKLMNOPQRSTUVWXY 
z 

letter 	 abcdefghijklmnopqrstuvwxyz 
ABCDEFGHUKLMNOPQRSTUVWXY 
z 

For example, to rename the characters * and - from the set of break-
characters, evaluate (setsyntax "-*" 'break!-character} 

*token-type* 
This variable is set by the tokenizer of the LISP reader to indicate 
the type of the token read. Possible values are: break-character, 
result-of-read-macro, number, symbol or escape. 

The meanings of these are obvious when taken with set syntax. 

(breakp U:any):boolean 
Type: eval, spread 

breakp tests its argument to see if it is a character such as a dot, 
bracket or blank that would terminate an atom. See also digit, 

liter. 

(liter U:any):boolean 
Type: eval, spread 

Returns t if U is a character of the alphabet, nil otherwise. 

(internalcode U:id):integer 
Type: eval, spread 

If U is a single character id its ascii code is returned. See ascii. 

90 	 Cambridge LISP 



PO and file handling 

10.4.1 Character level syntax 

% 	Comments are by default introduced by %, and they last until 
the end of a line. Since they are implemented by a splice 
readmacro, the character that introduces comments can be 
changed (see setsyntax). 

blank 	The atom blank has an initial value that is either the character 
blank or space. To test if `ch' is a space, you can either type: 

(eq ch blank) 
or 
(eq ch (quote ! )) . 

See entry under ! (page XX) for further explanation of the 
above. 

dollar 	The initial value of dollar is the character '$'. 

f 	The initial value of f is nil, and so f can be used as a name for 
`false'. Unlike some other systems, in Cambridge LISP f can 
be used as a bound variable, and the local binding will override 
the global value. 

1par 	The initial value of par is the atom ' t ' , a left parenthesis. 

period 	The initial value of the atom period is the atom '.'. 

rear 	The initial value of the atom rpar is the atom ')', a right 
parentheses. 

tab 	Variable having the value of the character tab. 

eqsign 	The initial value of eqsign is =. 

Cambridge LISP 	 91 



Chapter 10 

10.5 Interacting with the LISP supervisor 

(prarg U:mode):mode 
Type: eval, spread 

mode is one of nil, t, pretty or expanded. After (prarg nil), the 
LISP supervisor does not echo what it reads and interprets. (prarg 
t) causes the supervisor to print arguments; (prarg 'pretty) 
causes it to superprint them; and (prarg 'expanded) causes it to 
superprint them after expansion of readmacros. See prval and 
prmsg. The initial state is no echo. The function returns the 
previous value. 

(prmsg U:boolean):boolean 
Type: eval, spread 

If U nil, then the printing of messages by the LISP supervisor is 
inhibited. The function returns the previous value. 

(prval U:any):integer 
Type: eval, spread 

prval can be used to control the way in which the LISP supervisor 
prints the values of expressions it processes. After (prval 0) it 
prints nothing. (prval 1) or (prval nil), which are the 
default, use print to display the result of a computation; while 
after (prval 2) the function printc is used. If U is 3, or pretty, 
values are superprinted. The function returns the previous value. 

92 	 Cambridge LISP 



I/0 and file handling 

10.6 Saving work 

(preserve U:function) 
Type: eval, spread 

a LISP core-image can be created by executing preserve. The 
name DUMP refers to a directory. The state of LISP is written out 
onto the file, in a format suitable for loading as an initial image. 
After the system has been dumped, LISP stops. Store images are 
reloaded by providing them to LISP under the directory IMAGE 
when the system starts up. If a function was specified by U when 
preserve was done, this function is called when LISP starts up 
again. If none was specified, then the supervisor that was being 
used when preserve was called is used. The image is written to 
the member LSPROOT. 

(rdf INFILE:id OUTFILE:id):nil 
Type: eval, spread 

Reads and executes the LISP code in the given file, with the output 
going to the other file. If OUTFILE is null, or is omitted (the 
normal use), then the terminal is used. 

(setreturncode U:integer):integer 
Type: eval, spread 

Sets the eventual OS retum code. setreturncode nil reads the 
return code currently set up. 

(supervisor) 

supervisor is a user entry into the standard LISP loop that reads, 
echoes and evaluates LISP code. It can be useful for processing 
data-files that contain executable LISP statements. There is no exit. 

(stop U:integer) 
Type: eval, spread 

Exits directly from LISP. (stop n) gives a return code of at least 
n. See setreturncode for a more general way of controlling 
return codes. 

Cambridge LISP 	 93 



11. Evaluating functions 

(eval U:any):any 
Type: eval, spread 

U is evaluated as a piece of LISP code with respect to the current 
collection of variable bindings. eval is the function used by the 
LISP interpreter to evaluate LISP code. eval is an inverse of 
quote, hence (eval 'a) is equivalent to requesting the value of 
a. 

(evils U any):any 
Type: eval, spread 

evlis returns a list of the evaluation of each element of U. 

(apply FN:(id function} ARGS:any-list):any 
Type: eval, spread 

FN must be a function in the form of a code pointer or lambda 
expression, or else an id which has been defined as a function. 
ARGS must be a list of arguments in a form ready to be bound to 
the formal parameters of FN (that is, if FN expects evaluated 
arguments then they must be already evaluated). The result of 
evaluating FN with the values given in ARGS bound to its formal 
parameters is returned. If ARGS contains more items than FN has 
formal parameters, then the excess items are ignored, and if ARGS 
has fewer items, the excess formal parameters are set to nil. 

(progn 
(setq x car) 
(setq y' (( a . b))) 
(apply x y) 

> a 

(mkquote U:any):any-list 

This is a function of one argument and its definition is equivalent to 
(lambda (X) (list 'quote X) ) . 

94 	 Cambridge LISP 



Evaluating functions 

(quote U:any):any 
Type: noeval, nospread 

Returns U unevaluated. 

(function fn:function):function 
Type: noeval, nospread 

The function fn iS to be passed to another function. If fn iS to 
have side effects, its free variables mus-t be fluid or global. This 
function is like quote (indeed, the interpreter does not distinguish 
between them), but if (function (lambda ... ) ) occurs in code 
that is being compiled, the lambda expression will be compiled, and 
indeed may be expanded into in-line code, rather than into a 
separate subr. 

(gts U:id):any 
Type: eval, spread 

This returns the current value of the idernifier U, or nil if it is 
unset. gts is intended particularly for evaluating non-local 
variables, where it is a cheap but restricted equivalent to (eval 
U), except perhaps for its treatment of unset values. 

Cambridge LISP 	 95 



Chapter I I 

11.1 Declarations and binding 

(fluid IDLIST: id-1 ist): nil 
Type: eval, spread 

The ids in IDLIST are declared as fluid type variables. Ids not 
previously declared are initialised to nil. Variables in IDLIST 
already declared fluid are ignored. Changing a variable's type from 
global to fluid is not pertnissible and results in an error. 

(fluidp U:any):boolean 
Type: eval, spread 

If U has been declared fluid (by declaration only), t is returned, 
otherwise nil is returned. 

(global IDLIST:id-list):nil 
Type: eval, spread 

The ids of IDLIST are declared global type variables. If an id has 
not been declared previously, it is initialised to nil. Variables 
already declared global are ignored. Changing a variable's type 
from global to fluid is not permissible and results in an error. 

(globalp U:any):boolean 
Type: eval, spread 

If U has been declared global or is the name of a defined function, 
t is returned, otherwise nil is returned. 

(unfluid IDLIST:id-list):nil 
Type: eval, spread 

The variables in IDLIST that have been declared as fluid variables 
are no longer considered as fluid variables. Others are ignored. This 
affects only compiled functions, as free variables in interpreted 
functions are automatically considered fluid. 

(unglobal U:id):nil 
Type: eval, spread 

Undoes effect of global. 

96 	 Cambridge LISP 



Evaluating functions 

(prog VARS:id-list [PROGRAM:(id any}]):any 
Type: noeval, nospread 

VARS is a list of ids which are considered fluid when the prog is 
interpreted, and local when compiled. The prog' s variables are 
allocated space when the prog form is invoiced, and are de-
allocated when the prog is left. prog variables are initialised to nil. 

The PROGRAM is a set of expressions to be evaluated in order of 
their appearance in the prog function. Identifiers appearing in the 
top level of the PROGRAM are labels which can be referenced by 
go. The value returned by the prog function is determined by a 
return function or nil if the prog "falls through". The VARS 
introduced by prog may have to be declared fluid if it is required 
to reference a binding made in this prog within a function called 
from within the prog 

Cambridge LISP 	 97 



Chapter II 

11.2 Function definition 

(de NAME:id PARAMS:(id id-list} FN:any):id 
Type: noeval, nospread 

The function FN with formal parameter(s) specified by PARAMS is 
added to the set of defined functions with the name NAME. Any 
previous definitions of the function are lost. The function is left 
unchanged unless the *comp variable is t in which case the 
expression FN is compiled. The name of the defined function is 
returned. 

(de structEqual ( x y) 
(cond ((eq x y) t) 

((atom x) nil) 
((structEqual (car x) (car y)) 

(structEqual (cdr x) (cdr yl 

(deflist U:dlist IND:id):id-list 
Type: eval, spread 

A dlist is a list in which each element is a two element list: (ID:id 
PROP:any). Each id in U has the indicator IND with property 
PROP placed on its property list by the put function. The value of 
deflist is a list of the first elements of each two element list. 
Like put, deflist may not be used to define functions. 

(defprop U:dlist IND:id):Iist 
Type: eval, spread 

Like deflist, but tries to compile the properties before placing 
them on the property list. No error occurs if a property is not 
compilable. 

(df NAME:id PARAM:(id id-list} FN:any):id 
Type: noeval, nospread 

The function FN with formal parameter(s) specified by PARAM is 
added to the set of defined functions with the name NAME. Any 
previous definitions of the function are lost. The function created is 
of type fexpr unless the *comp variable is t, in which case the 
expression FN is compiled and an fsubr is created. 'The name of 
the defined function is returned. 

98 	 Cambridge LISP 



Evaluating functions 

(dm MNAME:id PARAM:(id id-list} FN:any):id 
Type: noeval, nospread 

The macro FN with formal parameter(s) specified by PARAM is 
added to the set of defined functions with the name MNAME. The 
result of the macro should be an expression to be evaluated. Any 
previous definitions of the function are overwritten. The function 
created is of type macro, and the name of the macro is returned. If 
*comp is true, then the macro is compiled. 

For example, if a macro to enable writing (push x L} with the 
effect of (setq 1 (cons x L)} is required: 

(dm push(LL} 

(list 'car (list 'setq (caddr LL} 

(list 'cons (cadr LL)(caddr LL} 

(dcf NAME:id PARAM:(id id-fist} FN:any):id 
Type: noveal, nospread 

Like df, dcf defines a new noeval function. The difference is in 
how the formal arguments in the definition are matched up with 
actual arguments in a call. With df a function is defined as if it 
expected just one argument, and when called that variable has as its 
value a list of the actual arguments provided. With dcf a spread 
function is defined, and so actual arguments are matched against 
formals. 

Example: 

(df f1 (a} (print a}} 

(dfc f2 (a b} (print a} (print b}) 

(f1 p q} 	prints (p q) 

(f2 p q) 	prints p then prints q. 

Cambridge LISP 	 99 



Chapter 11 

(dcm NAME:id PARAM:(id idlist} FN:any):id 
Type: noveal, nospread 

As dm, but the parameter list is matched against the argument list 
in a macro call (whereas with dill the argument to the macro gets 

bound to the whole macro call). For example, 

(dm f1 (u) 	(cadr u) 	(caddr u) ...) 

could be expressed as 

(dcm f1 (a b) ... a ... b). 

(expand L:list FN:function)list 
Type: eval, spread 

FN is a defined function of two arguments to be used in the 
expansion of a macro. expand returns a list in the form: 

	

(fn L[0] (fn L[1] 	(fn L[n-l] L[n]) 	)) 

where "n" is the number of elements in L, L[i] is the ith element 
of L. 

(fntype U:function): ((ftype . nargs) atom} 
Type: eval, spread 

If U is either a piece of binary code, or a lambda expression, the 
result returned will be a dotted-pair (type . nargs) specifying 

the type and number of arguments that U requires. The possible 
types are expr, fexpr, subr and fsubr, and if nargs is given 
as negative, it means that the function will accept an indefinite 
number of arguments. If given a non-functional or malformed 
argument, some atomic value is returned. 

100 	 Cambridge LISP 



Evaluating functions 

lambda 

Lambda is a marker atom that identifies a piece of LISP structure as 
representing a function. The correct syntax for its use is 

(lambda variables expr1 expr2 	exprn} 

where variables is a list of formal arguments that the function 
needs, and the expressions are the body of the function. See 
lambdaq. 

lambdaq 

lambdaq introduces a function that will receive its arguments 
unevaluated. Except for suppressing argument evaluation, lambdaq 

behaves exactly like lambda. Tile lambdaq facility in Cambridge 
LISP takes the place of fexpr/fsubr activity in some other 
systems. 

macro 

Macros are introduced by calls to dm, and subsequently calls of the 
forrn (name args) will get trapped, and the entire function 
application passed to the macro definition for processing. See dm for 
details. 

(constantp U:any):boolean 
Type: eval, spread 

Returns t if U is a constant (a number, string, function-pointer, or 
vector). 

(make-constant NAME:id VALUE:any):id 
Type: eval, spread 

The identifier NAME is made into a constant with value VALlUE. 
NAME cannot now be bound as an argument to a function. 

(remd FNAME:id):(nil dotted-pair} 
Type: eval, spread 

Removes the function named FNAME from the set of defined 
functions. Returns the (ftype . function} dotted-pair or nil as 
does getd. The global/function attribute of FNAME is removed 
and the name may be used subsequently as a variable. 

Cambridge LISP 	 101 



Chapter 11 

11.3 Compiler functions 

(codep U:any):boolean 
Type: eval, spread 

Returns t if U is a pointer to compiled code. 

(compile U:id-list):id-list 
Type: eval, spread 

compile talces a list of names of functions and compiles them. See 
also carcheck, *pgen, profile. 

Exatnple: 

(compile (FUN1 FUN2 FUN3}} 

(comprop U:id-list PROPNAME:id):id-list 
Type: eval, spread 

For each id in U its property with name PROPNAME is compiled. 
These properties must be lambda expressions. 

(module U:id):nil 
Type: eval, spread 

This directs the compiler to put the code that it generates into a 
module for later use. The code will be written directly to the 
DUMP directory if present, otherwise it will be written to the 
IMAGE directory, as well as being kept in store in case it is needed 
in a bootstrapping process. The module selected by module will 
replace any previous one with the same name. Empty modules are 
eventually purged from the system. The name nil and any starting 
with the characters `LSP' should be avoided. (endmodule} Or 

another call to module terminates a module. 

102 	 Cambridge LISP 



Evaluating functions 

(excise NAME:(id id-list}) 
Type: eval, spread 

LISP has a load-on-call mechanism, and the function excise can 
be used to unload previously loaded modules. If name is nil then 
everything is unloaded, otherwise the named module(s) are 
unloaded. As a particular case, excise can be used to recover the 
store talcen up by the LISP compiler, in that (excise ' LSPCOMP} 
purges the relevant functions. Note that after excise has been 
called, further reference to the excised modtde will result in it being 
reloaded. 

(endmodule} 
See module. 

Cambridge LISP 	 103 



12. Editor entry points 

(fedit FN:id):any 
Type: noeval, spread 

fedit enters the structure editor to edit the function defined with 
the name ID. For more details of the editor see chapter 2. If the 
editor is entered with no argument, then the last edit is resumed, 
either from the start if the edit was left via stop or ok, or at the 
same place if the last edit was left by save. 

(editp U:id):any 
Type: noeval, spread 

editp enters the structure editor to edit the property list of the 
identifier U. For more details of the editor see chapter 2 and 
fedit. 

(editv U:id):any 
Type: noeval, spread 

editv enters the structure editor to edit the value of the identifier 
U. For more details of the editor see chapter 2 and fedit. 

104 	 Cambridge LISP 



13. Error control 

(errorset U:any FLAG:integer) :any 
Type: eval, spread 

A LISP program can call eval to get a fragment of code explicitly 
evaluated. If this is done, however, errors in the code will cause a 
complete backtrace of all the functions being executed. errorset 

is a variant of eval that overcomes this problem, and allows the 
user to obey code while keeping control if the code turns out to be 
faulty. The result returned is the same as (list (eval U)) if the 
evaluation works, but if there is an error, the result retumed is 
atomic and is a number identifying the type of error that occurred. 
See error for further details. The value of FLAG determines how 
much information about the error is reported to the user. A value of 
zero results in no notification about the error, and values 1 to 5 
result in progressively more information about the functions being 
obeyed and the variables on the stack being printed. 

(prowl 

(setq inputVariable (errorset (read) 0)) 

(oond ((numberp inputVariable) (setq inputVariable "error")) 

( t inputVariable) 

is a first attempt to cope with errors in input 

*emsg* 

is set by errors to the error message produced, and so is useful 
after errorset catches the error. 

Cambridge LISP 	 105 



Chapter 13 

(error NUMBER integer MESSAGE any) 
Type: eval, spread 

NUMBER and MESSAGE are passed back to a surrounding 
errorset (the Standard LISP reader has an errorset). 

MESSAGE is placed in the global variable *emsg and NUMBER 
becomes the value of the errorset. error can be called with a 
single argument which becomes the message, the error number 
defaulting to zero. Fluid variables and local bindings are unbound to 
return to the environment of the errorset. Global variables are 
not affected. 

(backgag U:integer):integer 
Type: eval, spread 

The amount of information printed after an error can be controlled 
by the use of backgag. This function takes one argument, which 
sets the level of printing desired. Arguments should be integers in 
the range 0 to 6: 

0 means no notification of errors at all; 
1 gives the header message ERROR:... ; 
2 in addition wpages the names of functions being obeyed. 
Codes 3,4 and 5 give progressively fuller printing of 
variables found on the stack. 

nil is treated as meaning 0, and any argument out of range is 
treated as 5. 

106 	 Cambridge LISP 



14. Debugging in LISP 

14.1 Tracing functions 
(trace U: {id id-iist}):(id id-list} 

Type: eval, spread 

Sets up tracing for any function whose name appears in the list U 
or the function U. 

(t racesetq U:id-list):id-list 
Type: eval, spread 

After a call to tracesetq in interpreted code, the use of set or 
setq to update the variables named in U leads to a message being 
printed. Unlike trace, tracesetq has one list of traced variables, 
and to stop tracing a call (tracesetq nil} should be used. 

(untrace U:id-list) 
Type: eval, spread 

Undoes the effect of trace for the variables named in U. 

( t racecount N: in teger): n il 
Type: eval, spread 

Causes system to suppress next N items of trace output. This is 
very useful for delayed errors by switching on trace before a 
problem occurs. 

Cambridge 1.1SP 	 107 



Chamer14 

(embed NAME:id NEWDEF:function) 
Type: eval, spread 

embed is used to provide more detailed tracing than is available 
with trace, or to control the behaviour of system routines. The 
definition of the function NAME is replaced by NEWDEF, where 
this new definition may contain calls to the current value. The old 
definition is stored and can be recovered by unembed. For example 
if the global variable GLOB was of interest before and after the 
function change, one could use tlte following to get the 
inforrnation: 

(embed 'change(lambda (X) 
(print (list "Value of glob on entry:" GLOB)) 

(change X) 
(print (list "changed by change to:" GLOB)))) 

(unembed U:id)  
Type: eval, spread 

Undoes effect of embed. 

108 	 Cambridge LISP 



Debugging in LISP 

14.2 Tracing memory use 

(readcount U:function V:any):integer 
Type: eval, spread 

Reads a call-count accumulated in a function compiled with the 
profile option set. If V is non-nil then the count is reset to O. 

(setbtr LEV:integer):integer 
Type: eval, spread 

setbtr sets the level of backtrace information. 

0 Totally silent error recovery 
1 Give the message only 
2 Message and list of function on the stack 
3 Like 2 with extended list of functions 
4 Like 3 but includes all fluids bound 
5 Message, functions, fluids and arguments to 

compiled functions 
6 As 5 with expressions prettyprinted 
7 As 6 with the loop printer printl used 
8 As 5 with compiler temporaries as well 
9 bcplstack printed before style 8. 

Values higher than 8 are only useful for system developers. The 
value returned is the previous level value. Note that setbtr works 
at the lowest level, and as such calls to other functions, especially 
errorset will nullify the effect of this function. In general, users 
are recommended to use the backgag function which changes the 
backtrace characteristics at a higher, and hence more predictable 
level. 

Cambridge LISP 	 109 



Chapter 14 

(count N:integer):integer 
Type: eval, spre,ad 

After (count n) has been obeyed, LISP will allow about n cons 

es to occur before causing an error. 

'CONS COUNTER OVERFLOW'. 

Note that the counting is very approximate, and that generally n 
should have a value of several thousand. count returns as its value 
the previous value of the cons counter. If a count of zero is 
established, the conscounter trap is disabled. count is intended 
for use with errorset and makes it possible to limit the amount of 
computation that a piece of code can perform. See speak. 

(speak) :integer 

speak returns the current value of the cons counter. Note that a 
, value of 0 means that the counter is disabled, and that the number 

inspected by speak is only updated when a garbage collection 
occurs. 

110 	 Cambridge LISP 



Debugging in LISP 

14.3 Timing functions 

(tempus-fugit) 

A call to tempus-fugit will result in LISP printing a line of text 
containing timing and store use figures. 

(tempus!-fugit) 
prints 

tempus-fugit after 3.21+41.11secs -40.9% store used 

(time) :integer 

Returns the elapsed time (in milliseconds) used so far this run, 
excluding overheads (see gctime). 

(timeofday):string 

Returns a string giving time of day. 

(timeofday) 
> "20:16:36" 

(date) :string 
Type: eval, spread 

This returns a string giving the current date. 

Carnbridge LISP 	 I I I 



15. Miscellaneous functions 

(mapstore U:boolean) 
Type: eval, spread 

mapstore prints details of all compiled functions present in the 
LISP heap. If any of these were compiled with the statistics option 
(see profile), the counts will be displayed and reset to zero. 
(mapstore t) prints a similar map of the core LISP system for 
use by system programmers. 

(reclaim):nil 

A user call to the function reclaim forces LISP to garbage-collect. 
A side effect of garbage collection may (see verbos) be the 
printing of some store-use statistics. 

(gcdaemon) 
Type: User provided function 

If a function gcdaemon is defined by the user, it will get called at 
the end of each garbage collection if it is compiled and not traced. 
gcdaemon will be handed one argument, which will be the serial 
number of the garbage collection just completed. The gcdaemon 
facility will be inhibited within execution of itself, so garbage 
collections triggered by work done within gcdaemon will not 
normally lead to re-entry to the function. Erroneous exits from the 
gcdaemon function will lead to the function's definition being 
removed, and so after the deliberate creation of such an error state 
gcciaemon should be redefined. 

(gctime) :integer 
Type: eval, spread 

The value returned by gctime is the amount of time (in 
milliseconds) consumed by 'overheads' since the start of the current 
LISP run. For these purposes, 'overheads' include initial loading of 
LISP, the dynamic loading of modules and garbage collection. 

112 	 Cambridge LISP 



Miscellaneous functions 

erbo s N: in teger): integer 
Type: eval, spread 

Sets garbage message level to N. N = 0 for no messages, N = I for 
garbage collection, N > I for commentary on FASL activity. The 
initial setting is N = O. The value returned is the previous value. 

Cambridge LISP 	113 



Chapter 15 

15.1 Graphics functions 
Acorn Cambridge LISP provides a set of graphics routines. In order to use 
them, a graphics screen mode must be selected by calling (mode n) with n 
= 0, 1, or 2. Mode 0 provides 640 * 256 resolution in monochrome, mode 1 
is 320 * 256 with 4 colours, and mode 2 is 160 * 256 with 16 colours. The 
co-ordinate system for the screen can be reset by (scale h), but by default 
the scree,n has height 1024. After a call to (scale h), the top of the screen 
has y co-ordinate h. The width of the screen is always 5/4 times its height. 
(cis) clears the screen, and (home) moves a notional graphics cursor to the 

centre of the screen. Two styles of graphics are supported: 

(1) simple cartesian graphics 
(moveto x y), (drawto x y) 

(2) turtle graphics 
(turn n), (turnto n) 
(move 1), (draw i) 

If a closed convex figure is drawn on the screen between calls (fil1 t) 
and (fil1 nil) the area will be filled in. (circle r) and (circleat x 
r y) draw circles, and with (fill t) set, they draw filled in circles. 

The effect of ink depends upon the screen mode; small arguments will lead 
to solid colours, and larger values will give a variety of shaded effects. 

(circle r)- draw circle at current position 

(circleat x y r)- draw circle at position x,y 

(fill <flag>)- set/clear area - fill mode 

(ink n)- establish colour 

(mode n)- set screen mode 

(move 1)- Turtle graphics 

(draw 1)- Turtle graphics 

(drawto x y)- Cartesian graphics 

(moveto x y)- Cartesian graphics 

(c1s)- clear screen 

114 	 Cambridge LISP 



Miscellaneous function.s 

(home)- go to mid-screen 

(scale h)- set logical screen height 

(paper n)- establish colour 

(turnto n)- turns through a specified angle: 

(turnto 0)- points to 12 o' clock, and positive angles turn clockwise. 

Cambridge LISP 	 115 



16. Appendix A 

16.1 Error Messages 

0 	User call to error function 
1-5 	Bad argument for plus 
7 	Bad argument for a division function 
8 	Bad argument for minus 
9 	Malformed number in buffer detected by numob 

10 	Bad argument for evenp 
11 	Bad argument for shift function 
12-13 	Bad argument for logand 
14-15 	Bad argument for logor 
16-17 	Bad argument for logxor 
18 	Argument for remob not an identifier 
19-21 	Bad argument for expt 
22-23 	Bad argument for greaterp or lessp 
24 	Attempt to take car of an atom 
25 	Attempt to talce cdr of an atom 
26 	Rplaca given atomic first argument 
27 	Rplacd given atomic first argument 
28 	Orderp can not process gensyms 
29 	Bad argument for gts 
30-31 	Bad syntax for quote function 
32 	Bad argument for unset 
33-34 	Bad syntax in cond expression 
35 	Bad argument for plist 
36 	Second argument for open is input, output or append 
37 	Bad first argument for open 
38 	MIcatom failed-atom assembly buffer not set up 
39 	Numob failed-atom assembly buffer not set up 
40 	Atom assembly buffer empty 
41 	Pack failed-atom assembly buffer not set up 
42 	Bad argument for pack 
43 	Unset variable 
44 	Illegal object used as a function 
45 	Undefined function 
46 	Circular definition of function 

116 	 Cambridge LISP 



Appendix A 

47 	Unset variable in macro-expansion 
48 	Funargs not implemented 
49 	Bad syntax in lambda expression 
50 	Illegal call to codel function 
51 	Illegal call to fcode function 
52 	Illegal call to lambdaq function 
53 	Too many arguments in lambda expression 
54 	Too many arguments for function 
55 	Illegal call to (lambda x ...) function 
56 	Illegal call to a macro 
57-58 	Illegal item in list of bound variables 
59 	Illegal item in list of prog variables 
60 	Return not directly in a prog 
61 	Attempt to divide by 0.0 
62 	Bad argument for fix 
63 	Argument for fix > 10**9 
64-66 	Bad format for define 
67 	Bad argument for set or setq 
68 	Attempt to set the value of nil 
69-71 	Bad syntax for setq 
73-74 	Bad format for deflist 
75 	Bad fonnat in deflistaexpr 
76 	Bad argument for put 
77 	Bad argument for flag 
85 	Bad argument for remflag 
86 	Bad argument for remprop 
87 	Bad argument for prop 
89 	Not enough store for vector request 
90 	Casego not directly in a prog 
91 	Go not directly in a prog 
92-96 	Bad argument for times 
97 	Atom too long (limit is 253 chars) 
98 	Bad syntax in number 
99-100 Bad argument for xtab 
101-102 Bad argument for ttab 
108 	Illegal multiple assignment 
109 	Bad argument for linelength 
110-111 	Bad syntax for prog 
112 	Bad syntax for go 
113 	Label not found 

Cambridge LISP 	 117 



Chapter 16 

114 	Attempt to divide by zero 
115 	Unable to convert fp number to rational form 
129 	Store jam 
131 	Bad argument for gctrap 
132 	Not enough store to load basic LISP system 
133 	Failure in LISP supervisor 
134 	Bad argument for tobig 
135 	Bad argument for torat 
136 	Numeric argument expected 
138 	Argument for prinl should be atomic 
139 	Error detected by operating system 
140-142 Attempt to divide by zero 
143 	Bad syntax for define 
144 	Bad syntax for deflist 
145-147 Error in mkvect 
148-150 Error in access to vector 
151-153 Error in attempt to update vector element 
154 	Open failed-file does not exist 
155 	Open failed-file already in use 
156 	Bad argument for preserve 
157 	Preserve failed-file not found 
158 	Preserve failed-file already opened 
159 	Bad argument for digch 
160 	Non-atomic arg to chdig 
161-162 Argument for chdig not a digit 
163 	Bad argument for trace 
164 	Bad argument for untrace 
165 	End of file detected by read 
166 	Not an atom for orderp 
168 	Output radix must be 2,8,10 or 16 
169 	Bad argument for gcd 
173 	Illegal car access in compiled code 
174 	Illegal cdr access in compile(' code 
175 	Illegal rplaca in compiled code 
176 	Illegal rplacd in compiled code 
177 	Rplacw read access illegal 
178 	Rplacw write access illegal 
179 	Bad argument for count 
180 	Func(ion type assumptions wrong in compiled code 
181 	Bad use of car, cdr or rplaca/d in compiled code 

118 	 Cambridge LISP 



Appendix A 

182 	Bad argument to modular arithmetic routine 
183 	Bad argument for arcsin/arccos 
184 	Bad argument for atan 
185 	Bad argument for exp 
186 	Bad argument for log/log10 
187 	Bad argument for expt (base=0.0) 
188 	Bad argument for sin/cos 
189 	Negative argument for sqrt 
190 	Bad argument for tan/cot 
191 	Bad argument for tan/cot 
192 	Bad argument for abs 
196 	Boffo overflowed in pack 
197 	Bad use of 'function' 
198 	Bad function name for define 
199 	Maximum length of integer exceeded 
201 	Bad argument for (integer) sqrt 
202 	Negative argument for (integer) sqrt 
203 	Exponent too large in floating point number 
206 	Bad argument for bps 
208 	Type code bad in bps 
210 	Overflow of quotecell region 
211 	Unable to open dumpfile 
213 	Type code bad for getbps 
214 	Attempt to open sysin for output 
215 	Attempt to open sysprint for input 
216 	Close failed on file 
217 	Lost file in close 
218 	Bad syntax in use of de, df, dm, dcf or dcm 
219-220 Conflict between flag and indicator name 
225 	Module already loaded 
226 	Module not found 
227 	Loading module did not load required function 
228 	Bad syntax in call to fasl 
229 	Module empty or irrelevant 
230 	Format error in module 
231 	Bad argument for dumpfile 
232 	Dumping inhibited by return code 
233 	Failed to write up core image file 
234 	Bad argument for setreturncode 
235 	Bad member name for faslcopy 

Cambridge LISP 	 119 



Chapter 16 

236 	Member not found for faslcopy 
237 	Faslcopy unable to open output file 
242 	File already open as a sequential dataset 
243 	File already open as a partitioned dataset 
244 	Attempt to open file for both reading and writing 
245 	Attempt to mad and write same pds member 
246 	Lost file in wrs 
247 	Lost pds on wrs 
248 	Bad argument for wrs 
249 	Lost file in rds 
250 	Lost pds in rds 
251 	Bad argument for rds 
252 	Fast loading failed-system may be in inconsistent state 
253 	Function definition not recovered from module 
254 	Type code bad in excise 
255 	Bad member in image file found by faslcopy 
256 	Bad argument for module 
257 	Module already in use 
258 	Unable to open module output file 
265 	Cons counter overflow 

120 	 Cambridge LISP 



17. Appendix B 

17.1 Bibliography 
A good introductory text for Lisp programming: 

LISP, AC Norman and G Cattell, Acornsoft Ltd 1983. 

The following texts explore many of the areas where Lisp is found to be 
the most convenient programming tool. 

Artificial Intelligence Prograrnming, E Charniak C Riesbeck 
D McDermott, Lawrence Erlbaum Associates 1980. 

LISP, P Winston and B K Horn, 2nd edition Addison-Wesley 1984. 

LISP 1.5 users manual 
or the 

Stanford Lisp reference manual. 

This publica(ion describes a version of Lisp which is fairly close to 
Cambridge Lisp: 

ACM SIGPLAN Notices Vol. 14 No. 10 Oct 1979 

The following book describes an important new dialect of Lisp: 

Common Lisp, the Language, G. Steele, Digital Press, 1984 

Cambridge LISP 	 121 








	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132

