
C

C

PART NO 0410, 007
ISSUE NO 1

JULY 1985

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited,
Fulbourn Road, Cherry Hinton, Cambridge CB 1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It is in
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0 907876 40 4 Acorn ScientifiC

ii 	 C Issue I

Contents

1 	Introduction 	 1
1.1 	Standard C 	 1
1.2 	Installation 	 1
2 	Using the compiler 	 3
2.1 	Compiler Options 	 3
2.2 	Panos Global Variables 	 5
3 	Differences from Standard C 	 7
3.1 	Restrictions 	 7
3.1.1 	Loose type checking of . and -> operators 	 7
3.1.2 White space within compound operators 	 7
3.1.3 	Use of sizeof in array declarations 	 7
3.1.4 	#line Ignored 	 8
3.1.5 Anachronisms not allowed 	 8
3.2 	Extensions 	 8
3.2.1 	Dollar sign in identifiers 	 8
3.2.2 	More significant characters in identifiers 	 8
3.2.3 	Assignment to whole struct/union variables 	 9
3.2.4 Long escape sequences 	 10
3.2.5 	Restrictions on struct member names 	 10
3.2.6 Type-name syntax relaxed 	 10
3.2.7 	Data Type void 	 11
3.2.8 	Forward References to structure tags 	 11
3.3 	System-dependent features 	 12
3.3.1 	Data Type enum not allowed 	 12
3.3.2 	Pointers to Functions 	 12
3.3.3 	Standard locations for #include files 	 12
4 	The C Runtime Library 	 13
4.1 	The Purpose of the runtime library 	 13
4.2 	Conventions 	 13
4.3 	Library Modules 	 15
4.3.1 	Input/Output Routines 	 16
4.3.2 	Mathematical Functions 	 21
4.3.3 	String Handling 	 22
4.3.4 	Character Classification 	 23
4.3.5 	Conversions 	 23
4.3.6 Dynamic Memory Allocation 	 24

C Issue 1 	 iii

4.3.7 	Miscellaneous 	 24
4.4 	Alphabetic List of Functions 	 25
5 	Debugging 	 51
5.1 	Compiler error message format 	 51
5.2 	Fixing errors detected by the compiler 	 54
5.3 	Errors detected during execution 	 56

Appendix A 	 57
Appendix B 	 61

iv 	 C Issue I

1 Introduction

32000 C refers to the implementation of C on Acorn Cambridge Series
computers, under the Panos operating system. Note that this manual is not
a tutorial; reference to such material may be found in Appendix B.

1.1 Standard C

The definition of 32000 C follows that of Kernighan and Ritchie which is
described in The C Programming Language. Exceptions are noted in chapter
2 below. Throughout this manual, Kernighan and Ritchie's definition is
called standard C , although it is not a formal national or international
standard. Because most other implementations of C are also based on
Kernighan and Ritchie's definition it is possible to move C programs quite
freely between different computers, provided that extensions to the standard
peculiar to individual machines are avoided. Although much of the power
of C comes from the library routines for input and output of data, string
handling etc. which are supplied along with most compilers, the standard
does not define a set of routines which all compilers must provide.
However, most compilers agree about the definitions of the commonly used
routines. The library routines supplied with 32000 C (see Chapter 4), with
the exception of the low-level I/O routines, are common to almost all
implementations of C; it is not guaranteed however that these routines will
have exactly the same effect as their counterparts in other versions of C.

1.2 Installation

The installation procedure is described in the User Guide supplied with the
system. C is provided on a DFS format disc, and must still be installed even
if it is going to be used on this medium.

C Issue 1

2 Using the compiler

Having created the source using an editor, giving it the file extension `-c',
the command

cc <program name>

will compile the program. The compiler automatically searches for files with
the `-c' extension, and it does not need to be quoted in the command.

2.1 Compiler Options

A number of compiler options are available which allow greater control
over the input and output of the compilation, and over various debugging
tools.

The overall argument string is:

(-source) name ((-list (name)) ((-aof (name)) (-module name)

(-decode) (-nodiags) 	(-check) (-error name) 	(-show) 	(-identify) (- help))

where name refers to any file name, and braces enclose optional items. Note
that some of the file names will contain extensions. File extensions are an
important Panos feature. The extensions `-lis' and `-aof' are automatically
appended by the compiler for list files and Acorn Object Format (aof) files
respectively. See the Panos Guide to Operations for further details about file
extensions.

-source
This argument is optional and does not need to be quoted when giving
the source name. The source program must always have the file
extension `-c' appended to the file name.

-list
This option generates a listing which is sent to the file name specified.
The file extension `-lis' is automatically appended. See figure 2 (section
5.1) for an example of an erroneous program compiled from within the
editor, where the listing is sent to another file, also loaded into the
editor.

C Issue 1 	 3

Chapter 2

-aof
Normally, the Acorn Object Format file which results from the
compilation is given the same name as the source, with the extension
`-aof' instead of the extension `-c'. This option allows the user to
specify a different name. The `-aof' extension is added by the compiler.

-module
The module name field of the generated aof file is normally set to be
the root name of the corresponding source program file (with the `-c'
extension removed). Use -module < name > to override this default
and set the module name field in the aof file to < name > .

-decode
If this option is used, the aof file generated by the compiler will
contain extra information which allows the -decode command to
produce a listing showing the machine code for each source statement
in the program. To interpret this, a program will need to be written.

-nodiags
The code generated by the compiler contains some diagnostic
information which allows a backtrace to be produced if an error occurs
at run-time. This option disables diagnostic tables. The compiled code
is smaller, but error messages are less helpful.

-check
This option causes the compiler to detect when a variable is used
before a value has been assigned to it.

-error
This option allows the user to specify a file to which compiler errors
are sent. By default, these are sent to the screen.

-show
If this option is used, the listing file will contain the expansion of any
macro calls in the source program as well as the original source text.
Macro expansion lines are marked by a double quote mark following
the line number.

4 	 C Issue 1

Using the compiler

Examples of compiler commands

A. The minimal command

cc CProg

The source program `CProg-c' is compiled with all default options: the
object file is called `CProg-aof' and it contains some diagnostic information,
but no machine code listing for each source statement; no listing is
generated; no checks are made for unassigned variables; errors are sent to
the screen.

B. The aof file is specified, and diagnostic tables are disabled.

cc -source dfs::3.CProg -aof dfs::1.AFile -nodiags

The optional `-source' argument is used to specify `dfs::3.CProg-c'; the
object file is to be called `dfs::1.AFile-aof', and is to contain no diagnostic
information.

C. A listing of the compilation is specified.

cc nfs:$.CDir.Cprog -list adfs:$.Cprgl

The program `nfs:$.CDir.Cprog-c' is compiled, and a listing placed in the
file `adfs:$.Cprgl-lis'.

2.2 Panos Global Variables

To run C, a number of Panos global string variables must be setup. These
are:

cc$fe 	 C compiler front end

ll$be 	 C compiler back end

C$include 	 ',include files

Link$Lib:C 	C run-time library

Link$Lib:Pas 	Pascal run-time library

LL$Prim 	 Primitive code procedures

These variables must contain the full pathnames of the various files. See the
Panos Guide to Operations for a description of global string variables.

C Issue 1 	 5

3 Differences from Standard C

The differences between 32000 C and standard C are described here. Section
numbers in the text refer to the section numbers in the C Reference Manual
(Appendix A of The C Programming Language).

3.1 Restrictions

These features of standard C are not permitted in 32000 C.

3.1.1 Loose type checking of . and -> operators

Section 7.1 of the standard states that the left operand of the operators .
and -> must be a structure and the right must be the name of a member of
that structure. Section 14.1 states however that the compiler allows any
value as the left operand of . and any expression of pointer or integer type
as the left operand of ->. 32000 C follows the rule of section 7.1 in
disallowing examples like the following:

int 1;

struct (int p, q; 1 s; ./* THIS IS ILLEGAL */

i.p = 0;

i—>q = 17;

3.1.2 White space within compound operators

In 32000 C, assignment operators like += are single tokens whose parts (+
and =) may not be separated by white space. If + = is written instead of +=,
the compiler will produce an error message.

3.1.3 Use of sizeof in array declarations

Constant expressions used in an array declaration may not contain the
sizeof operator. This example is ILLEGAL: char v C si z eof (int) ;

C Issue 1 	 7

Chapter 3

3.1.4 *line Ignored

The ft l i ne compiler control line is accepted but ignored by the 32000 C
compiler.

3.1.5 Anachronisms not allowed

Both of the anachronistic forms ' = op' and 'int x 3;' described in section 17
of the standard are illegal in 32000 C.

For x=-1; write either x-= 1; or x = -1; depending on which is meant.

For int x 3 ; you must write int x =3;

3.2 Extensions

The following non-standard language features are allowed in 32000 C.

3.2.1 Dollar sign in identifiers

32000 C allows the dollar sign $ to appear in identifiers. The dollar sign is
treated as another letter. The following are all acceptable identifiers:

$
rate$

$_max9

3.2.2 More significant characters in identifiers

Two identifiers are deemed by the compiler to be the same if their first 31
characters match (standard C says 8 characters). Any additional characters
are ignored. This rule also applies, while a file of routines is being compiled,
to external identifiers, but the rules used to decide whether two external
identifiers match when routines compiled separately are linked together
depend on the linker program, not the compiler. Most linkers will treat two
identifiers as being identical if their first 6 or 7 characters are the same,
ignoring upper/lower case distinctions.

8 	 C Issue 1

Differences fron Standard C

If C programs must be portable to many different compilers, they should
only use identifiers which are distinct in the first 8 characters, except for
external identifiers which should be distinct in the first 6 characters whether
or not the distinction between upper and lower case letters is ignored.

3.2.3 Assignment to whole struct/union variables

In standard C, all that can be done with a s t ruc t variable is to create a
pointer to it (using the & operator) or access one of its members (using the .
operator).

32000 C allows you to copy all of the members of a st ruct variable at once
by using the assignment operator, =. If one operand of = is a s t ruc t then
the other must be a st ruct of the same type.

For example:

struct f int p, q;] x, y ;

x.p = 3; x.q = 17;

y = x; /* struct assignment */

After this structure assignment, y.p has the value 3 and y.q has the value 17.

Both assignments in the example below are ILLEGAL because the types of
the operands for = do not match.

struct f int p, q; 1 x ;

struct [int a, b;] y ;

int i;

x = i; 	/* ERROR one integer, one struct ERROR */

x = y; 	/* ERROR same size, but different types ERROR */

32000 C also allows function arguments to be st ruct types (standard C
allows only pointers to s t ruc t as arguments). St ruct arguments are
declared and used in the same way as any other type.

C Issue 1 	 9

Chapter 3

For example:

struct tag I int p, q; 1

clear(x)

struct tag x;

(

x.p = 0; x.q = 0;

1

example()

(

struct tag a;

a.p = 3; a.q = 4;

clear(a);

return(a.p + a.q);

}

The result returned by the function ex amp l e will be 7 because, like all other
types of function argument in C, st ruct arguments are passed by value:
c Lear cannot affect the contents of the structure a which is passed to it,
since it works with a copy of a named x.

3.2.4 Long escape sequences

Standard C allows octal escape sequences of the form \ddd within string
and character constants. 32000 C does not restrict the length of the digit
sequence after the \ character to three digits, but programs which must be
usable with other C compilers should observe the restriction.

3.2.5 Restrictions on struct member names

In standard C, the same member name may occur in different structures
only if the fields identified by the member name and all preceding fields are
the same. 32000 C makes no restrictions on the use of the same member
name in different structures. Again, programs which must be usable with

 other C compilers should not make use of this fact.

3.2.6 Type-name syntax relaxed

Kernighan and Ritchie give the definition of the 'type-name' construct as

1 0 	 C Issue 1

Differences from Standard C

type-name:

type-specifier abstract-dectarator

This allows only one `type-specifier' before the `abstract-declarator',
disallowing expressions like:

sizeof(long int)

(unsigned short) e

Multiple `type-specifier's like long int' are allowed in this context by other
implementations of C, and by 32000 C.

3.2.7 Data Type void

The 32000 C compiler has an extra data type vo i d which is not part of
standard C. Vo i d is a special data type with no values, used to indicate that
a function returns no value. Expressions can be cast to type vo i d in order to
discard their value explicitly. The (non-existent) value of a vo i d expression
may not be used in any way, and neither explicit nor implicit conversations
may be applied to such a value. Therefore a vo i d expression may be used
only as an expression statement, or as the operand of a comma operator.

3.2.8 Forward References to structure tags

Forward references to structure tags are allowed, e.g:

struct tl (int i; struct t2 *p);

struct t2 (char x, y;);

Using a structure tag (like t2) before it has been declared is only allowed
when pointers to the structure are being declared or manipulated: objects of
that structure can only be declared after the structure has been fully
declared. Similarly s i z eof , -> and . will not work until the complete
structure declaration is given.

C Issue I 	 11

Chapter 3

3.3 System-dependent features

3.3.1 Data Type enum not allowed

32000 C does not allow the data type enum, which is permitted in some C
compilers. The enum data type allows the programmer to construct new
data types by enumerating the values which variables of that type may take.
This restriction is permitted by standard C.

3.3.2 Pointers to Functions

Forward references to static functions are allowed. Static functions are
called as external functions, but are defined to the linker as local rather than
global symbols, so their names are not exported to other modules.

3.3.3 Standard locations for #include files

If the Panos global string variable C$ i nc ude is defined, its value is taken
as a list of directories to be searched for #include files, separated by
commas or white space. If the form #i nc lude "f i le name" is used instead
of #i nc lude <f i le name>, the current directory is searched before the

C$-i nc lude list. For example:

—> set var C$include "$.Panoslib, $.CUser. Fred.CInc"

See the Panos Guide to Operations for more details about global string
variables.

12 	 C Issue 1

4 The C Runtime Library

4.1 The Purpose of the runtime library

The 32000 C runtime library is a collection of compiled functions which
perform commonly-used operations not included in the C language itself:
reading and writing data, and evaluation of mathematical functions like s n

and cos are the most obvious instances.

This chapter covers the conventions used to describe the arguments of
library routines, lists the available routines grouped by function (I/O, string
handling etc.) in section 4.3, and then lists the available routines in
alphabetic order, giving a description of the effects of each in section 4.4.

4.2 Conventions

This section describes how to use standard header files in calling library
routines and how to interpret the notation used in section 4.4 to specify the
number and types of arguments they require.

Runtime library functions are used in exactly the same way as user-defined
functions (most are in fact just normal C functions). To use a library
function, a program must first declare the name of the function to be used,
and indicate that it is external to the program (storage class ex t e rn).

So that the declarations of library functions in user programs are always
correct, standardised header files are provided with the system for each
group of library functions. The programmer uses the C #inc ude statement
to access the contents of the header file before making use of any of the
functions declared there.

#inc ude files are located by declaring a Panos global string variable
C$ i nc lude to contain references to these files. The value of the global,
variable is a list of directories to be searched for #i nc lude files. The
directories are separated by commas or white space. If the form #i nc lude

"f il e name" is used instead of #i Inc lude <f il e name>, the current
directory is searched before the C$i nc ude list. For example:

C Issue 1 	 13

Chapter 4

-> set var C$include "$.Panoslib, $.CUser. Fred.CInc"

See the Panos Guide to Operations for more details about global string
variables. As well as containing the required function declarations, the
header file will include declarations for any special data types required by
its functions. For example, consider the standard input/output functions.
These are declared in the header file stdi o-h . Before the first use of any of
the standard I/0 functions, a program must contain the statement
#i nc hide <stdi o-h>. For compatibility with other C compilers,
#inc lude <xxx. h> is taken as equivalent to #include <xxx-h>.

This declares all of the standard I/0 functions like pr i nt f and get c as
well as defining the macros EOF and NULL which are used in
communication between the I/0 functions and user programs. EOF has the
value -1; NULL has the value O.

Programs should always use the header files provided with the compiler
rather than attempting to provide their own declarations for library
functions since the declarations of some functions will differ from the
obvious declaration implied by the function synopses in this chapter.

These function synopses indicate how to call library functions. Information
about required argument types and function result types is presented in the
form of a C function declaration prefixed by #i nc lude statements which
indicate which header files, if any, must be used in order to access the
function. For example, the synopsis for the f get s function looks like this:

#include <stdio-h>

char *fgets(s, n, iop)

char *s;

int n;

register FILE *lop;

This means that f get s returns a result of type (c ha r *) and has three
arguments of types (cha r *) , (i nt) and (F ILE *), where FILE is a data
type declared in the header file s tdi o-h . This header file must be included
in all programs which use the function.

Ellipsis is used in function synopses to indicate that a function has a
variable number of arguments, for example the pr int f function:

14 	 C Issue 1

The C Runtime Library

#include <stdio—h>

printf(format[farg1[,arg2[,...]]])

char *format;

The synopsis shows that print f 's first argument must be a character
pointer. The square brackets [] indicate that the enclosed arguments are
optional; ellipsis "..." indicates repetition. Where argument types are not
shown in the synopsis (e.g. argl,arg2,... for print f) the allowed argument
types are discussed in the text.

4.3 Library Modules

This section lists the library routines provided, divided into the following
functional groups.

Stream input/output to files and devices, including
facilities for random file access

Classification of ASCII characters (e.g. is a character an
ASCII letter?)

String manipulation, including string copy and string
comparison

Character conversion (e.g. convert uppercase letters to
lowercase)

Numeric conversions between ASCII string and binary
representations for integer and floating-point values

Mathematical functions, including logarithms and
trigonometric functions

Dynamic Cheap') memory allocation and deallocation

Various other miscellaneous functions

Some background information common to all of the functions in a group is
presented in this section rather than being repeated with the descriptibn of
each individual function. In particular, the concepts on which the standard
I/0 system is based are presented here, such as s t ream, f i Le, point er,

etc.

C

 Issue 1 	 15

Chapter 4

4.3.1 Input/Output Routines

The routines which are provided to read and write data fall into two groups:
the low-level I/0 routines and the standard I/0 routines.

4.3. I. 1 Standard 1 1 0

The standard I/0 functions provide a portable I/0 interface for C
programs. The standard I/0 functions are available in the form described
here in most implementations of C. The standard I/0 functions also provide
buffering between user programs and files or devices. This means that I/0
transfers to/from files remain efficient even if data is transferred between
the file and the user program in small units (e.g. one byte at a time). On
output, user data are placed in a data buffer allocated 'behind the scenes' by
the standard I/0 routines, until the buffer becomes full, at which point the
contents of the buffer are written en masse to the file, achieving an overall
speed-up because disc devices are optimised for block transfers. The
situation for input is similar.

Other standard I/0 routines allow random file access and conversion of
numeric data between internal (binary) and external (character string)
representations.

All of the routines described in this section require the calling program to
include the header file st di o-h before they may be called.

Before a user of the standard I/0 package can read or write the data in a
file, a path to the file must be opened by calling the f open function. The
name of the file is passed to f open, which, if the file is accessible, returns a
pointer to a structure of type FILE. This file pointer must be used by the
calling program to refer to the file in subsequent I/0 operations (f pu t c,
for example, requires a file pointer argument to identify the file which is to
be written). The data type FILE is declared in the header file st di o- h.

After performing I/0 on an open file, the path to the file may be broken by
closing the file. Files should be closed when they are no longer in use, since
there is a limit on the number of files which may be open at once. The
precise number of open files allowed depends upon which filing system you
are using: the DFS allows 5 files, the ADFS allows 10, and the NFS permits
5 files to be open per file server. Files may, of course, be opened again after
they have been closed. Having more than one path open to the same file at

16 	 C Issue 1

The C Runtime Library

any point in a program should be avoided. Closing all files explicitly at the
end of a program is, however, unnecessary; this is done automatically by the
standard I/0 system.

In this example, a file named fred is opened, some ASCII data is written out
to it and the file is closed. For clarity, no error checking is performed.

#include <stdio-h> 	/* standard I/0 declarations */

main()

FILE *fp; 	 /* file pointer variable */

fp=fopen("fred", 	/* file name */

"w"); 	 /* open for writing */

fprintf(/* formatted output routine */

fp, 	 /* fiLe pointer (identifies file) */

"Hi!\n" 	 /* text string to be written */

);

fclose(fp); 	 /* disconnect file */

For convenience, three file pointers are always automatically opened. These
are declared in st di o-h as follows:
F I LE *s tdi n; this is the standard input stream. By default on most
systems, stdin is connected to a terminal keyboard.
FILE *stdout ; this is the standard output stream. s tdout on most
systems is the display device (VDU or printer) of a terminal.
FILE *stder r ; this is the standard error stream, used by programs for
outputting error messages. It too is normally opened on the terminal output
device.

To simplify writing programs which simply read one sequential input file,
process it and write another sequential output file, st di n, s tdou t , and
s t de r r can be redirected by the use of keywords on the command line
which invoke the program, e.g.

C Issue 1 	 17

Cliapter4

prog

uses default input/output streams.

Prog -input file1

initialises s t di n to be connected to f i lel rather than the keyboard. The
-output and -error keywords may be used in a similar fashion, and in any
combination. This means that programs may be written and tested using the
terminal for standard input and output, then run unchanged using files for
input and output, yet the program itself need not open files.

Stream I/0

The model of I/0 supported by the standard I/0 package is known as
stream I/O. In the stream I/0 model, a file is considered as a sequence of
char values. A notional file pointer, maintained by the I/0 routines,
indicates the character position within the file at which the next character
will be read or written. The file pointer is advanced automatically as
characters are read or written. Random file access is supported by allowing
user positioning of the file pointer.

The basic operations provided by the standard I/0 package in support of
the stream I/0 model are therefore 'read a character' (fgetc), 'write a
character' (fputc), 'reposition file pointer' (fseek) and 'read file pointer' (
ftell). Other, higher level, operations (e.g. write a string) are built up
directly from these primitive operations. Because of this, calls on the
character level functions and the higher level functions may be freely
intermixed and characters will still be transferred in the expected order.

Devices such as terminals are included in the stream I/0 model: characters
may be read or written from them as appropriate (in principle, one at a
time) but positioning operations are not supported.

Binary I/0

The basic units in the above discussion of stream I/0 are 'characters':
values of type char. These are integers which stand for graphic character
representations in the encoding scheme of the host computer system (e.g.
the ASCII encoding for A is 65). The C I/0 system, however, does not
require that the values transferred be valid character representations. In
fact, any binary value which can be represented in a char variable may be
written to a file (and later read back unaltered). For example, on most

18 	 C Issue 1

The C Runtime Library

implementations of C, any value in the range 0..255 will fit in a char.
Arbitrary binary data can be stored in files using the standard I/0 system
by recording it as sequences of char values.

Text I/0

Text I/0 in C is simply a special case of the binary I/0 discussed above
where the values transferred are restricted to the valid character codes for
the host system.

Human-readable text files are divided into lines. Line-breaks are represented
in the stream I/0 model by the newline character, \II' (ASCII code 10). On
output, newline characters may be included at arbitrary points in the text.
On input, programs detect the end of a line by comparing characters being
read with the value \re.

Standard I/0 Functions

The library routines which form the standard I/0 package are listed in this
section. Functions implemented as macros are marked with a *.

clearerr resets the error and end of file indicators

fclose 	closes a file

fdopen 	creates a FILE structure and associates it with a file descriptor

* feof 	tests for end-of-file

* ferror

	

	returns a nonzero integer if an error occurs during read or
write operations

fflush 	writes out any buffered information to the file

fgetc 	returns the next character from a file; generates a true function
call

fgets 	reads a line from a file; the line is terminated by a NUL
character

* fileno 	returns the low-level I/0 file descriptor

fopen 	opens a file

fprintf 	performs formatted output to a specified file

fputc 	writes a single character to a file; generates a true function call

C Issue 1 	 19

Chapter 4

fputs 	writes a string to a file

fread 	reads a specified number of items from the file

freopen reassigns the address of a FILE structure and reopens the file

fscanf 	performs formatted input from a file

fseek 	places the file pointer at a specified byte offset relative to the
beginning of the file, the end of the file or the current location
in the file

ftell 	returns the current byte offset from the beginning of the file to
the current location within the file

fwrite 	writes the specified number of items to a file

* getc 	returns the next character from a file; implemented as a macro

* getchar returns the next character from the standard input device

gets 	reads a line from the standard input device; the newline is
replaced with a NUL character

printf 	performs formatted output to the standard output device

* putc 	writes a single character to a file; implemented as a macro

* putchar writes a single character to the standard output device

puts 	writes a string to the standard output device; terminates the
string with a newline

putw 	writes a specified integer to a file

rewind 	resets the file pointer to the beginning of the file

scanf 	performs formatted input from the standard input device

setbuf 	associates a buffer with an input or output file

sscanf 	performs formatted input from memory

sprintf performs formatted output to a character string in memory

ungetc 	writes a character to a file buffer and leaves the file positioned
before the character

20 	 C Issue I

The C Runtime Library

4.3.1.2 Low-Level 110

The low-level I/0 functions transfer 'raw' user data to or from files or
devices in variable length blocks (down to one byte). The low-level I/0
routines are provided mainly for compatibility with other implementations
of C; normally standard I/0 should be used. In low-level I/0 files are
accessed via 'file descriptors', small integers returned by the system when a
file is opened. Other functions are provided to create new files and directly
control the position in a file where data transfers will take place. Standard
I/0 is implemented in terms of the low-level I/0 functions (which in turn,
call the Panos I/0 library). The values returned by the standard I/0 macro
f le no () are low-level I/0 file descriptors.

The low-level I/0 routines are:

close 	closes a file

creat 	creates a new file

isatty 	determines if a file descriptor is associated with a terminal

lseek 	places you at a byte offset within a file and returns the new
position as an integer

• open 	opens a file for reading, writing or both

read 	reads a specified number of bytes from a file and places them in
a buffer

write 	writes a number of bytes from a buffer to a file

4.3.2 Mathematical Functions

The mathematical routines calculate various standard mathematical
functions such as logarithms, sines, cosines etc.

The trigonometric functions operate on angles expressed in radians.

Errors are handled by returning impossible or unusual result values and
setting an error code in the external integer variable errno.

abs 	returns the absolute value of the integer argument

atan 	returns a value in the range -pi/2 to pi/2 which is the arc
tangent of the radian argument

C Issue 1 	 21

Chapter 4

ceil 	returns the smallest value which is equal to or greater than the
argument

cos 	returns the cosine of the radian argument

exp 	returns the base e raised to the power of the argument

fabs 	returns the absolute value of the floating point argument

floor 	returns the largest integer which is less than or equal to the
argument

log 	returns the natural logarithm of the argument

rand 	returns pseudorandom numbers

sin 	returns a value that is the sine of the radian argument

sqrt 	returns the square root of the argument

srand 	reinitialises the random number generator

4.3.3 String Handling

The C language itself allows the manipulation of single characters. These
library routines allow C programs to process variable-length strings of
characters.

strcat 	concatenates two strings

strcmp 	performs lexicographic comparison of two ASCII strings

strcpy 	copies one string to another

strlen 	returns the length of a string

strncat 	concatenates two strings up to a maximum number of
characters

strncmp 	performs lexicographic comparison of two ASCII strings (up
to a maximum number of characters)

strncpy 	copies a maximum number of characters from one string to
another

•

22 	 C Issue I

The C Runtime Library

4.3.4 Character Classification

The character classification functions described here are implemented as
macros. They return a nonzero value if their argument meets the condition
being tested and zero otherwise. The argument is a single integer.

isalnum 	determines if the argument is alpha-numeric

isalpha 	determines if the argument is alphabetic

isascii 	determines if the argument is an ASCII character

iscntrl 	determines if the argument is an ASCII control character

isdigit 	determines if the argument is a digit

islower 	determines if the argument is a lowercase letter

isprint 	determines if the argument is a printing character

ispunct 	determines if the argument is a punctuation character

isspace 	determines if the argument is a space, horizontal or vertical
tab, carriage return, form-feed or newline

isupper 	determines if the argument is an uppercase letter

4.3.5 Conversions

These routines provide conversion operations between various
representations of numeric values: binary integers, binary floating-point and
character string. Some character mapping routines (upper/lower case
mapping) are also provided.

atof 	converts an ASCII string to a numeric value (double)

atoi 	converts an ASCII string to a numeric value (int)

atol 	converts an ASCII string to a numeric value (long)

tolower 	converts uppercase characters to lowercase;

_tolower 	returns lowercase characters unchanged

toupper 	converts lowercase characters to uppercase;

_toupper returns uppercase characters unchanged

C Issue 1 	 23

Chapter 4

4.3.6 Dynamic Memory Allocation

Building complex dynamically changing data structures requires a different
class of storage from static or extern variables (which must be preallocated
by the programmer when a program is written and are therefore not flexible
enough) and auto or register variables (which disappear when the procedure
which created them returns; some dynamic data structures niust be
operated on by many procedures).

This extra storage class is generally referred to as heap storage. In C, heap
storage is allocated by calling a library function (malloc) and remains until
it is explicitly released by calling another function (free).

calloc 	allocates and clears an area of memory

free 	deallocates the space allocated by malloc or realloc

malloc 	allocates the specified number of contiguous bytes of memory

realloc 	changes the size of an area previously allocated by malloc or
realloc

4.3.7 Miscellaneous

Other useful library routines are provided for halting program execution,
non local jumps, debugging etc.

assert 	program debugging routine

_exit 	stop program exit

getenv 	access environment variables

longjmp 	returns to the context saved by setjmp

perror 	writes (to stderr) the most recent error encountered

rand 	pseudo-random number generator

setjmp 	saves the context of the calling function for a subsequent
longjmp call

srand 	change seed for rand

system 	do operating system command string

24 	 C Issue I

The C Runtime Library

4.4 Alphabetic List of Functions

This section lists all of the supported library functions supplied with 32000
C.

abs - integer absolute value

#include <math-h>

abs(i)

abs returns the absolute value of its integer operand.

assert - program debugging routine

#include <assert-h>

assert(expression)

int expression;

If the macro identifier NDEBUG is defined at the point in the source
file where <assert-h> is included, use of the assert function will
have no effect.

The a s se r t function puts diagnostics into programs. The expression
argument is any scalar expression. When it is executed, if expression is
false (that is, evaluates to zero), assert writes the message "assertion
failed" on the standard error file and does a diagnostic backtrace of the
call stack. a sse r t has no effect if its argument is true (non-zero).

No value is returned by a s se r t .

a tan - arc tangent

#include <math-h>

double atan(x)

double x;

a tan returns the arc tangent of x.

a tof - convert string to floating point

C Issue 1 	 25

Chapter 4

double atof(nptr)

char *nptr;

The string pointed to by npt r is converted to double-precision floating
point representation. The first unrecognised character terminates the
string.

a t of recognises an optional string of tabs and spaces, then an optional
sign, then a string of digits optionally containing a decimal point, then
an optional e or E followed by an optionally signed integer.

a toi - convert string to integer

atoi(nptr)

char *nptr;

This function converts the string pointed to by npt r to integer
representation. The first unrecognised character ends the string.

a toi recognises an optional string of tabs and spaces, then an optional
sign, then a string of digits.

a tol - convert string to long integer

long atol(nptr)

char *nptr;

This function converts the string pointed to by npt r to long integer
representation. The first unrecognised character ends the string.

atol recognises an optional string of tabs and spaces, then an optional
sign, then a string of digits.

In 32000 C, a to is equivalent to atoi (i nt) and (long i nt) have
the same representation. since

ce - ceiling function

#include <math-h>

int ceil(x)

double x;

ce i returns the smallest integer not less than x.

c ea rerr - clear stream errors

26 	 C Issue I

The C Runtime Librar

#include <stdio-h>

clearerr(stream)

FILE *stream;

c lea re r r resets any error indication on the named stream. It is
implemented as a macro and therefore may not be redeclared.

close - close a file

close(fildes)

Given a file descriptor (f i ldes) as returned by open or c rea t ,

close closes the associated file, i.e. breaks the connection between the
file descriptor (a small integer) and the file itself. A close of all files is
automatic on exit, but since there is a limit on the number of files
which may be open at once, c lose is necessary for programs which
deal with many files.

Zero is returned if a file is closed, -1 is returned for an unknown file
descriptor.

cos - cosine function

#include <math-h>

double cos(x)

double x;

cos returns the cosine of its radian argument.

c rea t - create a new file

creat(name, mode)

char *name;

c rea t creates a new file or prepares to rewrite an existing file called
name, given as the address of a NUL-terminated string. The mode

argument is currently ignored, but should be given by the caller for
portability.

ex i t - terminate execution

exit(status)

int status;

ex i t is the normal means of terminating program execution. ex i t

closes all the program's files, then stops.

C Issue 1 	 27

Chapter 4

This call never returns.

exp - raise e to a power

#include <math-h>

double exp(x)

double x;

exp returns the exponential function of x.

exp returns a huge value when the correct value would overflow;
e r rno is set to "ERANGE".

f abs - floating absolute value

#include <math-h>

double fabs(x)

double x;

f abs returns the absolute value x 1.

f c lose - closes a file

#include <stdio-h>

fclose(stream)

FILE *stream;

f c lose causes any buffers for the specified stream to be emptied, and
the file to be closed. Buffers allocated by the standard input/output
system are freed.

f c lose is called automatically upon calling ex i t.

f c lose returns EOF if s t ream is not associated with an output file, or
if buffered data cannot be transferred to that file.

f dopen - open a stream

#include <stdio-h>

FILE *fdopen(fildes, type)

char *type;

f dopen associates a stream with a file descriptor obtained from open

or creat.

type is a character string having one of the following values:

28 	 C Issue I

The C Runtime Librar

r open for reading

w create for writing

a append: open for writing at end of file or create for
writing

The type of the stream must agree with the way the file was opened.
the open file.

f eof - is stream at end of file?

#include <stdio-h>

feof(stream)

FILE *stream;

f eof returns non-zero when end of file is read on the named input
st ream, otherwise zero. It is implemented as a macro, and therefore
cannot be redeclared.

f er ror - tests for stream errors

#include <stdio-h>

ferror(stream)

FILE *stream;

f er ror returns non-zero when an error has occurred reading the
named s t ream, otherwise zero. Unless cleared by c ea re r r, the
error indication lasts until the stream is closed. f e r ro r is implemented
as a macro.

f f lush - flush stream buffer

#include <stdio-h>

fflush(stream)

FILE *stream;

f f lush causes any buffered data for the named output s t ream to be
written to the file or device associated with that stream. The stream
remains open.

f f lush is called automatically by c lose, and when all streams are
implicitly closed by ex i t .

C Issue 1 	 29

Chapter4

EOF is returned if st ream is not associated with an output file or if
buffered data cannot be transferred to that file.

f get c - read a character from a stream

#include <stdio—h>

int fgetc(stream)

FILE *stream;

f get c returns the next character from the specified input stream.
Successive calls return successive characters from the stream. f get c is
a genuine function, unlike get c which is a macro.

EOF is returned at end of file or if a read error occurs.

f get s - read a string from a stream

#include <stdio—h>

char *fgets(s, n, stream)

char *s;

FILE *stream;

f get s reads n-1 characters, or up to a newline character, whichever
comes first, from the st ream into string s . The last character read
into s is followed by a NUL character. f get s returns its first
argument.

fgets returns NULL on end of file or error.

Note that f get s behaves differently from get s (q.v.) with respect to
any terminating newline character: f get s keeps the newline, get s
deletes it from the string.

f i len° - stream status enquiry

#include <stdio—h>

fileno(stream)

FILE *stream;

f i eno returns the integer file descriptor associated with the stream,
see open. It is implemented as a macro.

f too r - floor function

30 	 C Issue 1

The C Runtime Library

#include <math-h>

int floor(x)

double x;

f Loor returns the largest integer not greater than x.

f open - opens a file

#include <stdio-h>

FILE *fopen(filename, type)

char *filename, *type;

f open opens the file named by f i ename and associates a stream with
it. f open returns a pointer to be used to identify the stream in
subsequent operations.

type is a character string having one of the following values:

r open for reading

w create for writing

a append: open for writing at end of file or create for
writing

f open returns the pointer NULL if f i L ename cannot be accessed.

fpri nt f - formatted output

#include <stdio-h>

fprintf(stream, format, [argl [arg2 []]])

FILE *stream;

char *format;

f pr i nt f writes its output on the specified stream (by calling put c).

f pr int f converts, formats and outputs the arguments a rg (i) under
control of its forma t argument. The f ormat argument is a character
string which contains two types of object: plain characters, which are
simply copied to the output stream, and conversion specifications, each
of which causes conversion and output of the next a rg value.

Each conversion specification is introduced by the character %.
Following the % there may be (in the given order)

- an optional minus sign `-', which specifies left justification of the
converted value in the indicated field.

C Issue 1 	 31

Chapter 4

- an optional digit string specifying a field width; if the converted
value has fewer characters than the field width it will be blank padded
on the left (or right if left justification indicator `-' has been given) to
make up the field width; if the field width begins with a zero,
zero-padding will be performed instead of blank-padding.

- an optional digit string specifying a precision which specifies the
number of digits to appear after the decimal point for e and f format
conversion, or the maximum number of characters to be output from a
string.

- the character (lowercase L), specifying that a following d, o x or u
corresponds to a long integer a rg. (A capitalised conversion code has
the same effect).

- a character which indicates the type of conversion to be applied.

A field width or precision may be specified as "*" instead of a digit
string, in which case a corresponding integer a r g is used as the field
width or precision respectively.

The conversion characters and their meanings are:

do x
The integer a r g is converted to decimal, octal or hexadecimal
notation respectively.

The float or double a rg is converted to decimal notation in the
form "[-]ddd.ddd" where the number of d's after the decimal
point is equal to the precision specification for the argument. If
the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

The float or double a rg is converted into the form
"[-]d.ddde[-| +]dd" where there is one digit before the decimal

point and the number after is equal to the precision specification
for the argument; when the precision is not specified, 6 digits are
produced.

The float or double a rg is output in style d, f or e, whichever
gives full precision in minimum space.

32 	 C Issue I

The C Runtime Library

c
The (char) a rg is printed. NUL characters are ignored.

s
A rg is taken to be a string (character pointer) and characters
from the string are printed until a NUL character is reached or
until the number of characters indicated by the precision
specification is reached; however if the precision is zero or
missing, all characters up to a NUL are printed.

u
The unsigned integer a rg is converted to decimal and output.

%
Print a `%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the
actual width. Characters generated by f pri nt f are printed by pu t c
(q.v.).

Note that fields wider than 128 characters do not work.

f pu t c - write a character to a stream

#include <stdio-h>

fputc(c, stream)

FILE *stream;

f put c appends the character c to the specified output stream. It
returns the character written. f put c, unlike pu t c, is a genuine
function rather than a macro.

f put c returns EOF if an error occurs.

f pu t s - write a string to a stream

#include <stdio-h>

fputs(s, stream)

char *s; 	
FILE *stream;

f pu t s copies the NUL-terminated string s to the specified output
stream. The NUL character which terminates the string is not written to
the stream.

C Issue 1 	 33

Chapter 4

Note that f put s is inconsistent with put s, which appends a newline
to the output string.

f read - buffered binary input

#include <stdio-h>

fread(ptr, sizeof(*ptr), nitems, stream)

FILE *stream;

f read reads into a block beginning at pt r, ni t ems of data of the type
of *pt r from the specified input stream. It returns the number of items
actually read. f read returns zero on end of file or error.

f reopen - open a stream

#include <stdio-h>

freopen(filename, type, stream)

char *filename, *type;

FILE *stream;

f reopen substitutes the named file f i lename in place of the open
stream. It returns the original value of st ream. The original stream is
closed. f reopen is typically used to attach the preopened constant
names, stdi n, stdout and stder r to specified files. type is a
character string having one of the following values:

r open for reading

w create for writing

a append: open for writing at end of file or create for
writing

f reopen returns the pointer NULL if f i lename cannot be accessed.

f scanf - formatted input

#include <stdio-h>

fscanf(stream, format, [, ptrl [, ptr2 [...]]])

FILE *stream;

char *format;

f scanf reads characters from the specified input stream, interprets
them according to a f orma t string and stores the results in the
variables pointed to by its arguments. The format string usually

34 	 C Issue I

The C Runtime Library

contains conversion specifications which are used to direct
interpretation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in
the input.

2. An ordinary character (not %) which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character, `*', an optional
numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding p t r argument, unless assignment suppression was
indicated by *. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. The following conversion characters are legal:

a single `To' is expected in the input at this point; no assignment is
done.

a decimal integer is expected; the corresponding argument should
be an integer pointer.

an octal integer is expected; the corresponding argument should
be an integer pointer.

a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

a character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \0', which will be
added. The input field is terminated by a space character or a
newline.

C Issue 1 	 35

Chapter 4

a character is expected; the corresponding argument should be a
character pointer. The normal skip over space characters is
suppressed in this case; to read the next non-space character, use
"% 1 s". If a field width is given, the corresponding argument
should point to a character array, and the indicated number of
characters is read.

e,f

a floating-point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for floating
point numbers is an optionally signed string of digits, possibly
containing a decimal point, followed by an optional exponent
field consisting of an E or e followed by an optionally signed
integer.

Indicates a string not to be delimited by space characters. The left
bracket is followed in the format string by a set of characters and
a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not a
circumflex (A), the input field is all the characters until the first
character not in the set between the brackets; if the first character
after the left bracket is A, the input field is all characters until the
first character which is in the remaining set of characters between
the brackets. The corresponding argument must point to a
character array.

The conversion characters d, o and x may be capitalised or preceded
by 1 (lowercase L) to indicate that a pointer to 1. ong rather than to i n t
is in the argument list. Similarly, the conversion characters e or f may
be capitalised or preceded by 1 (lowercase L) to indicate a pointer to
double rather than to float. The conversion characters d, o and x may
be preceded by h to indicate a pointer to short rather than to i nt.
f s ca nf returns the number of successfully matched and assigned input
items. This can be used to decide how many input items were found.
The constant EO F is returned on end of input; note that this is different '
from zero, which means that no conversion was done; if conversion
was intended, it was frustrated by an inappropriate character in the
input.

36 	 C Issue I

The C Runtime Library

f seek - reposition a stream

//include <stdio-h>

fseek(stream, offset, ptrname)

FILE *stream;

long offset;

f seek sets the position of the next input or output operation on the
stream. The new position is at the signed distance of f set bytes from
the beginning, the current position or the end of the file, depending on
whether pt rname has the value 0, 1, or 2. f seek undoes any effects of
ungetc.

f seek returns -1 for improper seeks.

f tell - stream position enquiry

#include <stdio-h>

long ftell(stream)

FILE *stream;

f tell returns the current value of the offset relative to the beginning
of the file associated with the named stream. This offset is measured in
bytes.

fwrite - buffered binary output

#include <stdio-h>

fwrite(ptr, sizeof(*ptr), nitems, stream)

FILE *stream;

fwri te appends at most n items of data of the type of *pt r beginning
at pt r to the specified output stream. It returns the number of items
actually written.

Zero is returned on end of file or error conditions.

get c - read a character from a stream

#include <stdio-h>

int getc(stream)

FILE *stream;

C Issue 1 	 37

Chapter 4

get c returns the next character from the named input stream.
Successive calls on get c return successive characters from the stream.
get c is implemented as a macro.

EOF is returned on end of file or when a read error is detected.

get char - read a character from standard input

#include <stdio—h>

int getchar()

Getchar 0 is identical to getc (stdin). (Getchar is implemented as
a macro). It returns the next character from the standard input stream
stdi n. EOF is returned on end of file or read error conditions.

get env - access environment variable

char *getenv(name)

char *name;

name is a pointer to a string which must be the name of a Panos string
variable. If this global string is defined, get env returns a pointer to
the corresponding global string value, otherwise a null pointer is
returned.

get s - read string from standard input

#include <stdio—h>

char *gets(s)

char *s;

get s reads a string into s from the standard input stream stdi n. The
string is terminated by a newline character, which is replaced in s by a
character.

get s returns its argument as result.

get s returns NULL on end of file or error.

Note that get s is inconsistent with f get s (q.v.) in its treatment of the
terminating newline character: get s deletes the newline, f get s keeps
it.

i s a I. num - is character alphanumeric? (macro)

38 	 C Issue I

The C Runtime Library

#include <ctype-h>

isalnum(c)

i sa 1. num returns 1 if the argument c is a letter or a digit, 0 otherwise.

isa pha - is character alphabetic? (macro) 	 •

#include <ctype-h>

isalpha(c)

i sa ph a returns 1 if the argument c is a letter, 0 otherwise.

isasci i - is argument an ASCII character? (macro)

#include <ctype-h>

isascii(c)

isasci i returns 1 if the argument c is an ASCII character (code less
than 200 octal).

i sa t ty - is file descriptor a terminal?

#include <stdio-h>

isatty(fildes)

i sa t ty returns 1 if the file descriptor f i Wes is associated with a
terminal device, 0 otherwise.

s cnt r - ASCII control character? (macro)

#include <ctype-h>

iscntrl(c)

i s cn t r returns 1 if the argument c is an ASCII control character, 0
otherwise.

i sdigit - is argument a digit? (isdigit)

#include <ctype-h>

isdigit(c)

i sdigit returns 1 if the argument c is a digit, 0 otherwise.

i s owe r - is character lowercase? (macro)

#include <ctype-h>

islower(c)

s lower returns 1 if the argument c is a lowercase letter, 0 otherwise.

C Issue 1 	 39

Chapter 4

i sprint - printing ASCII character? (macro)

#include <ctype-h>

isprint(c)

i sprint returns 1 if the argument c is a printing character, codes 40
octal (space) through 176 octal (tilde). Returns 0 otherwise.

i s pun c t - punctuation character? (macro)

#include <ctype-h>

ispunct(c)

i spunc t returns 1 if the argument c is a punctuation character
(neither control nor alphanumeric), 0 otherwise.

i s s pa c e - white space character? (macro)

#include <ctype-h>

isspace(c)

i s spa ce returns 1 if the argument c is a space, horizontal or vertical
tab, carriage return newline or formfeed character, 0 otherwise.

i suppe r - is character uppercase? (macro)

#include <ctype-h>

isupper(c)

i supper returns 1 if the argument c is an uppercase letter, 0
otherwise.

log - natural logarithm

#include <math-h>

double log(x)

double x;

log returns the natural logarithm of x. log returns 0 when x is zero or
negative; the external i nt variable er rno is set to EDOM (defined by
#inc lude <errno-h>).

long j mp - non-local goto

#include <setjmp-h>

longjmp(env, val)

jmp_buf env;

40 	 C Issue I

The C Runtime Library

This function is used to deal with errors encountered in a low-level
subroutine of a program.

long j mp restores the stack environment saved by the last call of
set j mp with env as its argument. It then returns in such a way that
execution continues as if the call of set j mp which saved the
environment env had just returned the value va to the function
which called setjmp, which must not itself have returned in the
interim. All accessible data still have their values as of the time
long j mp was called.

iseek - move read/write pointer

long 1seek(fildes, offset, whence)

long offset;

The file descriptor refers to a file open for reading and writing. The
read (resp. write) pointer for the file is set as follows:

If whence is 0, the pointer is set to of f set bytes. If when c e is 1,

the pointer is set to its current location plus of f set. If whence is

2, the pointer is set to the size of the file plus of f set.

The returned value is the resulting pointer location. -1 is returned for
an undefined file descriptor or a seek to a position before the beginning
of the file. lseek is a no-op on devices (e.g. the vdu or keyboard)
which are not disc files.

open - open for reading or writing

open(name, mode)

char *name;

open opens the file name for reading (if mode is 0), writing (if mode is

1) or for both reading and writing (if mode is 2). name is the address of
a string of ASCII characters representing an filing system file name,
terminated by an ASCII NUL character.

The file is positioned at the beginning (byte 0). The returned file
descriptor must be used for subsequent calls for other input-output
functions on the file.

The value -1 is returned if the file does not exist or is unreadable or if
too many files are already open.

C

 Issue 1 	 41

Chapter 4

per ror - print error message

#include <stdio—h>

char *perror(s)

char *s;

The per ror function converts the value in the global variable er rno
into a textual message. If s is not null, per ror writes a line to the
standard error file thus: first the string pointed to by s then a colon
and a space, then the message and a newline. If the argument s is a
null pointer, the pe r ror function returns a pointer to the message
string and performs no output.

The message string is of the form:

PANOS error code 16_xxxxxxxx

print f - formatted output on stdout

#include <stdio—h>

printf(format, [, arg1 [, arg2 [...]]])

char *format;

pr i nt f writes output to the standard output stream, stdout. The
arguments of pr i nt f have the same meaning as the fpri nt f

arguments of the same name. See the description of fpri nt f.

printf(...);

is equivalent to

fprintf(stdout, ...);

put c - append a character to output stream

#include <stdio—h>

int putc(c, stream)

char c;

FILE *stream;

put c appends the character c to the specified output stream. It returns
the character written. EOF is returned on error. Because it is
implemented as a macro, put c treats a stream argument with
side-effects improperly. In particular,

42 	 C Issue I

The C Runtime Library

putc(c, *f++);

does not work sensibly.

put cha r - write a character to standard output

#include <stdio-h>

putchar(c)

put cha r (c) is a macro defined as put c (s tdout) i.e. the character
c is written to the standard output stream, s tdout (normally the vdu).

EOF is returned on error.

puts - write string to standard output

#include <stdio-h>

puts(s)

char *s;

put s copies the NUL-terminated string s to the standard output
stream stdout and appends a newline character. The terminating
NUL character is not copied. s t dout is normally the vdu.

put s appends a newline to the output string but f put s (q.v.) does not.

putw - write an integer to standard output

#include <stdio-h>

putw(w, stream)

FILE *stream;

pUtw outputs an integer value to the standard output stream in a
format which can be read in again by the standard input function
getw.

Putw returns the word written. putw neither assumes nor causes
special alignment in the file.

EOF is returned if a write error occurs.

rand - pseudo-random number generator

int rand()

The rand function returns successive pseudo-random integers in the
range 0 to 32767. See also s rand.

C Issue 1 	 43

Chapter 4

read - read from file

read(fildes, buffer, nbytes)

char *buffer;

A file descriptor is an integer returned by a successful call on open or
c reat. Buf f er is the location of nbytes contiguous bytes into which
the input will be placed. It is not guaranteed that all nbytes bytes will
be read; for example if the file descriptor refers to the keyboard at most
one line will be returned. In any event, the number of characters
actually read is returned.

Zero is returned when the end of the file has been reached. If the read
was unsuccessful for any other reason, -1 is returned. Many conditions
may cause errors: physical I/0 errors, bad buffer address etc.

rewi nd - reposition stream to beginning

#include <stdio-h>

rewind(stream)

rewind(st ream) is equivalent to f seek (st rearn,0L,0. It
repositions st ream to the first byte of the associated file (byte 0). It is
a no-op if the stream is associated with a device rather than a file (e.g.
the keyboard or the vdu).

rewi nd returns -1 on failure.

scanf - formatted input from stdin

#include <stdio-h>

scanf(format, [ptrl [, ptr2 []]])

char *format;

scanf reads input from the standard input stream stdi n. It reads
characters (via get c), interprets them according to the given format
and stores the resulting values in the locations pointed to by the pt r

arguments.

The exact meaning of the arguments to scanf is the same as that of
the arguments of the same name to the function f scanf. In fact, the
call

scanf(format, ...);

is equivalent to

44 	 C Issue I

The C Runtime Library

fscanf(stdin, format, ...);

scanf returns EOF on end of input, and a short count for missing or
illegal data items.

se tbuf - assign buffering to a stream

#include <stdio-h>

setbuf(stream, buf)

FILE *stream;

char *buf;

setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an
automatically allocated buffer.

Note: if buf is the constant pointer NULL, input/output will be
performed without any buffering being interposed by the s tdi o

package.

A macro BUFS I Z tells how big an array is needed: c ha r

buf EBUF S I Z]; A buffer is normally obtained from ma loc upon the
first get c or put c on the file, except that output streams directed to
the vdu and the standard error stream stder r are normally not
buffered.

set j mp - save environment for longjmp

#include <setjmp-h>

setjmp(env, val)

jmp_buf env;

set j mp saves the current stack context of the program in env and
returns zero. long j mp (q.v.) can be used to transfer control back to the
call of set jmp with the same auto variables accessible as when set jmp

was called. set jmp returns a non-zero value (supplied by the call on
long j mp if control is transferred in this way).

s i n - sine function

#include <math-h>

double sin(x)

double x;

C Issue 1 	 45

Chapter 4

Si n returns the sine of its radian argument. The magnitude of the
argument should be checked by the caller to make sure the result is
meaningful.

spr i nt f - formatted output to a string

#include <stdio-h>

sprintf(s, format, [, arg1 [, arg2 [...]]])

char *s, *format;

spr int f writes formatted output into a character array via a pointer s
supplied by the caller. The meaning of forma t and the a rg values is as
for f pr int f. The output string s is automatically terminated by a
NUL character.

sqrt - square root

#include <math-h>

double sqrt(x)

double x;

sqr t returns the square root of x. sqr t returns zero when x is
negative; the ex t ern i nt variable er rno is set to EDOM (defined by
#inc iude <errno—h>).

s rand - new seed for rand function

srand(seed)

unsigned int seed;

The s rand function uses its argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand.

sscanf - formatted input from string

#include <stdio-h>

sscanf(s, format [, ptrl E , ptr2 [...]]])

char *s, *format;

sscanf reads input from the string s. It interprets the characters it
reads according to the given format string and stores the resulting
values in the locations pointed to by the pt r arguments. The exact
meaning of the arguments to sscanf is the same as for f scanf.

46 	 C Issue 1

The C Runtime Library

st rca t - concatenates two strings

char *strcat(sl, s2)

char *sl, *s2;

st rca t appends a copy of string s2 to the end of string s1. A pointer
to the NUL-terminated result is returned.

s t rcmp - string compare

strcmp(sl, s2)

char *sl, *s2;

st rcmp compares its arguments and returns an integer greater than,
equal to, or less than 0, depending on whether s1 is lexicographically
greater than, equal to or less than s2.

st rcpy - string copy

char *strcpy(sl, s2)

char *sl, *s2;

st rcpy copies string s2 to s1, stopping after the NUL character has
been moved. s1 is returned.

st r len - string length

strlen(s)

char *s;

st r en returns the number of non-NUL characters in s.

s t rn c a t - string concatenate

char *strncat(sl, s2, n)

char *sl, *s2;

St rn c a t appends a copy of string s2 to the end of string sl. It copies
at most n characters. A pointer to the NUL-terminated result is
returned.

st rncmp - string compare

strncmp(sl, s2, n)

char *sl, *s2;

St rncmp compares its arguments and returns an integer greater than,
equal to, or less than 0, depending on whether s1 is lexicographically

C Issue 1 	 47

Clapter4

greater than, equal to or less than s2. At most n characters are looked
at.

st rncpy - string copy

char *strncpy(sl, s2, n)

char *sl, *s2;

St rncpy copies string s2 to s1. Exactly n characters are copied: s2 is
truncated or NUL-padded as required. The target may not be NUL
terminated if the length of s2 is n or more. sl is returned.

sys t em - call command interpreter

int system(string)

char *string;

The st ri ng is passed to the Panos command line interpreter interface
procedure InterpretString and processed as if it had been entered as a
Panos command. The Panos ResultCode value is left in the global
variable er rno (for inspection by per ror if required).

syst em always returns a non-zero value to indicate that it is not a null
command processor.

to Lowe 	_tolower - convert char to lower case

int tolower(c)

int c;

#include <ctype-h>

int _tolower(c)

int c;

If c is the ASCII code for an upper case letter, to owe r returns the
code for the corresponding lower case letter, otherwise the value of c is
returned unchanged. _t ow e r behaves like t o Lowe r but is
implemented as a macro.

touppe 	_toupper - convert char to upper case

int toupper(c)

int c;

#include <ctype-h>

int _toupper(c)

int c;

48 	 C Issue I

The C Runtime Libra}

If c is the ASCII code for a lower case letter, toupper returns the
code for the corresponding upper case letter, otherwise the value of c is
returned unchanged. _toupper behaves like toupper but is
implemented as a macro.

unget c - push character back into input stream

#include <stdio-h>

ungetc(c, stream)

FILE *stream;

unget c pushes the character c back on an input stream. That
character will be returned by the next get c call on that st ream.

unget c returns c.

One character of pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered. Attempts to
push EOF are rejected.

f seek (q.v.) erases all memory of pushed back characters.

unget c returns EOF if it can't push a character back.

write - write on a file

write(fildes, buffer, nbytes)

char *buffer;

A file descriptor is the integer returned by a successful call on open or
c rea t. buf f er is the address of nbytes contiguous bytes which are
written on the output file. The number of characters actually written is
returned. It should be regarded as an error if this is not the same as
requested. wri te returns -1 on error: bad descriptor, buffer address or
count; physical I/0 errors.

c Issue 1 	 49

5 Debugging

This chapter shows how error conditions are reported by the compiler,
outlines ways of dealing with errors, and gives general information about
the kinds of error which may occur once a program has been successfully
compiled and is being run.

5.1 Compiler error message format

This section describes the error reports displayed by the compiler when it
has detected errors in a program.

If an attempt is made to compile a program which does not obey all of the
rules of C, the compiler will display a message indicating the nature of the
fault and showing where in the program the error was trapped. For
example, in the following program, the brackets which must surround the
expression following whi Le have been omitted:

main()

f

int i 	0;

while i++ < 10

printf("hello, world\n");

The compiler will discover the error and display a message like this:

* "Ctest—C" line 5 while i++ < 10

(expected

The upward arrow character A points to the place where the error was found.

Notice the format of the message: all of the messages which the compiler
produces appear in a similar form. The first character in the message is a
marker which indicates how bad the error was - an asterisk * is the usual
sort of error; it means that the compiler has detected a fault but is able to
continue trying to compile the rest of the program. The other markers
which can appear are described later.

c Issue 1 	 51

Chapter 5

Following the marker character is the name of the file in which the error
occurred followed by a number. This is the line number in the original C
program at which the error was detected. Here the error is on line five.
Wherever possible the compiler displays the text of the offending line after
the line number, as in the example program, but because the original text is
stored in a fixed size memory area, this cannot always be done. If the source
text is no longer in memory it is omitted from the error message.

The general form of compiler messages is therefore:

<marker> "<filename>" line <number>: <source-line>

<message-text>

Where A points to the part of the source-text in error, < message-text > is an
English description of the fault, and < marker > may be any of *, ? or ! .

Marker 	Meaning

Error: compilation continues

Warning: a part of the program is strictly correct, but is dubious in
some way. For example, if some part of a program can never be
reached.

Fatal error. Compilation cannot continue after a fatal error. Fatal
errors indicate either that a program is too large or complicated to be
compiled in the amount of memory available or that there is a fault
in the compiler itself which makes it unable to compile this program.

The < line-number > is filled out with spaces on the left-hand side to be at
least four characters long; it shows which line of the source file being
compiled the error was found in. The line number information can be used
to locate the incorrect line quickly with a text editor even when a program
contains # i nc lude statements, because each # i nc lude counts as a single
line, no matter how many lines the included file contains. See the two C
program files called ma i n and er ror below.

52 	 C Issue I

Debugging

Figure I

If we compile ma i n, we will get the following error messages:

* "error-h" line 3: auto int i;

,

an external data definition may not have storage class auto

* "main-c" line 5 while i++ < 10

,

(expected

These messages indicate that in line three of the included file er ror the
declaration of i is not allowed (because only static or extern declarations
are allowed at the outermost level of a program), and in line five of ma i n an
opening bracket must follow the keyword whi le. Once the compiler has
read the complete program, it displays a summary message indicating how
many errors were detected:

nnnn errors detected

Cnnnn' is a decimal number).

Normally, error messages are sent to the screen, but by the use of the
compiler `-error' option (see section 2.1), these messages can be redirected.
See figure 2 for an example of an erroneous program compiled from within
the editor. The error messages have been sent to a listing file which has then
been copied into an editor window.

C Issue 1 	 53

Figure 2 Compiling a C program from within the editor

5.2 Fixing errors detected by the compiler

This section contains information about how the compiler handles errors in
the program which it is trying to compile. This information should make it
easier to understand the messages displayed by the compiler, and so make it
easier to correct programs.

The compiler can detect two classes of error: errors in the syntax of a
program (missing semicolons, misspelt keywords etc.) and errors where an
identifier of a particular type is used in the wrong context (such as
attempting to multiply a struct variable by a float value or use an identifier
that has not been declared). Syntax errors are detected when the compiler
discovers that the piece of program it is reading does not fit in the context of
the program it has already processed. When this happens, the compiler
displays a message and starts reading on from the point of the error,
ignoring everything until it finds a symbol which could fit in at this point in
the program; compilation then continues as though there had been no error.

54 	 C Issue I

Debugging

Because the compiler may ignore vital parts of the program (like
declarations) in recovering from an error, the best policy when fixing errors
reported by the compiler is to deal with them one by one, starting with the
first. Look at the part of the program indicated by the error message and try
to find out what is wrong with it, then fix the problem and recompile the
program. If errors are dealt with sequentially like this, you will not waste
time hunting for spurious errors caused by the compiler skipping over some
declarations and then complaining about "undeclared identifiers" in the rest
of the program. Examine the example below, where a comma in a
declaration has been mistyped as a dot.

main()

int i . j;

I = I ;

This compiler will display the following messages:

* "Ctest-c" line 3: int i . j;

A

; expected

* "Ctest-c" line 5: i = I ;
A

j not declared

The first message indicates that a semicolon or comma must follow each
identifier in a declaration (a dot is not allowed). Because the compiler has
skipped the declaration of j in order to get back in step with the program, j
appears not to be declared in line five resulting in the second error message.

If you correct this program as suggested above, by starting with the first
error, fixing it and then recompiling the program then you will never have
to worry about fixing the second error: it will go away automatically when
the first error is fixed.

C Issue I 	 55

Chapter 5

5.3 Errors detected during execution

In general, errors such as attempting to divide by zero or use an illegal
pointer value (e.g. NULL) will be detected and will cause diagnostic
routines in the C runtime library to display information about what the
program was doing when the error occurred, including a backtrace through
all the active function calls giving line number information and showing the
values of the variables in each function. See figure 3 for an example of a
run-time error caused by dividing by zero.

Figure 3 Example run-time-error

56 	 C Issue I

Appendix A

Error Messages

The messages listed here may be output by the compiler while a program is
being compiled. Section 5.1 describes the format of complete messages.

Some messages contain special character sequences like !I, !2 etc. These do
not appear in the actual message displayed by the compiler, rather they are
replaced by the appropriate text from the program. For example, take the
message

"!1" not declared

If it is the identifier f oo which is not declared, the message actually
displayed will be:

foo not declared

List of Error Messages

unimplemented feature !1

too many names

ISO code !1 illegal in strings

bad escape code \'!1'

expression syntax fault

'!1' character not allowed here

sizeof operand must be a type name or unary expression

missing operand

missing)

identifier expected

!1 expected

declaration syntax fault

expression expected

an empty enumerator list is not allowed

an empty structure is not allowed

C Issue I 	 57

identifier or fstruct-decl-list1 required after

'struct'/'union'

'f' function-body '1' expected here; could be missing ; after) above?

statement expected here

a compiler-control (#) line may not begin with "!1"

format is #include "file" or #include <file>

syntax error in compiler-control (#) line

too many nested #include files

include stack underflow

closing '>' expected

macro text store full

macro expansion stack full

number of macro actual parameters does not agree with definition

too many macro parameters

array dimension table full

internal error

corrupt syntax tree

storage class incompatible with a previous declaration

"!1" incompatible with type "!2"

constant integer expression required here

"!1" and "!2" are incompatible operand types for the "!3" operator

"!1" not declared

left operand of "!1" is not an lvalue

"%" must have integer operands

operand of unary "!1" must be an lvalue

operand of unary * must have pointer type

unary "!3" may not have an operand of type "!1"

"!1" is not in the parameter list of "!2" and so may not appear here

declarator may only contain a single formal parameter list

function declarator required before "f"

a function result of type "!1" is not allowed

expression of type "!1" cannot be used as a function

this statement is inaccessible

switch expression must have integer type case and default are only

allowed inside a switch statement

only one default statement is allowed per switch statement

left operand of "." must be a structure

structure of this type has no "!1" field

a parameter may not have storage class "!1"

an external data definition may not have storage class "!1"

58 	 C Issue I

Appendix A

a parameter declaration may not be initialized

unexpected colon in statement context

both operands for pointer "-" must have the same type

applying sizeof() to a function is illegal

too many initializers for object of type "!1"

auto/register arrays may not be initialized

original and result types for cast must be scalar or pointers

initializer string longer than array

#endif/#else without matching #if

one or more #endif Lines inserted before extra #else here

union type objects may not be initialized

a bit-field must have an integer type

a field may not exceed !1 bits

a constant integer expression is required here

not a constant

"!1" operator not allowed in a constant-expression

attempt to divide by zero

implementation restriction: sizeof not allowed in this context

implementation restriction: structs with bit-fields may not be

initialized

only extern or static functions are allowed

type "!1" may not be unsigned

implementation restriction: pointers to functions cannot be initialized

label "!1" is used in function "!2" above but is not defined there

label "!1" has already been defined in this function

constant integer value too large

expression of type "!1" used instead of int

expanded macro line too long

cc fails -- not enough memory

C Issue 1 	 59

Appendix B

Bibliography

Standard C is defined in the "C Reference Manual" part of Kernighan and
Ritchie's book The C Programming Language [Prentice-Hall, 1978].

In order to use 32000 C you will need access to the information in this
book, which contains an excellent tutorial introduction to computer
programming in general as well as the definition of C.

C Issue I 	 61

Index

A 	 Extern 13
Abs 25
Acorn Object Format 4
Arg 31 	 Fabs 28
Array declaration 7 	 Fclose 28
Assert 25 	 Fdopen 28
Assignment operators 7 	 Feof 29
Atan 25 	 Ferror 29
Atoi 26 	 Fflush 29

Fgetc 18, 30
Fgets 14, 30, 38

Backtrace 4 	 FILE 14, 16
Binary I/0 19 	 File descriptor 27, 49
BUFSIZ 45 	 File extension 3

Fileno 30
Files

Case 8, 9 	 pointer /8
Ceil 26 	 random access 18
Clear /0 	 closing 16
Clearerr 27 	 header 13, 14
Compiler options 3 	 opening 16, 31
Constant expressions 7 	 pointer 16
Cos 27 	 random access 15
Creat 27 	 reading 44

reading and writing 18
real 16

Data buffer 16 	 sequential 17
Debugging 51 	 writing 49
Dollar 8 	 Floor 31

Fopen 31
Fprintf 31, 42

EDOM 46 	 Fputc 18, 33
Ellipsis 14 	 Fputs 33
Enum 12 	 Fread 34
Error messages 53 	 Freopen 34
Errors 51 	 Fscanf 34, 36
Escape sequences /0 	 Fseek 18, 37
Exit 27 	 Ftell 18, 37
Exp 28 	 Fwrite 37
Extensions 8

C Issue 1 	 63

NULL 14
Getc 14, 38 	 Malloc 45
Getchar 38 	 Member name /0
Gets 38 	 Mode 27
Global string variable 12
Global string variables 12, 14

Name 38
Newline character /9

Header files 13 	 Nptr 26

0
I/0 routines 	 Octal /0

low-level 16 	 Open 27, 41
standard 16

I/0 transfers 16
I/0 	 Panos 3, 12, 48

binary 18 	 Perror 42
stream 18 	 Portability /, 9
text /9 	 Printer / 7

Identifiers 8 	 Printf 14, 42
Installation / 	 Putchar 43
Int 8 	 Puts 43
Isalnum 39 	 Putw 43
Isalpha 39
Isascii 39
Isatty 39 	 Rand 43
Iscntrl 39 	 Rewind 44
Isdigit 39 	 Runtime library /3
Islower 39
Isprint 40
Ispunct 40 	 Scanf 44
Isspace 40 	 Setbuf 45
Isupper 40 	 Setjmp 41

Sin 46
Sizeof 7

Kernighan and Ritchie / 	 Sprintf 46
Sqrt 46
Srand 46

Library routines 13, 15 	 Sscanf 46
Listing 3 	 Standard C /
Log 40 	 Standard error stream / 7
Longjmp 41 	 Standard I/0 /4
Lseek 41 	 Standard input stream / 7

Standard output stream 17
Stdio-h 14, /6

Macro calls 4 	 Strcat 47
Macros 	 Strcmp 47

EOF 14 	 Strcpy 47

64 	 C Issue I

Stream I/0 18
String 48
Strlen 47
Strncat 47
Strncmp 47
Strncpy 48

Text I/0 19
Tolower 48
Toupper 49
Type 34
Type checking 7
Type

char 14, 18
data //
struct 9

Ungetc 49

V
Variables

struct 9
VDU 17

White space 7

C Issue 1 	 65

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76

