
CAMBRIDGE LISP

CAMBRIDGE LISP

PART NO 0410, 009
ISSUE NO 1

JULY 1985

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited,
Fulbourn Road, Cherry Hinton, Cambridge CB 1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It is in
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0 907876 42 0 Acorn Scientific

ii 	 LISP Issue 1

Contents

Part I 	 1
1 	Introducing Acorn Cambridge LISP 	 3
1.1 	Installing LISP 	 3
1.2 	A Short Introduction to Acorn Cambridge LISP 	 3
1.3 	Running LISP 	 4
1.3.1 	Start-up Options 	 5
1.4 	Use of Space 	 6
1.5 	An example session with Cambridge LISP 	 6
1.6 	Finding out what is available 	 7
1.7 	Compatibility with Acornsoft LISP 	 8
2 	Preparing Programs 	 9
2.1 	General Remarks 	 9
2.1.1 	Special Characters 	 9
2.1.2 	Case 	 9
2.1.3 	Defining Functions 	 10
2.1.4 	Macros 	 10
2.1.5 	Error Recovery 	 11
2.2 	The LISP Editor 	 11
2.2.1 	Introduction 	 11
2.2.2 General background 	 12
2.2.3 Editor commands 	 13
2.2.4 	Entering an s-expression to the editor 	 15
2.2.5 	Limitations 	 16
3 	Implementation Features 	 17
3.1 	Preserve 	 20
3.2 	Load-on-call Facility (FASL) 	 21
4 	Input and output 	 23
4.1 	I/0 Routines 	 23
4.1.1 	Open/Close 	 23
4.1.2 	wrs/rds 	 23
4.2 	Printing 	 23
4.3 	Reading 	 25

Part II 	 27
5 	Functions and Variables 	 29
5.1 	Characters 	 31
5.2 	Specialised variables 	 32

Lisp Issue 1

5.3 	Atoms and Values 	 33
5.4 	Dotted Pair Functions 	 34
5.4.1 	Tagged Cons cells 	 36
5.5 	List Processing Functions 	 38
5.6 	List Equality and Searching 	 40
5.7 	Pointer Replacement Functions 	 43
5.8 	List Manipulating Functions 	 44
5.9 	Creation of symbols 	 46
5.10 	Flags and Property Lists 	 47
5.11 	Function Definitions as Values 	 49
5.12 	Vector Operations 	 50
5.13 	The AVL Module 	 51
5.14 	Arithmetic Functions 	 52
5.15 	Basic Arithmetic Operations 	 56
5.15.1 Modulo Arithmetic Functions 	 59
5.15.2 Rational Arithmetic Operations 	 61
5.15.3 Trigonometric Calculating Functions 	 62
6 	Control Structures 	 63
6.1 	Common LISP Control Structures 	 66
7 	Loops 	 69
8 	Logic Functions 	 71
8.1 	Bit-level Operations 	 71
9 	I/0 and File Handling 	 75
9.1 	Files 	 75
9.2 	Printing 	 76
9.3 	The Programmable Reader 	 80
9.4 	Syntax 	 81
9.4.1 	Character level syntax 	 83
9.5 	Interacting with the LISP supervisor 	 84
9.6 	Saving Work 	 85
10 	Evaluating Functions 	 87
10.1 	Declarations and Binding 	 88
10.2 	Function Definition 	 89
10.3 	Compiler Functions 	 92
11 	Editor entry Points 	 95
12 	Error Control 	 97
13 	Debugging in LISP 	 99
13.1 	Tracing Functions 	 99
13.2 	Tracing Memory Use 	 100
13.3 	Timing Functions 	 101

iv 	 Lisp Issue 1

14 	Miscellaneous Functions 	 103
14.1 	Graphics Functions 	 104

Appendix A Error Messages 	 107
Appendix B Bibliography 	 113

Lisp Issue 1

Part I

LISP Issue 1 	 I

1 Introducing Acorn Cambridge LISP

The Acorn 32000 Cambridge LISP system runs under Panos, the operating
system for Acorn Cambridge Series computers, with a minimum of 512K of
memory. This section describes the main features of the Acorn Cambridge
32000 LISP, and comments on the facilities provided. Please note that this
manual is not a tutorial; appendix B contains several references to such
texts. Throughout this manual, except where an alternative meaning is
obvious, 'LISP' refers to the Acorn 32000 implementation of Cambridge
LISP.

1.1 Installing LISP

Details of installation are given in the User Guide. supplied with the system.
Note that even though the LISP system is supplied on DFS formatted
floppy disc, it must still be installed as described.

1.2 A Short Introduction to Acorn Cambridge LISP

Cambridge LISP was originally developed to provide support for an
ongoing research project in computer algebra. It is intended for running
experimental programs, and so it makes a policy of checking for exceptional
cases (e.g. car or cdr of atoms) and tries hard to provide clear and concise
diagnostics. The expectation that the system would be used for writing parts
of algebra systems has led to the inclusion of an arithmetic package that
puts consistency above efficiency: integers can grow to be any size, the
normal arithmetic primitives accommodate rational numbers, and there is a
well-defined interface between exact and floating point number
representations. The system provides a number of character handling
facilities, can select and use several input/output streams, and has a built-in
LISP prettyprinter.

To a large extent, the system is compatible with a proposal for a LISP
standard that was put forward by Professor A.C.Hearn and others of the
University of Utah and the Rand Corporation. A short bibliography is
provided in appendix B.

LISP Issue I 	 3

Chapter 1

For users coming to Cambridge LISP from other dialects of LISP, your
attention is drawn to the following points:

1. Function definition is performed with the functions de or d f ;

2. The function associated with an identifier is its value;

3. The distinct value and function definition cells of other LISP dialects
are not supported.

1.3 Running LISP

To run LISP, type

-> Lisp -image <image file name>

to the Panos prompt. The keyword `-image' must be supplied, followed by
the full (or relative) pathname of the directory which contains the image
files. On the distributed LISP system, the image directory is `:0i' on the
DFS, and 1.PanosLib.LispImage' on the AD/NFS.

Panos locates the executabe LISP program `Lisp-rif' by searching in the
directories given as values to the global string variable 'Cli$Path'. See the
Patios Guide to Operations for a description of global variables. On the
distributed system, 'Cli$Path' is initialised to search firstly in PanosLib on
the AD/NFS, (and each drive in turn, starting with drive 0 on the DFS)
and then in the current working directory for all runnable programs.

If -identify is specified, you will be given an indication of the store in use,
then an initial store image is loaded from the directory image. As more
complex use is made of LISP, the various store preservation functions can
be used to produce customised versions. For example, if the REDUCE
system is available and is in the current directory, typing:

-> LISP -image reduce

will run REDUCE.

The process of customisation takes the form:

LISP -image oldimage -dump newimage

Then, when the LISP function (preserve) is called, the store image in
oldimage is copied to newimage, together with updates made before the call
to (preserve)

4 	 LISP Issue 1

Introducing Acorn Cambridge LISP

1.3.1 Start-up Options

The options available at the point of starting LISP are:

-from
If present expects a file name to use as the standard input to LISP. The
default is the terminal.

-to
If present expects a file name to use as the standard output to LISP.
The default is the terminal.

-image
If present expects the name of a directory in which to find the initial
store image and fast load modules. The default is $.i.

-dump
If present expects the name of a directory in which to put the store
image and fast load modules generated in the run, by use of module
and preserve. The default is the image directory.

-imageroot -dumproot
These options specify a directory for the root section of saved files.
This is useful for use with the DFS where a complete image may
overflow one disc.

-leave
Expects a number of bytes (in units of 1024) that LISP will leave for
the Panos to use as workspace. This should normally not be needed.
The default is 20.

-store
Expects a number of bytes (in units of 1024) that LISP will use for this
run. It is useful to give exactly reproducible runs, or to see how well
some program would behave if used with a smaller computer than the
one you have.

-identify
This option enables a few lines of start-up information to be displayed
on entering LISP. This gives the version number, the amount of space
used up by LISP, the image size, the date and time the store image was
created, and how much store was used.

LISP Issue 1 	 5

Chapter]

-help
Displays help information: a brief synopsis of the start-up options.

1.4 Use of Space

LISP will attempt to acquire as much space as it can, leaving a little behind
for other operating system activities. This behaviour can be changed by use
of options as described above. If -identify has been specified, messages
produced at the start and finish of each run give some indication of how
much store is used and how much was available. If garbage collection
becomes too frequent, more store is needed. There is no need to tell LISP
how to allocate the store it is given - it has its own flexible scheme so that,
for example, neither stack nor freestore can run out while there is some of
the other left. Note also that the LISP compiler does not take up much
space until it is used, and it can be removed using excise when it is
finished with.

1.5 An example session with Cambridge LISP

The following example shows the dialogue during a short session with
LISP. A few variables to configure the environment are set, a short LISP
function is defined and tested, and some function definitions are read in
from a file.

The prompt `- > ' signifies the Panos prompt.

The sign > ' is not a LISP prompt, but a signal that what follows is an
evaluation returned by LISP.

->Lisp -image $.PanosLib.LispImage -identify

Acorn Cambridge Lisp entered in about 680 Kbytes

Store image was made at 11:38:27 	on 10 May 85

Lisp version - 1.0 Apr 85 	image size = 125244 bytes

Started at 15:33:45 on 14 Jun 85 after 0.01+9.15 secs - 31.8% store used

(setq !*comp nil)

> nil

(de flatten (L)(cond

6 	 LISP Issue 1

Introducing Acorn CambridgeLISP

((null L) nil)

((atom L)(list L))

(t(nconc (flatten (car L))

(flatten (cdr L))}}

> flatten

(flatten 'al

> (a)

(compile '(flatten))

> **128 bytes 170 ms compiling flatten

> (flatten)

(flatten 'Cal

> (a)

(flatten '((a)((1 2 3)1((((1}

> (a 1 2 3 1 1)

> *** End of file detected

> *** END OF RDF

(stop)

> End of Lisp run after 19.50+14.49 secs - 66.1% store used

->

1.6 Finding out what is available

There are three ways of finding out what is available in Cambridge LISP.
The first is to try something and see if it works. Many of the functions
provided have the same specifications as those in other LISP dialects as
described in various textbooks and reference manuals. In particular, the
Standard Lisp is close to this implementation. See the references in
Appendix B.

The second suggestion for checking what might be available is to look at the
object list. LISP keeps the names of all atoms - and hence all functions -
that it knows about in a structure known as the object list.

LISP Issue I 	 7

Chapter 1

The function ob list which does not need any arguments, returns a list of
all items held in this structure. It is a sort of index to the collection of
available functions.

The third and best method is to consult Part II of this manual. Particular
incompatible or especially useful features of the Cambridge system are
noted below. See also appendix B for references to other documents which
describe similar Cambridge LISP systems, for example, most of the
functions provided have essentially the same specification as the versions
defined in either the LISP 1.5 users manual or the Stanford LISP reference

manual.

1.7 Compatibility with Acornsoft LISP

Acornsoft LISP (see appendix B) is a small version of LISP for the BBC
Microcomputer. You will find that most Acornsoft LISP programs run
under Cambridge LISP after modest changes are made.

Acornsoft uses upper case identifiers and accordingly *Lowe r should be set
to t in Cambridge LISP:

(setq !*lower t)

Acornsoft uses defun to define both eva l/spread and noeva l/nospread

functions; the distinction being made by the format of the parameters in the
definition. You may equate functions by typing:

(setq defun de)

Lastly, the hyphen in Acornsoft LISP is not defined as a break character.
You may wish to edit your source or to use set synt a x to redefine this.
Using PRIN in Acornsoft LISP to tidy up the use of break characters in
your program text is advised.

8 	 LISP Issue I

2 Preparing Programs

2.1 General Remarks

2.1.1 Special Characters

LISP is normally used in an interactive fashion with program material being
entered on line. When it is desired to import program material from other
LISP systems, or to generate material off line, it is important to remember
that many characters have a meaning assigned to them by the read
functions of the system.

See set syntax for a description of the initial definitions. ! used as a prefix
causes the character immediately following to be accepted without special
interpretation. This is useful, for example, in specifying pathnames which
include a dot, e.g.

(rdf 'lspdir!.tsp)

Enclosing a file name in double quotes will also cause the following name to
be taken literally, e.g.

(rdf "lspdir.tsp")

If an identifier is desired which includes a hyphen, there are two courses of
action:

(a) write it as a double!-barrelled!-word

(b) call (setsyntax "-" break !-character nil) then write the
double-barrelled-name without the need for the exclamation marks.

2.1.2 Case

Cambridge LISP is case sensitive and all supplied functions are named in
lower case. When handling program material referencing store LISP
functions it may be advantageous to set the variable *lower to t to enable
continued references to the upper case versions of their names:

LISP Issue 1 	 9

Chapter 2

(setq !*lower t)

(SETA FOO T) 	this now equivalent to (setq foo

2.1.3 Defining Functions

The function rdf will read in a source text file and execute the statements
found there. The particular functions used to define functions and macros
e.g. de df may not prove compatible with LISP source text from all other
LISP systems.

The normal way of defining functions will be to use (de ...) and (df
) . The format for these is:

(de <function name> (arg1 arg2)

<body>)

as in

(de mycons (a b) (cons a b))

As well as functions that have their arguments spread out, it is possible to
define functions which expect an evaluated list. These are sometimes known
as Le x p r s. In Cambridge LISP they are defined (for example) by

(de mylfunc

(mapcar l (function print)))

If the LISP compiler is available in the image directory and the global flag
*comp is non-nil, de automatically invokes the compiler. Note that de is a
special form, and you do not have to put quote marks in front of its
arguments.

Functions which do not evaluate their arguments can be defined using df or
dc f : for details see section 10.2.

2.1.4 Macros

As well as functions, there are also macros. The body of a macro is
evaluated to give a form that is then evaluated. For example:

(dm if (u)

(list 'cons

(list (cadr u) (caddr u))

(list 't 'caddr u))))

10 	 LISP Issue 1

Preparing Programs

is an approximation to the definition of the i f conditional.

The functions that define new functions (i.e. de, df and dm) will print a
warning message when they redefine an existing function or macro.

Note that some other LISP systems use constructions built around the word
f ex p r, to achieve the effect of df f expr is not part of Cambridge LISP.

A bound variable list that is in fact a single (non-nil) atom is treated
specially by both l a mbda and a mbdaq . The variable is bound to the
complete list of arguments given to the function, and there is no check or
constraint on how many arguments are given. This makes it reasonably easy
to define functions like list and plus which can cope with any number of
arguments. An atomic variable list for a a mbdaq is illegal; the only valid
format for the parameter field is a list with a single entry.

2.1.5 Error Recovery

Some errors cause entry into an iterative break-loop, which prompts for a
character which will determine a variety of ways of exiting the loop. These
are explained in the prompt:

Lisp break>

Q to quit, A to Abort, C to Continue, or . <expression>

2.2 The LISP Editor

2.2.1 Introduction

The Cambridge LISP full-screen editor described in this document is a
powerful structure editor written entirely in LISP. It may be invoked via
two functions: the first of these, sed i t , edits the s-expression given as its
argument. The edited copy is returned. f ed i t edits the definition of a
function given the function's name as an argument; the display portion of
the editor has been especially tuned for editing function definitions.

As well as edit existing functions, f ed i t

LISP Issue 1

Chapter 2

can be used to create new ones, specifying the type of the function as an
optional second argument, i.e.

(fedit myfunction fexpr)

The editor sets up a template for the function, and the user fills in its
definition using the normal editor commands. If myf unc t i on already exists,
the second argument is ignored, and the editor entered as normal.

On exit from f ed i t , the edited function is compiled if the variable *comp is

currently set to a non-nil value. The function is also checked to see if it has
been changed from an expr/ expr to a f expr (or vice-versa), and if so a
warning message is printed that unexpected effects might occur on calls to
the function from compiled code.

2.2.2 General background
•

The editor commands are designed around the concept of the 'current
s-expression', which is visible on the screen at all times, the first character of
which is highlighted by an inverse-video block (the 'edit pointer'). The
current s-expression can be any one of the following:

(1) an atom;

(2) a LISP list starting with an opening parenthesis.

(3) The cdr (tail) of a LISP list; in this case the inverse-video block is over
the blank immediately before the car (head) of the current
s-expression.

Initially, on entry to the editor, the current s-expression is the whole of the
structure being edited, and the screen will resemble figure 1.

12 	 LISP Issue 1

Preparing Programs

(lambda(a b)
(cond

((null a) b)
(t

(cons
(car a)
(append & b)))))

Figure I The Lisp Editor

The three lines at the top of the screen form a menu containing the more
important (mostly single character) editor commands; then the structure
being edited is displayed (in this case a function definition). The ampersands
(&) indicate detail that has had to be suppressed for the structure to fit on
the vdu screen.

2.2.3 Editor commands

Elementary moving

When the arrow keys are pressed, the edit pointer does not move from
character to character like a cursor in a text editor (e.g. the Panos editor),
but jumps from one s-expression to the next. The best way to familiarise
yourself with the edit pointer's style of movement is to experiment.

In addition to using the arrow keys, there are several commands to move
the edit pointer around, and thus make other parts of the structure the
current s-expression. They are:

LISP Issue 1 	 13

Chapter 2

h - Move to the head of the current s-expression.

t - Move to its tail.

u - Move up one level; inverse of head and tail.

b - Move back up to the beginning of the smallest enclosing list.

Find and move

The next four commands perform more complicated location changing, the
first two prompting at the bottom of the screen for an s-expression for the
command to find.

if - Look for and move to the next occurrence (in print order) of the
user-specified s-expression. The area in which the search takes place
starts at the s-expression immediately after the current one, and the
search begins at the end of the function, as it appears on the screen.

lk - Look for and move to the next occurrence (in reverse print order)
of the user-specified s-expression, the search beginning with the
s-expression immediately before the current one.

1 - Repeat the last look for command.

ma - Insert a mark at the current edit position. The mark is a new
GENSYM ed atom of the form M00<n>.

mo - Move to a previously set up mark.

Structure modification

The following commands perform structure modifying operations:

d - Delete the current s-expression.

r - Replace current s-expression with a user-specified s-expression read
from the bottom of the screen. See also section 2.2.4 below headed
`hash variables'.

c - Repeat the last structure modification.

i - Insert a user-specified s-expression at the edit pointer, performing a
cons of the user's expression with the current s-expression.

s - Splice in a user-specified list at the edit pointer. If the current
s-expression is an atom, it is replaced by the elements in the new list.

14 	 LISP Issue 1

Preparing Programs

n - Undo the last structure modification command. A record is kept of
all the modifications made to the structure, and successive undo
commands will restore the function to its state prior to editing.

x - Explode the current s-expression so that it can be modified using
one of the commands above.

Reformatting the screen

The next three commands change the appearance of the screen:

? - Reinitialise screen, and redisplay (useful if the screen has been
messed up for some reason).

zi - Zoom in and display current s-expression in more detail. The
command will work only when the edit pointer is not at the top of the
screen.

zo - Zoom out; opposite of zoom in. The zoom is not allowed if it
would cause the current s-expression itself to be supressed as a detail.

Eval loop and leaving the editor

The final three commands allow the user to enter a read-eval-print loop
while still inside the editor, and allow the user to terminate the edit session
and exit:

e - Enter a read-eval-print loop; typing Tin' terminates the loop and
causes the editor to be reentered.

w - Windup and update edited structure.

q - Quit and do not update structure.

2.2.4 Entering an s-expression to the editor

The 'find', and some of the structure modification commands, require the
user to enter an s-expression; in these cases the user is prompted at the
bottom of the screen by ?. The s-expression input can cover as many lines as
desired, the (DELETE) key deleting the last character typed (even back across
previous lines), and (TAB) inserting three spaces. Typing wit. 	at any
point completely abandons the current command.

LISP Issue 1 	 15

Chapter 2

Hash Variables

For convenience, in 'cut and paste' operations, the editor sets up the
variable #0 to contain the current s-expression, and, if it is a list, #1,
#2,... to contain the values of the top-level elements of it. There is also the
command `#' which sets the value of the variable # to be the current s-
expression at the time the command was issued. The values of these #-
variables are substituted into each s-expression and typed wherever they
occur in it. These #-variables are also available in the read-eval-print loop
inside the editor invoked by the eval command.

Miscellaneous features

The editor stores the name of the last function it edited in the global
variable **ed i t - la s t -f unc t i on, and if the function editor is called
without being given the name of a function, it re-edits the last one.

The menu of editor commands displayed at the top of the screen can be
changed by altering the contents of the global variable **edit-menu . The
variable must contain a list of strings, each not longer than the width of the
screen, each string to go on one line. The position on the screen of the
structure being edited is automatically adjusted depending on how much
space the menu takes up.

Since there is the facility to enter a supervisor loop within the editor, it is
possible (and sometimes very useful) to enter the editor within that loop and
thus edit at a second (or even higher) level. To help the user keep track of
which level he is in, and the name of the function he is editing at each level,
the editor maintains this information in the variable **edit-level.

The editor maintains a list of all the functions that have been edited in the
current LISP session in the global variable **edit-functions . Thus it is
easy to keep track of which functions have been changed and so need to be
written back out to disc at the end of a session.

2.2.5 Limitations

The editor cannot deal with reentrant LISP s-expressions. Currently it
cannot express vectors or strings adequately for easy editing of their internal
constituents.

16 	 LISP Issue 1

3 Implementation Features

Cambridge 32000 LISP is a value cell system. This means that for each
identifier in any LISP program there is a single word used to hold the
current value of that variable. When variables get bound or unbound, the
contents on the value cell will be updated appropriately. This scheme has
the advantage of being efficient and lends itself to graceful error recovery.
For interpreted code, this mechanism provides what in
32000 Cambridge LISP is referred to as f luid scope rules (this is known as
spe cial in some other LISP dialects). The visible manifestations of a value
cell LISP implementation are:

a) A name can only be associated with one value at once. If you try to use
a local variable called c a r it will not be possible to get at the built-in
function ca r while within the scope of your local variable.

b) Function definition and c set are variants of set . If you assign to a
name not bound as a local variable, your assigned value will be stored
globally.

c) Functions used as functional arguments should not reference free
variables. This rule can be relaxed if you understand the technicalities
and possible consequences of not keeping to it.

When LISP is given something to evaluate it has to decide what to do about
the function it is given. The Cambridge system works in the following way:

(i) if the 'function part' is a list of the form (l ambda) or
(lambdaq ...) or if it is the entry-point of a piece of compiled
program, LISP processes it directly;

(ii) otherwise LISP replaces the function part by its value and goes back to
step (i).

Thus functions get repeatedly evaluated until they make sense. All the LISP
built-in functions are variables that have been given initial values that are
the entry-points of the corresponding pieces of code. It is an error to try to
apply an expression that does not turn into a recognizable function when
evaluated enough times - LISP can detect this in most simple cases, but can
sometimes go into a loop. It must be stressed that this loop has the same
status as any other non-terminating program; this constitutes a user error

LISP Issue 1 	 17

Chapter 3

and not a failure in the LISP system. Some other LISP systems will only
evaluate function parts once, or perhaps twice before demanding that a
recognizable form has been reached.

The symbol Lambda q is used in Cambridge LISP when a function must
avoid evaluating its arguments too early. The use of lambdaq is like that of
lambda except that it inhibits the evaluation of its arguments. Thus a
function rather like the built-in quote can be redefined by:

(setq my!-quote '(lambdaq (a) a))

Within the body of a function introduced in this way, eva l can be called to
get arguments explicitly evaluated.

The Cambridge LISP interpreter implements the implied progn feature of
many LISP systems, where the function progn can be omitted in nearly all
circumstances. If a function is given too few arguments, then additional
arguments of nil are supplied. If too many arguments are given, then excess
arguments are ignored, after they have been evaluated in the case of eva
functions.

Serious users of LISP will need to invoke the compiler to convert their
programs from S-expressions into hard executable machine code. This
process normally saves store and results in functions that run much faster.
The compilation process however takes some liberties with LISP semantics,
and so can not be used indiscriminately. To use the compiler at all, an
image directory containing the module Lspcomp must be available to the
LISP system.

If f 1, f 2 . . . are functions that have just been defined, a call:

(compile '(fl f2 ...))

will replace the definitions of the functions with compiled code that is
essentially equivalent. Also functions defined using de or df can be
compiled automatically if the variable *comp is set to true.

The compiler has two major semantic differences from the interpreter
intended to make compilation more effective.

a) In compiled code, variables bound either by lambda or by p rog are
treated as being local to the function binding them unless they have been
specially declared fluid. Thus if use is made of free variables, those
variables should be declared using a call

18 	 LISP Issue 1

Implementation Features

(fluid '(v1 v2...))

before compilation is attempted.

b) The compiler freezes some assumptions and knowledge about routines
called by the function being compiled. These assumptions can sometimes
lead to inconsistencies if the user attempts to redefine functions later.
The compiler will not treat calls to user-defined special forms (i.e.
functions defined using df or dm) properly unless the special form has
been defined before any attempt is made to compile a call to it.

These restrictions arise because the compiler generates open code or special
calling sequences for many standard LISP functions: certain function names
are treated specially and cause the compiler to generate fixed sequences of
orders irrespective of what definition the user thinks should be associated
with the name. These include car , cdr, cons, putv, get v, the integer
arithmetic routines: i p l us, i m i nu s etc. and a few more. A complete list is
given in the table below. If one of these is redefined, it will alter the
behaviour of interpreted code but will not affect compiled code in any way.
In all other cases, redefining a function will cause all references to that
name to use the new definition.

Note again that if a variable is to be bound in one function but used in
another (or if it is to be treated as a global variable), then before any
function mentioning the variable is compiled, a declaration of the following
form should be obeyed:

(fluid '(varl var2 ...))

The declaration can be removed after compilation by a corresponding call
to un f luid. Note that fluid takes the place of declarations known as
spec i a l and common in some other LISP systems. When all user functions
have been compiled, a substantial amount of space can be recovered by
telling LISP to throw away the compiler. This is done by calling ex ci se
with argument l sp comp .

Functions fixed by the compiler

apply 	 car 	cdr

cdifference 	cminus 	cons

cplus 	 ctimes 	equal

flagp 	 gensym 	get

getd 	 getv 	iaddl

LISP Issue 1 	 19

Chapter 3

idifference 	ileftshift 	ilogand2

ilogor2 	ilogxor2 	iminus

iplus2 	 irightshift 	isub1

itimes2 	 ncons 	 putv

rplaca 	 rplacd 	rplacw

xcons

3.1 Preserve

Particularly when developing a large program, it is useful to be able to
dump the state of LISP to a disc file, then pick it up again in a later run.
The function used for this is called preserve, and (preserve) writes a
store image to the file with the name lsproot in the dump (or image, if no
dump was specified) directory.

After preserve has been executed LISP stops, even if the call to preserve
was embedded deep in some other functions. On restart all information
about what was happening when preserve was called is lost. preserve
will write to a member lsproot together with any other members defined by
the FASL facility. If image and dump are the same, then the previous
lsproot is renamed bakroot before the store is dumped.

Store images can only be loaded at the very start of a LISP run, and on
entry to LISP the parameter image will give the directory in which to find
the store image which is loaded. Thus:

-> LISP -IMAGE $.OLDIMAGE -DUMP $.NEWIMAGE

. 	. 	.

(preserve)

Dumps a store image to the directory $.newimage, and

-> LISP -IMAGE $.NEWIMAGE

. 	. 	.

reloads it and continues with the computation. If preserve writes out a file
successfully, LISP will stop with a return code of at least 200 to signal this
fact.

20 	 LISP Issue 1

Implementation Features

(preserve 'initialsupervisor)

is a form that can be used to package systems in a secure way. When the
image file is reloaded, the user-supplied function ini tial supe rvi so r will

be called rather than the standard LISP supervisor. If initial supe rvi so r

is exited, then LISP will stop.

3.2 Load-on-call Facility (FASL)

The following functions provide a load-on-call facility in LISP. Note that all
code is loaded from members of the directory called 'image' (unless the call
has designated another directory for that function) and any generated code
is written to the same directory, unless a dump has been specified in the call
to LISP. The file names lsproot, bakroot, and lsperrs should be avoided, as
these are used by the basic system. Various other modules with names
beginning with `lsp' are part of the base system.

(module membername)
Until further notice the compiler will write Fast Load (FASL) data for
functions it compiles to the file membername in directory 'dump'.
These files will be written as binary data. If membe rname is given as
nil, or not given, fasl output is switched off and the compiler produces
code in store.

(excise membername)
If membername is the name of a faslfile that has been loaded, (ex c i se

membe rname) replaces the definitions of all functions in that file with
references to their disc versions. This frees the space that was
consumed by the compiled code bodies. If ex ci se is called with no
arguments, it purges all loaded modules.

(preserve)
Write a file lsproot to image (or dump as described above) in a format
suitable for LISP to reload it at the start of a subsequent run. If the
store image is being written to image, then the previous image is
renamed as bakroot. p r eserve will also close the output to a module
thereby removing the necessity for a (module nil). After executing
preserve, LISP stops.

The loading of modules is monitored if the appropriate value is given to
verbos: after (v e rbos 3) a message is displayed each time a module is
loaded from disc or removed from main memory.

LISP Issue 1 	 21

4 Input and output

Input and output in LISP are based on the idea of selectable streams. At the
start of a run, the stream designated -f rom (the default is the terminal) is
opened and selected for input, and -to (default terminal) is opened and
selected for output. All streams must be created by open before use: open
returns as its result a LISP object that can be used to refer to a file;
although this will often be a LISP atom that names the file, this fact should
not be relied on.

4.1 I/O Routines

4.1.1 Open/Close

(open filename [input/output])

(close file handle)

These open or close a stream. A stream must be opened before it can be
selected. The second argument to open specifies whether the stream will be
read from or written to. The value returned by open is a file handle for use
with close,rds,wrs.

4.1.2 wrs/rds

(wrs filehandle):[select for writing]

(rds filehandle):[select for reading]

rds and wrs affect all input and output (a possible exception being
diagnostics which should always appear on the terminal); in particular, data
to be read in, and LISP statements for execution are not kept separate.

4.2 Printing

There are four printing styles available in LISP. The first of these is
intended to produce output that can be read back into LISP at a later stage,
and so strings are printed with " marks around them and any unusual

LISP Issue 1 	 23

Chapter 4

characters in atoms get prefixed with escape marks i.e. !. To use this print
style:

prin 	prints an atom or list (and does nothing else)

print 	as prin but then ends the print line

pr i n t m 	as print but it attempts to leave a left margin when an
expression takes many lines to print.

The next set of routines print in a way that is useful when the program is
trying to produce non-LISP-like output. They merely print the characters of
atoms and strings without any extra markers.

princ 	basic print routine

pr i ntc 	as princ followed by call to terpr i

pr i n t cm as printc but leaves a left margin of specified width.

On occasions it is useful to produce circular structures. The previous print
styles will go into an infinite loop if they are asked to print such a list. This
family however are safe, but more expensive.

print. 	basic print for looped structure

pri n t I. 	as prinl terminated by a terpri

pr i nt c L as prinl with no escapes

The last style of printing is for the display of LISP programs, and provides a
consistent style of indentation.

superprint 	 print with indentation

For explicit control of layout on the page, the following functions are
available:

terpri 	end a record (with a newline)

eject 	as terpri but prints 'end-of-page' (sends character with code 12,
i.e. formfeed)

linelength 	sets the logical width of paper that can be used by print

ttab 	tab to specified column

x t ab 	tab by a given number of columns

24 	 LISP Issue 1

Input and output

4.3 Reading

The read routines are:

t y i 	get ascii code of next character

readc h 	get next character

read-token 	gets next atom, and sets a variable !*token ! -type !* to a
classification code for it

read 	get next s-expression or atom.

Characters obtained by calls to readc h can be classified by the predicate
functions:

di gi t 	is it 0,1,2,3,4,5,6,7,8 or 9?

liter 	is it A,B,... ,Z,a,b,...,z?

breakp 	detects blank, comma, brackets etc. The exact definition
depends on effects of previous calls to setsyntax.

Characters can be packed in a buffer, and then assembled into complete
atoms:

clearbuff 	clear the buffer (must be called first)

pack 	 puts characters in the buffer

mkatom 	convert buffer contents to an atom

numob 	 convert buffer contents to a number

mkstring 	converts buffer into a string

Notes

numob will fail if the buffer contents are anything other than a sensible
string of digits, possibly with a leading sign.

pack must not be called before c lea rbuf f has been used to set the buffer
bof fo to a standard initial state.

read either called explicitly by the user or called by the system to read in
some more LISP program destroys the buffer contents. Therefore pack etc.

LISP Issue 1 	 25

Chapter 4

should only be called from within a nest of routines that both start and
finish the atom assembly process.

explode takes any argument and returns a list of characters, the characters
being those that pri n would produce if it were handed the list or atom. In
particular explode converts numbers into characters.

explodec is like explode but makes a list of the characters pri nc would
have produced.

compress is an inverse of explode.

26 	 LISP Issue 1

Part II

LISP Issue 1 	 27

5 Functions and Variables

In this section, each function is provided with a prototypical header line,
and each formal parameter is given a name and suffixed with its permitted
type. Lower case tokens are names of classes and upper case tokens are
parameter names referred to in the definition. The type of the value
returned by the function (if any) is suffixed to the parameter list. If it is not
commonly used, the parameter type may be a specific set enclosed in
brackets (...). For example:

(putd FNAME:id, TYPE:ftype, BODY:Ilambda function-pointerMid

pu td is a function with three parameters. The parameter FNAME is an
identifier to be the name of the function being defined. TYPE is the type of
the function being defined, and BODY is a a mbda expression or a
function-pointer. pu t d returns the name of the function being defined.

Functions which accept formal parameter lists of arbitrary length have the
type class and parameter enclosed in square brackets indicating that zero or
more occurrences of that argument are permitted. For example:

and(EU:anyD:extra-boolean

is a function which accepts zero or more arguments which may be of any
type. The type of the function is specified after the header. An eval type
function receives its arguments ready evaluated and a noeval function
receives unevaluated arguments. Normally this is dealt with by the system,
but the distinction is important when a pp I. y is being used as the user must
ensure that the arguments are already in the correct form.

spread type functions have their arguments passed in one-to-one
correspondence with their formal parameters.

nos pread functions receive their arguments as a single list. The module of
the system in which a function resides is also given. Base means it is part of
the initial load, co r e means it is always loaded, but is defined in LISP.
Other names are modules which are found in the image directory.

Argument Types

Note that functions will not necessarily give an error with an argument of a
type other than that specified, but the results should not be relied upon.

LISP Issue 1 	 29

Chapter 5

list
A list with each member being a dotted pair. i.e. ((a . b) (c . d))

atom
Any type of number, string, id, vector, function.

boolean
The set of global variables t and n i , or their values t and nil.

constant
All atoms except ids.

extra-boolean
Any value in the system, all except nil having the interpretation t.

ftype
The class of definable function types. The ids expr, fexpr, subr, fsubr
and macro.

function
Anything that can be used as a function e.g. a mbda expression,
pointer to binary code, id which is defined as a function.

id
Equivalent to the normal LISP atom, with a property list and value so
it can be bound or assigned to. Numbers, vectors etc. are treated
specially as they do not need this full mechanism and so cannot be
used where an id is specified.

logical
Integers that can be represented in one word i.e. less than 2**24.
Arguments of this type can be passed to any function that expects a
number or integer but the type of the result will not necessarily be a
logical value.

sinteger
Signed integers that can be represented in one word i.e. modulus less
than 2**24. Arguments of this type can be passed to any function that
expects a number or integer but the type of the result will not
necessarily be a logical value. They are used extensively by the
compiler, and there are a class of functions to handle them.

integer
Signed integers that can be of any size.

30 	 LISP Issue I

Functions and Variables

n-mod-p
Integers reduced mod p where p is set by se t mod.

number
All items of type integer, floating, rational.

string
a string of characters enclosed in " ".

5.1 Characters

The character '.' is used in the input notation for lists, and if a and b are any
structures, (a . b) represents a dotted-pair with a as its ca r and b as its
cd r . To use the atom `.' see the entries under T and period.

(Parentheses are used in LISP input to form lists. To use the atom (
see the entries under ! and l pa r .

{ 	Braces are used as super parentheses. A 1 will close sufficient
opening parentheses to reach either a { or top level, whichever comes
first.

! 	! is the default escape character, which causes the following character
to be treated as an ordinary letter. This means that characters with
special properties, such as ' (' or ' . ' , can be used as part of an
identifier. See se t synt a x for how to change the escape character
and for a list of characters that have special properties initially.

cr Value is carriage return.

eof r ea dc h returns a special marker when it reaches the end of a stream.
The initial value of eof is this value, and a program might read:

(setq a (readch))

(cond ((eq a eof) (go ENDSTREAM)))

eol readc h returns a newline character object when it reads to the end
of a line. The initial value of Seol.$ is this atom. (p r i n Seol$)
therefore has the effect of terpri .

ff Value is a form feed character object.

*echo The variable *ec ho controls echoing of input within read. The
value of *echo is

LISP Issue 1 	 31

Chapter 5

*ec ho 	effect

ni l 	no echo

pret ty formatted printing as reading progresses

t 	character by character echo

The calls to read made by the LISP supervisor
(read/eva Uprint loop) have *echo controlled by (prarg n).
The initial value is nil. See pra rg (section 9.5).

5.2 Specialised variables

Many variables with names beginning with * and & are for internal use and
should not be modified. The variables documented below are the ones most
likely to be useful to the general user.

*comp

Type: Variable

When the variable *comp is true, function definitions are compiled. See
de, df and dm. The default is t .

*pgen

Type: Variable

When true the compiler generates an assembly listing. The form of the
listing is not compatible with standard assembler, and is only for
checking purposes.

*lower

Type: Variable

When true, all uppercase letters are translated to their lowercase
equivalent.

*raise

Type: Variable As *lower but forces characters into upper case.

*plap

Type: Variable

The compiler generates an intermediate macro form that is machine
independent. When *p lap is true this form is printed.

32 	 LISP Issue I

Functions and Variables

5.3 Atoms and Values

t

The atom t is the standard LISP representation of 'true', and most
built-in LISP predicates will return either t for true or nil for false. t
should not be used as a name for a local or bound variable.

ni l
nil is an identifier that LISP uses in a variety of special ways. It is
therefore not possible to use it either as a function name or a variable
name. The first special use is that all lists normally terminate with a
reference to the atom nil , and so (a bc) is 'really' (a bc . nil) .
The effect of this on the normal programmer is that the test null, as
used to see if the end of a list has been reached, can be seen to be
equivalent to (eq xx nil) . The second special use of nil is as the
standard denotation for 'false'. All LISP predicates will return n i l for
false (most will return t for true). nil is used so often in LISP
programs that it has been defined to stand for itself, and so it is
possible to write (cons a nil) rather than (cons a (quote nil)) .

(null U:any):boolean
Type: eval, spread, Base

Returns t if u is nil .

(set q variable:id value:any):any
Type: noeval, nospread, Base

s et q is the normal assignment operator in LISP. The value of the
current binding of variable is replaced by the value of VALUE.
variable must not be t or nil (or an error occurs).

(set EXP:id VALUE:any):any
Type: eval, spread, Base

EXP must be an identifier or a type mismatch error occurs. The effect
of set is replacement of the item bound to the identifier by VALUE. If
the identifier is not a local variable or has not been declared
GLOBAL, it is automatically declared fluid. EXP must not evaluate to
t or nil otherwise an error occurs because t or nil cannot be changed.

LISP Issue 1 	 33

Chapter 5

(unset U:id):any
Type: eval, spread, Base

Is equivalent to (set U i ndef i ni te! va lue) but returns the old
value of the variable.

(boundp U:id):boolean
Type: eval, spread, Base

Returns t if U is the name of a variable that has either been bound by
prog or as an argument of a function, or has been given a value by
s e t .

csetq, pts
For compatibility with older LISP Systems, these are synonyms for
setq and set respectively. pt s is a synonym for set .

(at om U:any):boolean
Type: eval, spread, Base

Returns t if U is an atom, including any type of constant (see
cons tantp) . If atom is true, then ca r or cdr would be illegal.

(i dp U:any):boolean
Type: eval, spread, Base

Returns t if U is an id (i.e. an atom that is not a constant).

c omma
Initial value of comma is the atom ','. See description of blank and
dollar.

5.4 Dotted Pair Functions

Dotted pairs are the primitive data type in LISP. They are the product of
functions from the cons class. The following are fundamental functions for
their manipulation and creation

(cons U:any V:any):dotted-pair
Type: eval, spread, Base

Returns a dotted-pair (or cons-cell) which is not eq to anything
preexisting and has U as its car part and V as its cdr part.

34 	 LISP Issue I

Functions and Variables

(consp U:any):boolean
Type: eval, spread, Base

Check if U is a list created by cons.

(car U:dotted-pair):any
Type: eval, spread, Base

(carlcons a b))

> a

The left part of U is returned. An error occurs if U is not a dotted-pair.

(cdr U:dotted-pair):any
Type: eval, spread, Base

(cdr(cons a b))

> b

The right part of U is returned. An error occurs if U is not a
dotted-pair.

caaaar
Type: eval, spread, core

Any name of the form cxxxxr where x represents the characters 'a' or
`d' is treated as a combination of the basic functions car and cdr .
Thus (caddr U) is equivalent to (car (cdr (cdr U))) . The present
implementation allows up to four letters between the 'c' and the `e, so
caaaar to cddddr are provided for. These are the possible
combinations:

car 	caar 	caaar 	caaaar cdaddr

cdr 	cadr 	caadr 	caaadr cddaar

cdar 	caddr 	caaddr cddadr

cddr 	cdddr 	cadddr cdddar

cdaar 	cdaaa r cddddr

cddar 	cdaadr caadar

cdadr 	cdada r cadadr

cadar 	caddar cadaar

(carcheck N: i nteger):integer
Type: eval, spread, lispcomp

LISP Issue 1 	 35

Chapter 5

Normally, compiled code is produced that is safe, in that it checks to
see that all car and cdr operations are legal. This involves a cost
(about 6% of the size of compiled code), and so an option is provided
to inhibit this check. (ca rc heck n) directs the compiler to check at
level N, where N = 0 means no checking N = 1 requests checking
that is safe, but unable to provide very clear diagnostics when
something does go wrong (overhead = 4 bytes per access), and N = 2
is both safe and informative. The previous level of checking is
returned. carcheck also controls the level of checking performed by
compiled versions of a few other low-level functions such as putv and
getv. It is strongly recommended that (ca rcheck 2) be used even
with programs that are thought to be fully debugged; the overhead is
modest and the extra sensitivity substantial. If ultimate performance
calls for (ca rcheck 0) this option should be used for just a few of the
most time-critical functions.

(prof i le U:integer)
Type: eval, spread, lispcomp

After a call to prof i le, the LISP compiler will generate code that
includes statistic gathering orders to order U. The default (U=0)
collects no statistics. With U= 1 counts are collected at the entrypoint
to each routine. With U=2, counts are collected near each conditional
branch, and each label in the compiled code. The statistics gathered
can be accessed by readcount or (more commonly) by maps tore.

(ca r ! -nil ! - leg a U boo I. ean):boolean
Type: eval, spread, Base

After a call of (car!-nil!-legal. t) the forms (car ni I.) and (cdr
ni I.) (which would both normally result in errors) evaluate to nil. This
facility is provided to ease the problems of transferring certain
MacLISP and InterLISP code to the Cambridge system.

5.4.1 Tagged Cons cells

(acons U:any V:any):list
Type: eval, spread, Base

32000 Cambridge LISP permits the creation of tagged cons-cells and
their subsequent identification. This function is like cons but produces
a different internal tag. This can be checked with the functions a consp
or c on s t ype . Similarly

36 	 LISP Issue 1

Functions and Variables

(bcons U:any V:any):list

(ccons U:any V:any):list

(dcons U:any V:any):list

(econs U:any V:any):list

(fcons U:any V:any):list

(gcons U:any V:any):list

(hcons U:any V:any):list

(a con s p U : any):boolean
Type: eval, spread, Base

Checks to see that U is a cons-cell created by a cons . Similarly

(bconsp U:any):boolean

(cconsp U:any):boolean

(dconsp U:any):boolean

(econsp U:any):boolean

(fconsp U:any):boolean

(gconsp U:any):boolean

(hconsp U:any):boolean

For example:

(aconsp (bcons 'a 'b}

> nil

(cons t ype U: Lis t):integer
Type: eval, spread, Base

cons type returns an integer in the range [0..8] depending on whether
U is a node created by cons, acons, , h cons . For example:

(constype (econs 'a 'b}

> 5

(changetype L:List T:integer):list
Type: eval, spread, Base

changetype causes the pair L to be of type determined by T. t = 0
gives a normal type, t=1 gi ves an acons, . . . , t = 8 gives an
h cons . Values of t outside the range [0..8] give an error.

(xcons U:any V:any):dotted-pair
Type: eval, spread, Base

This is the same as See ncons and cons

LISP Issue 1 	 37

Chapter 5

(ncons U:any):dotted-pair
Type: eval, spread, Base

Is the same as (cons U ni li . See cons, xcons.

5.5 List Processing Functions

(list [U:anyD:list
Type: noeval, nospread, Base

A list of the evaluation of each element of U is returned.

(progn (setq x 5)

(list 'the 'value 'of 'x 'is x)

> (the value of x is 5)

(list !* [U:any]):list
Type: MACRO

A list made up of the arguments given, with the last one used as the
final tail of the list. Thus

(list!* p q r)

has the same effect as

(cons p (cons q r))

(append U:list V:list):list
Type: eval, spread, core

Returns a constructed list in which the last element of U is followed by
the first element of V. The list U is copied, v is not.

(append '(a b c) '(d e f)

> (abcde f)

(conc [U:anylistThany-list
Type: noeval, nospread, Base

The lists passed to conc are concatenated by modifying the structures,
so not using up store. nconc is similar to conc but only allows for two
arguments. See also append.

38 	 LISP Issue I

Functionsand Variabks

(setq 11 '(a b c)

(setq l2 '(d e f)

(setq l3 '(g h

(conc 11 l2 13)
> (abcdefgh i)

12 now has value (d efgh i)

(nconc Ulist
Type: eval, spread, core

Concatenates V to U without copying U. The last cdr of U is modified
to point to V.

(copy U:any):any
Type: eval, spread, core

copy takes a list and returns one that has the same gross structure, but
which does not share store with the original. The function will fail if
the list to be copied has been made cyclic through the use of rp a ca or
rpla cd. . copy does not duplicate atoms or vectors: the copying
operation is confined to lists as made up using cons.

(reve rse U:list):list
Type: eval, spread, core

Returns a copy of the top level of U in reverse order.

(reverse '(a b (c d) e))

> (e (c d) b a)

(reversewoc U:list):list
Type: eval, spread, Base

reversewoc reverses a list without creating a copy, and so is
destructive. It can be used to great effect in building lists which
naturally are calculated in a left to right fashion where it can replace
repeated uses of append. See reverse.

(progn (setq 11 '(abcde f)

(setq l2 (reversewoc CI))

11)
> (a)

12 has value (f edcb a)

LISP Issue 1 	 39

Chapter 5

(young e r Udist Vdist):boolean
Type: eval, spread, Base

Returns t if U and V are both lists and U was created by a cons that
took place after the cons that made V. This provides a cheap,
consistent but rather arbitrary order relation on list structures.

(o rde rp U:any V:any):boolean
Type: eval, spread, Base

This is a predicate defining a self-consistent order relation between
lists. That is if (orderp oh) and (orderp bc) are both true

then.bl(orderp ac) is true. If U and V are identifiers this relation
reduces to alphabetic order. For more complex structures the details of
the ordering should not be relied upon.

5.6 List Equality and Searching

(eq U:any V:any):boolean
Type: eval, spread, Base

Returns t if U points to the same object as V (it tests for equal
pointers). eq is not a reliable comparison between numeric arguments
in general, but is correct for integers with absolute value< 2**24. For
portability this should not be relied upon.

(equa U:any V:any):boolean
Type: eval, spread, Base

Returns t if U and V are the same. Dotted-pairs are compared
recursively to the bottom levels of their trees. Vectors must have
identical dimensions and equal values in all positions. Strings must
have identical characters. Function pointers must have eq values. The
test equa is close in meaning to requiring that the two expressions
look alike when printed

(eqc a r U:any V:any):boolean
Type: eval, spread, core

This is equivalent to (eq (ca r U) V) except that if U is atomic it
returns the answer nil.

ao 	 LISP Issue I

Functions and Variables

(a ssoc U:any V:alist):{dotted-pair nil}
Type: eval, spread, Base

If U occurs as the ca r portion of an element of the alist V, the
dotted-pair in which U occurred is returned, else nil is returned.

(progn (setq key 2)

(assoc key '((0 . key0)

(1 . key1)

(2 . "you got it")

> "you got it"

(a t soc U:any V:alist):{dotted pair nifi
Type: eval, spread, core

a t soc is exactly a ssoc except that it uses eq to test if a tag has been
found instead of equa See also sassoc .

(sassoc U:any V:alist FN:function):any

Returns the same result as (a ssoc U V) if U is present in V, otherwise
the evaluation of FN is returned.

(member A:any Blist):extra-boolean
Type: eval, spread, core

Returns nil if A is not a member of list B, otherwise returns the
remainder of B whose first element is A. The function equa is used to
compare list elements.

(member 'c '(abcde f)

> (c d e f)

(memq A:any B:list):extra-boolean
Type: eval, spread, core

Same as member but an eq check is used for comparison.

(de leg U:any Vlist)list
Type: eval, spread, core

As de let e but uses eq rather than equa l as the test.

(de lete U:any
Type: eval, spread, core

Returns V with the first top level occurrence of U removed from it.

LISP Issue 1 	 41

Chapter 5

(un i on U:list V:list);list
Type: eval, spread, core

Returns a list of all the items from U and V. If some item is in both U
and V it will only occur once in the union list. See append for list
merging/concatenation that does not remove duplicate entries, and xn

below for list intersection.

(setdi f f U:list V:list):list
Type: eval, spread, core

Returns the set difference between two lists; that is those members of
U are not members of V using a member test.

(so r t U:any-list PREDICATE:id):any-list
Type: eval, spread, core

The list U is sorted with respect to the given predicate, for example
(sort ' (7 5 9 1 5) 'greaterp) returns (9 7 5 5 1).

(so rtip U:any-list PREDICATE:id):any-list
Type: eval, spread, core

As so r t, but the input list is overridden with the result.

(sub i s X:alist Y:any):any
Type: eval, spread, core

The value returned is the result of substituting the cd r of each element
of the alist X for every occurrence of the ca r part of that element in Y.

(sublis 1((a . A)(b. b)) 1(a a bab b))

> (aab ab b)

(subst U:any V:any W:any):any Type: eval, spread, core

The value returned is the result of substituting U for all occurrences of
V in W.

(xn U:list V:list):list
Type: eval, spread, core

Returns the set intersection of the lists U and V, i.e. those members of
U that are also in V. See also un i on .

42 	 LISP Issue 1

Functions and Variables

(last U:list):any
Type: eval, spread, Base

Returns the last element of the list U; for instance if U is the list (a b c
d e) , then E is returned. last should not be given an atomic
argument. But note:

(last 1(a b c . e)

> c

(l ength X:any):integer
Type: eval, spread, core

The top level length of the list X is returned.

(length 1(1 (2 3) 4)

> 3

(length 1(1 2 .3)

> 2

(pa i r U:list
Type: eval, spread, core

U and V are lists which must have an identical number of elements. If
not, an error occurs. Returned is a list where each element is a
dotted-pair, the ca r of the pair being from U, and the cd r, the
corresponding element from V.

(pa i rp U:any):boolean
Type: eval, spread, Base

Returns t if U is a dotted-pair.

(neq U:any V:any):boolean
Type: eval, spread, core

neq is equivalent to (not (equa U V)) .

5.7 Pointer Replacement Functions

The following group of functions operate directly on the data structures
given as arguments rather than on copies. Accordingly, they do not cause
memory to be exhausted, but if used unwisely will damage data and
program irreparably.

LISP Issue I 	 43

Chapter 5

(rp lace U:dotted-pair V:any):dotted-pair
Type: eval, spread, Base

The ca r portion of the dotted-pair U is replaced by V. If dotted-pair U
is (a . b) then (v b) is returned. An error occurs if U is not a
dotted-pair.

(setq I '(1 2 3 4)

(prog

(cond ((setq 11 (member 3 0)(rplaca LI 'a)

(t nil)

leaves 1 with value (l 2 a 4}

(rp I. a cd U:dotted-pair V:any):dotted-pair
Type: eval, spread, Base

The cd r portion of the dotted-pair U is replaced by V. If dotted-pair U
is (a . b) then (a . V) is returned. The type mismatch error occurs if
U is not a dotted-pair.

(rp a cw U:dotted-pair V:dotted-pair):dotted-pair
Type: eval, spread, core

Equivalent to rp lace (rplacd U (cdr V)) (car V)) In general the
pr i nl etc. forms of the printing functions should be used to print the
results of these functions especially where circular structures may be
created.

5.8 List Manipulating Functions

(compress U:id-list):{atom}-{vector}

Type: eval, spread, LIspread

U is a list of single character identifiers which is built into a Standard
LISP entity and returned. Numbers, strings, and identifiers with the
escape character prefixing special characters are recognized. Identifiers
are interned on the ob list. If an entity cannot be parsed out of U or
characters are left over after parsing, an error occurs.

(compress '(A B CI

> ABC

44 	 LISP Issue I

Functions and Variables

(ex p ode U:any):id-list
Type: eval, spread, Base

Returned is a list of single-character identifiers representing the
characters that print as the value of U. The characters that appear in
the list are those that would be produced if U were handed to pr i n.

(ex p lode c U:any):id-list
Type: eval, spread, Base

As exp Lode but no escape characters are produced in ids (c.f.
princ).

(ex p ode n U:any):integer-list
Type: eval, spread, Base

As exp ode but the list is of the internal codes of the characters rather
than the characters.

(ex p odecn U:any):integer-list
Type: eval, spread, Base

As ex plodec but the list is of the internal codes of the characters
rather than the characters.

arg 	explode 	explodec 	explodecn 	exploden

123 	(!1 !2 !3) 	(!1 !2 !3) 	(49 50 51) 	(49 50 51)

'cat (c a t) 	(c a t) 	 (99 97 116) 	(99 97 116)

"cat" (!" c a t "!) (c a t) 	 (99 97 116) 	(34 99 97 116 34)

(pa c k U:any V:any):nil
Type: eval, spread, Base

The function pa c k converts its argument into a string of characters
and places these in the atom assembly buffer boffo. Subsequently the
characters placed in boffo can be turned into a real LISP identifier or
number through calls to mka tom or numob. boffo must be initialised
by a call of c ea rbuf f before pa c k is used. Note that the standard
LISP read and print routines clear boffo. That is, if the result of pa c k

is printed, the buffer is then empty, causing a subsequent mka tom to
fail. If pa c k is given a non-nil second argument, it forces all the
characters it packs into lower case.

LISP Issue 1 	 45

Chapter 5

(pa c k by t e U:any):nil
Type: eval, spread, Base

As pa ck but acting on internal codes.

(c Lea rbuf f):nil
Type: Base

This is a routine with no arguments that clears an internal buffer boffo
which is used for constructing atoms. It must be called before an
attempt is made to use pa ck etc. See pa c k, numob, mka tom.

(numob):number
Type: Base

If the characters placed in the buffer boffo (by pack etc.) represent a
number, numob will form that number as a proper LISP object. If
mka tom had been called instead of numob it would have created an
identifier that had the same print format as a number but which had
the properties of a variable rather than of a number.

(mkatom):id
Type: eval, spread, Base

If a sequence of characters have been assembled in the buffer boffo (by
calls to c Lea rbuf f and/or pack), mka tom can be used to form the
LISP identifier made out of the characters. mka tom consults LISP's
internal hash tables and name lists (see ob i st) and makes certain
that identifiers are defined uniquely by their printnames.

(mkst ri ng):string
Type: Base

Creates a LISP string from the characters in boffo.

(progn (clearbuff) (pack 123) (pack 456) (numob) 	> 123456

(progn (clearbuff) (pack 'abc) (pack 'def) (mkstring) > "abcdef"

(progn (clearbuff) (pack 'abc) (pack 'def) (mkatom) 	> abcdef

5.9 Creation of symbols

(gensym):id
Type: eval, spread, Base

46 	 LISP Issue 1

Functions and Variables

This creates an identifier which is not interned on the ob list and

consequently not eq to anything else.

(eq (gensym) (gensyml

> ni

(gensyml U:id):id
Type: eval, spread, Base

This generates a symbol in the same way as gensym does, but forces
the printname of the generated atom to start with the given identifier.
See also symnam

(symnam U:id):id
Type: eval, spread, Base

symnam takes one argument which must be an identifier. Until symnam

is called again, this identifier will be used to provide the initial part of
the print representation of atoms created by gensym. Note that, for
internal reasons, there is a store-use penalty in using more than a few
dozen different symnams . See also gensyml . The value returned is the
previous value.

5.10 Flags and Property Lists

(f a g U:id-list V:id):nil
Type: eval, spread, Base

U is a list of ids which are to be flagged with V. The effect of f ag is

that f agp will have the value t for those ids which were flagged. Both
V and all the elements of U must be identifiers or the type mismatch
error occurs.

(f a gp U:any V:any):boolean
Type: eval, spread, Base

This returns t if U has been previously flagged with V, else nil. It
returns nil if either U or V is not an id.

(get U:any IND:any):any
Type: eval, spread, Base

LISP Issue 1 	 47

Chapter 5

This returns the property associated with indicator IND from the
property list of U. Returns nil if U or IND are not ids. get cannot be
used to access functions (use getd instead).

(put U:id IND:id PROP:any):any
Type: eval, spread, Base

The indicator IND with the property PROP is placed on the property
list of the id U. If the action of put occurs, the value of PROP is
returned. If either of U and IND are not ids the type mismatch error
will occur and no property will be placed. put cannot be used to define
functions (use put d instead).

(se tpli st U:id PLIST:alist):alist
Type: eval, spread, Base

This replaces the property list of U with PLIST. The function returns
the previous property list owned by U.

(p list U:id):plist
Type: eval, spread, Base

The function plist called with one argument that is an identifier
returns the property list of that atom. The format of such a property
list is a list of flags (see f lag, f lagp) and dotted pairs of (name .

property). (See also put, get).

(remprop U:any IND:any):any
Type: eval, spread, Base

Removes the property with indicator IND from the property list of U.
Returns the removed property or nil if there was no such indicator.

(remf ag U:id-fist V:id):nil
Type: eval, spread, Base

Removes the flag V from the property list of each member of the list
U. Both V and all the elements of U must be ids or the type mismatch
error will occur. nil is returned.

(progn

(flag I(atm1 atm2) 'myFlag)

(put 'atm1 'cost 1000)

(put 'atm2 'price 2000)

(print (plist 'atm1))

(print (plist 'atm2)

48 	 LISP Issue 1

Funetions and Variables

prints ((cost . 1000) myFlag)

((price . 2000) myFlag)

(ob i s t):id-list
Type: Base

Returns a lexicographically ordered list of all the atoms that can be
reached by read. However it should be noted that the object list in
Cambridge LISP is a collection of balanced trees, so rp La c operations
on the value of ob List will have no effect on the object list.

(remob U:id):id
Type: eval, spread, Base

If U is present on the ob st it is removed. This does not affect U
having properties, flags, functions and the like. U is returned.

5.11 Function Definitions as Values

(putd FNAME:id TYPE:ftype BODY:function):id
Type: eval, spread, Base

Creates a function with name FNAME and definition BODY of type
TYPE. This should be one of the symbols expr or fexpr . If putd
succeeds, the name of the defined function is returned. The effect of
putd is that getd will return a dotted-pair with the function's type
and definition. Likewise the g Loba lp predicate will return t when
queried with the function name. If function FNAME already exists
(and messages are enabled by (verbose t)) a warning message will
appear:

*** FNAME redefined

The function defined by putd will be compiled before definition
(changing exprs to subrs and fexprs to fsubrs) if the *comp global
variable is non-nil.

(getd FNAME:any):(nil dotted-pair}
Type: eval, spread, Base

If FNAME is not the name of a defined function, nil is returned. If
FNAME is the name of an xsubr, then the dotted-pair
(xsubr . function-pointer) is returned where the

LISP Issue I 	 49

Chapter 5

function-pointer is that associated with FNAME. If FNAME is the
name of an xexpr then the dotted-pair (xexpr . lambda) is

returned, the lambda expression being the definition of the function. If
FNAME is the name of a macro then the dotted pair
(ma c ro . lambda) is returned with lambda being the body of the
macro.

5.12 Vector Operations

(mkvec t UPLIM:integer):vector
Type: eval, spread, Base

Defines and allocates space for a vector with UPLIM + 1 elements
accessed as 0...UPLIM. Each element is initialised to nil. An error will
occur if UPLIM is less than zero, or if there is not enough space for a
vector of this size.

(mkvect 4)

> %< ni 1,ni l,ni l,ni 1,ni %>

Note the printing convention used.

(vec t o rp U:any):boolean
Type: eval, spread, Base

Returns t if U is a vector.

(get v V:vector INDEX:integer):any
Type: eval, spread, Base

Returns the value stored at position INDEX of the vector V. The Type
mismatch error may occur and an error occurs if the INDEX does not
lie within 0 ... (upbv V) inclusive.

(put v V:vector INDEX:integer VALUE:any):any
Type: eval, spread, Base

Stores VALUE into the vector V at position INDEX. VALUE is
returned. A type mismatch error may occur, and if INDEX does not
lie in 0 ...upbv (V) an error occurs.

(upbv U:any):integer
Type: eval, spread, Base

Returns the upper limit of U if U is a vector, or 0 if it is not.

50 	 LISP Issue I

Funcmonsand Variable

(prog (V)

(setq v(mkvect 3))

(putv ve "a b c")

(putv v1 34)

(putv v2 t)

(putv v3 29)

(print V)

(print (upbv V1

prints

> 	b c",34,t,29 %>

> 3

(stri ngconca t U:string V:string):string
Type: eval, spread, Base

Returns the concatenation of the strings U and V.

(stringconcat "abc" "clef"'

> "abcdef"

(st ri ngp U:any):boolean
Type: eval, spread, Base

Returns t if U is a string.

5.13 The AVL Module

The avltree module provides an efficient balanced tree lookup and deletion.
It is used in the printing of circular lists (see pri nt , pr n , pri ntc

and the maintenance of the LISP,b1 oblist. The functions of interest to the
user are documented below. The trees produced by this module make use of
the a cons, bcons, etc. functions, and are not general LISP trees.

(av -add KEY:any TREE:avltree ORDER:function):avltree
Type: eval, spread, LISPAVLT

The KEY is added to the avlbalaneed tree, using orderas the ordering
predicate. ORDER must be an eval/spreadfunction of two arguments.
This form of adding to the tree uses an equal test. To print the tree in
order see va lues-in-t ree.

LISP Issue 1 	 51

Chapter 5

(av l-de let e KEY:any TREE:avltree ORDER:function):avltree
Type: eval, spread, LISPAVLT

The KEY is deleted from the avltree.

(a v Lookup KEY:any TREE:avltree ORDER:function):boolean
Type: eval, spread, LISPAVLT

The KEY is looked up on the tree using an equal test.

(a v lq-add KEY:any TREE:avltree ORDER:function):avltree
Type: eval, spread, LISPAVLT

The KEY is added to the avlbalanced tree, using ORDER as the
ordering predicate. ORDER must be an eval/spread function of two
arguments. This form of adding to the tree uses an eq test. To print the
tree in order see va ues- i n- t ree .

(a v q-de let e KEY:any TREE:qvltree ORDER:function):avltree
Type: eval, spread, LISPAVLT

The KEY is deleted from the avltree.

(a v q- Look up KEY:any TREE:avltree ORDER:function):boolean
Type: eval, spread, LISPAVLT

The KEY is looked up on the tree using an eq test.

(va ues- n- t ree T:avl-tree):list
Type: eval, spread, LISPAVLT

va lues-i n-t ree returns the list of value in the avltree in order. See
also the functions a v 1.-add and a v lq-add.

5.14 Arithmetic Functions

Acorn Cambridge LISP supports arithmetic operations over four classes of
numeric atoms:

small integers in the range -2**24 to + 2**24 integers of any size
floating point numbers rational numbers

It supports the usual operations over these, and additionally can perform
modulus arithmetic over the small integers. A convenient naming
convention has grown up whereby arithmetic operations are named e.g.

52 	 LISP Issue I

Functions and Variable!

a dd 1 and i add 1 ; the i -prefix indicating the use of the function on
integer arguments. c- and m-p ref i xes are likewise used to indicate
functions specialised to handle arithmetic modulo n where n is a number set
by setmod.

A number of functions are supplied for type testing and conversion.

(fix U:number):integer
Type: eval, spread, Base

Returns an integer which corresponds to the truncated value of U. The
result of conversion retains all significant portions of U. If U is an
integer it is returned unchanged.

(f i xp U:any):boolean
Type: eval, spread, Base

Returns t if U is an integer (a fixed number).

(float U:number):floating
Type: eval, spread, Base

The floating point number corresponding to the value of the argument
U is returned. Some of the least significant digits of an integer may be
lost due to the implementaion of floating point numbers. f Loat of a
floating point number returns the number unchanged. If U is too large
to represent in floating point an error occurs.

(f Loatp U:any):boolean
Type: eval, spread, Base

Returns t if U is a floating point number and nil otherwise.

(digit U:any):boolean
Type: eval, spread, Base

Returns t if U is a digit, otherwise nil. Note that a digit is a character
and not a number. (i.e. U = !2 returns t but U= 2 returns nil).

(eqn U:any V:any):boolean
Type: eval, spread, Base

Returns t if U and V are eq or if U and V are numbers and have the
same numeric value after any necessary conversions have been
performed. Floating point numbers are eqn only if they have, bit for
bit, the same internal representation. There is no allowance made for

LISP Issue 1 	 53

Chapter 5

rounding error, and so eqn on floating point arguments should be used
only when this precise comparison is required.

(geq U:number V:number):boolean
Type: MACRO, core

Returns t if U > = V.

(evenp U:number):boolean
Type: eval, spread, Base

Returns t if U is an even integer.

(g rea terp U:number V:number):boolean
Type: eval, spread, Base

Returns t if U is strictly greater than V, otherwise returns nil.

(i g rea te rp U:integer V:integer):integer
Type: eval, spread, Base

Similar to great erp but only works for small integers. When
appropriate, it may be faster than greaterp.

(i Lessp U:integer V:integer):integer
Type: eval, spread, Base

Similar to L essp but only suitable for small integers.

(i ma x [U:integer]):integer
Type: noeval, nospread, Base

Similar to max but only suitable for small integers.

(i ma x2 U:integer V:integer):integer
Type: eval, spread, Base

Similar to ma x2 but only suitable for small integers.

(i m i n [U:integer]):integer
Type: noeval, nospread, Base

Similar to min but only suitable for small integers.

(imiusp U:integer):boolean
Type: eval, spread, Base

Similar to mi nu s p but only suitable for small integers.

54 	 LISP Issue 1

Functions and Variables

(i M i n2 U:integer V:integer):integer
Type: eval, spread, Base

Similar to mi n2 but only suitable for small integers.

(i z e rop U:integer):integer
Type: eval, spread, Base

Similar to z e rop but will not recognize floating point zero. See
iaddl . In fact (i zerop xx) = (eq xx 0).

(l es sp U:number V:number):boolean
Type: eval, spread, Base

Returns t if U is strictly less than V, otherwise returns nil.

(max [U:number]):number
Type: noeval, nospread, Base

Returns the largest of the values in U. If two or more values are the
same the first is returned.

(ma x 2 U:number V:number):number
Type: eval, spread, Base

Returns the larger of U and V. If U and V are the same value U is
returned (U and V might be of different types). This function is used in
the expansion of max .

(min [U:number]):number
Type: noeval, nospread, Base

Returns the smallest of the values in U. If two or more values are the
same the first of these is returned.

(mi nu sp U:number):boolean
Type: eval, spread, Base

Returns t if U is a negative number, otherwise nil.

(m i n2 U:number V:number):number
Type: eval, spread, Base

Returns the smaller of its arguments. If U and V are the same value, U
is returned (U and V might be of different types). This function is used
in the expansion of mi n .

LISP Issue 1 	 55

Chapter 5

(n um be rp U:any):boolean
Type: eval, spread, Base

Returns t if U is a number (integer, rational or floating).

(on e p U:any):boolean
Type: eval, spread, Base

Returns t if U is the number 1 or 1.0. There is no error if the item is
not numeric. The effect is like (eqn U 1) .

(s ma llp U:number):boolean
Type: eval, spread, Base

Returns t if U is an integer that can be stored as a single word.

(z e r op U:number):boolean
Type: eval, spread, Base

Returns t if U is a number and it is either the integer 0 or the floating
point number 0.0. See on e p .

5.15 Basic Arithmetic Operations

All the routines with names ixxxx where xxxx is the name of an arithmetic
operation, are index mode operations. They must only be called with
arguments that are integers less than 2**24, and must be called in such a
way that the result will satisfy the same constraints. Failure to adhere to
these constraints (e.g. overflow conditions, bignum inputs,...) may not be
detected and may lead to inconsistent behaviour. The routines do not
necessarily check their arguments' types or ranges, but will at least never
return a value that will not print as a small number. The LISP compiler can
turn these routines into reasonably efficient in-line code, which should be
much faster than use of the more general arithmetic routines. It must be
stressed that only small numbers are valid and this constraint is not checked
by the system.

(abs U:number):number
Type: eval, spread, Base

Returns the absolute value of its argument.

(a dd 1 U:number):number

56 	 LISP Issue I

Functions and Variables

(i add 1 U:integer):integer

Type: eval, spread, Base

Returns the number U incremented by 1. Equivalent to, but faster

than, a call to (plus U 1) . See also sub1 .

(s ub1 U:number):number

(i sub1 U:integer):integer

Type: eval, spread, Base

If U is a number then U-1 is returned. If U is not a number then an

error is given. The effect is the same as (difference U 1) but is faster.

(difference U:number V:number):number

(i di f ference U:integer V:integer):integer

Type: eval, spread, Base

Returns U - V.

(minus U:number):number

(i m i nu s U:integer):integer

Type: eval, spread, Base

Returns - U.

(plus [U:number]):number

(i plus [U:integer]):integer

Type: noeval, nospread, Base

Forms the sum of all its arguments.

(p u s 2 U:number V:number):number

(i p lus2 U:integer V:integer):integer

Type: eval, spread, Base

Returns the sum of U and V. This function is used in the expansion of

plus.

(times [U:number]):number

LISP Issue 1 	 57

Chapter 5

times [U:integer]):integer

Returns the product of all its arguments.

(i t i mes2 U:integer V:integer):integer

(t i me s2 U:number V:number):number

Type: eval, spread, Base

Returns the product of U and V.

(quo t i en t U:number V:number):number

(i quo t i en t U:integer V:integer):integer

Type: eval, spread, Base

The quotient of U divided by V is returned. If U and V are integers the
result will be an integer and (remainder U V) will be the
corresponding remainder. An error occurs if division by zero is
attempted.

(remainder U:number V:number):number

(i remainder U:integer V:integer):integer

Type: eval, spread, Base

If both U and V are integers, the result is the integer remainder of U
divided by V. If either parameter is floating point, the result is the
difference between U and V * (U/V) all in floating point. The sign of
the remainder is always the same as the sign of V. An error occurs if V
is zero.

(divide U:number V:number):dotted-pair
Type: eval, spread, Base

The dotted-pair (quotient . remainder) is returned. The quotient
part is computed the same as by quotient and the remainder the
same as by remainder. An error occurs if division by zero is
attempted.

(random):integer
Type: Base

Returns a random integer in the range 0 to 2**24-1. The
pseudo-random sequence used is initialised to a number based on the

58 	 LISP Issue 1

Functions and Variables

time of day LISP was run. The seed can be fixed by an option at load
time: "-opt Rnnn" sets the initial seed to nnn.

(sq r t U:number):number

(i sqrt U:integer):integer

Type: eval, spread, Base

Returns the square root of U. If U is an integer that is a perfect square
the result will be an integer, otherwise floating point.

(gcd U:integer V:integer):integer
Type: eval, spread, Base

The positive integer that is the greatest common divisor of U and V is
returned.

5.15.1 Modulo Arithmetic Functions

The functions supplied for modulo arithmetic are described below. A
naming convention exists whereby functions which begin with a c perform
arithmetic mod p in the range [0,p-1] ; those functions which begin with an
m perform arithmetic mod p yielding results in the range [-p/2,p/2]. The
integer p is usually but not always a prime number. It is set by setmod .

(set mod U:integer):integer
Type: eval, spread, Base

(setmod p) sets the modulus for the cp lus and mp lus families of
modulus arithmetic functions. (set mod 0) returns the current
modulus without resetting it.

(cdi f f er en ce U:n-mod-p V:n-mod-p):n-mod-p
Type: eval, spread, Base

The result is U - V, with all numbers reduced mod p in the range
[0,p-1]. See also mdifference.

(mdi f fe rence U:n-mod-p V:n-mod-p):n-mod-p
Type: eval, spread, Base

Returns U - vmod p in the range [-p/2,p/2]. See also cdi f f erence
etc.

LISP Issue 1 	 59

Chapter 5

(cmi nus U:n-mod-p):n-mod-p

Type: eval, spread, Base

Returns -U mod p.

(mmi nus U:n-mod-p):n-mod-p

Type: eval, spread, Base

Returns -U mod p.

(c mod U:integer):n-mod-p

(mmod U:integer):n-mod-p Type: eval, spread, Base

These reduce the integer U mod p in the range [0,p-1] or [-p/2,p/2]

respectively.

(cp us U:n-mod-p V:n-mod-p):n-mod-p

(mplus U:n-mod-p V:n-mod-p):n-mod-p

Type: eval, spread, Base

Return U + V mod p.

(c quo t i en t U:n-mod-p V:n-mod-p):n-mod-p

(mquot i en t U:n-mod-p V:n-mod-p):n-mod-p

Type: eval, spread, Base

Return the quotient of U and V mod p.

(c rec i p U:n-mod-p):n-mod-p

(m re c i p U:n-mod-p):n-mod-p

Type: eval, spread, Base

Return the reciprocal of U mod p.

(c t i mes U:n-mod-p V:n-mod-p):n-mod-p

(mt i mes U:n-mod-p V:n-mod-p):n-mod-p

Type: eval, spread, Base

Return U * V mod p.

60 	 LISP Issue 1

Functions and Variables

5.15.2 Rational Arithmetic Operations

(numq U:number):integer
Type: eval, spread, Base

Returns the numerator of the number U. If U is not a rational the
value returned is the argument. Giving numq a non numeric argument
is an error.

(denq N:number):integer
Type: eval, spread, Base

If N is a LISP number, its denominator is returned. If N is not rational
its denominator is the integer 1. See numq.

(rational U:number V:number):rational number
Type: eval, spread, Base

Divides U by V, leaving the result as an exact fraction. If either U or V
is floating point, it will be converted to rational number form before
the division is attempted.

(setq pi (rational 22 7) 	> (22/7)

(numq pi) 	 > 22

(denq pi) 	 > 7

(times 4 pi) 	 > (88/7)

(rat i ona L p U:any):boolean
Type: eval, spread, Base

Returns t if U is a rational number, and nil otherwise.

(rec i p U:number):number
Type: eval, spread, Base

rec i p finds the reciprocal of a number by calling (quoti en t 1 U) . In
this sense the reciprocal of any integer other than + or -1 will be zero.

LISP Issue 1 	 61

Chapter 5

5.15.3 Trigonometric Calculating Functions

(arc cos U:number):number
Type: eval, spread, Base

(arcsin U:number):number

(atan U:number):number

(cos U:number):number

(cot U:number):number

(sin U:number):number

(tan U:number):number

(ex p U:number):number
Type: eval, spread, Base

exp calculates the exponential of the argument which must be
numeric. The result is a floating point number

(expt U:number V:number):number
Type: eval, spread, Base

Returns U raised to the V power, where V cannot be an integer of
unlimited precision. (i.e. V can be a floating point number or small
integer). A floating point U to an integer power V does not have V
changed to a floating number before exponentiation.

(Log U:number):number
Type: eval, spread, Base

As exp except that the function is the natural logarithm.

(Log 10 U:number):number
Type: eval, spread, Base

As Log except that the function is logarithm to the base 10.

62 	 LISP Issue 1

6 Control Structures

Acorn Cambridge LISP supports a wide variety of control structures both
for transfer of control at a local level and at a global level. The conditional
form is the primitive local operator.

(cond [U:cond-form]):any
Type: noeval, nospread, Base

A cond-form is a list of the form (predicate expression ... expression).
The predicate of each U is evaluated until a non-nil value is
encountered. The sequence of expressions following this predicate are
evaluated and the value of the last one becomes the value of cond. If
all the predicates evaluate to nil, then the value of cond is nil, and if no
expressions follow a predicate, the value returned if this predicate
succeeds is the value of this predicate.

(select U:any [V:pair] W:any):any
Type: MACRO, core

V is an association list. U is compared for equality with the successive
c a r s of V, and when found, se l e c t returns the evaluation of the
cd r If there is no match then W is evaluated, select expands into a
cond function.

(prog VARS:id-list [PROGRAM:{id any}]):any
Type: noeval, nospread, Base

VARS is a list of ids which are considered fluid when the prog is
interpreted, and local when compiled. The prog 's variables are
allocated space when the prog form is invoked, and are deallocated
when the prog is left. prog variables are initialised to nil. The
PROGRAM is a set of expressions to be evaluated in order of their
appearance in the prog function. Identifiers appearing in the top level
of the PROGRAM are labels which can be referenced by go. The
value returned by the prog function is determined by a return
function, or nil if the prog "falls through" i.e. the flow of execution is
not affected by any transfers to labels by go.

LISP Issue 1 	 63

Chapter 6

(go LABEL:id)
Type: noeval, nospread, Base

go alters the normal flow of control within a prog function. The next
statement of a prog function to be evaluated is immediately preceded
by LABEL. A go may only appear in the following situations:

1) At the top level of a prog referencing a label which also appears at
the top level of the same prog.

2) As the consequent of a cond item of a cond appearing on the top
level of a prog .

3) As the consequent of a cond item which appears as the consequent
of a cond item to any level.

4) As the last statement of a progn which appears at the top level of a
prog or in a progn appearing in the consequent of a cond to any
level subject to the restrictions of 2 and 3.

5) As the last statement of a progn within a progn or as the
consequent of a cond to any level subject to the restrictions of 2,
3 and 4.

An error occurs if LABEL does not appear at the top level of the prog
in which the go appears or if the go has been placed in a position
not defined by the rules. See also c a sego. go cannot be used for
non-local transfers of control. For such facilities see t h row.

(return U:any)
Type: eval, spread, Base

Within a prog, return terminates the evaluation of a prog and
returns U as the value of the prog . The restrictions on the
placement of return are exactly those of go. Improper
placement of return results in an error.

(de iterativeFactorial (n)

(prog (x)

(setq x 1)

L

(cond ((zerop n)(return x))

(t (setq x (times x n))

(setq n (sub1 n)

(go L(

64 	 LISP Issue 1

Control Structures

(casego U:any [V:(any label)])
Type: noeval, nospread, Base

A case is a list of the form (value label) where both value and
label are atoms. U is evaluated (once) and its value compared in
turn against the value in each case. If a match is found, control is
transferred to the label, as if a (go Labe l) had been obeyed. If
none of the values match, the entire casego construction is taken
to have the value nil, and no transfer of control occurs. The value
and label of each case are not evaluated and so must be literal
values. casego must occur in a context where go would be legal.

(progn [U:any]):any
Type: noeval, nospread, Base

U is a set of expressions which are executed sequentially. The value
returned is the value of the last expression.

(p rog 1 [U:any]):any
Type: eval, spread, Base

Evaluates its arguments in order and returns the value of U.

(p rog2 [U:any]):any
Type: eval, spread, Base

prog2 is like progn except that it may only be used to combine two
expressions. It is provided for compatibility with other LISP
systems.

The catch and throw functions in Acorn Cambridge LISP provide
the ability to transfer control to an enclosing function other than by
the normal process of function evaluation and return.

(catch TAG:id EXP:any FAIL:any)
Type: noeval, spread, Base

catch provides a method of non-local transfer of control. EXP is
evaluated; if within this a throw is evaluated with the tag TAG,
then catch will exit with the value of the throw (or the value of
FAIL if given).

(throw TAG:id VAL:any)
Type: MACRO, core

LISP Issue 1 	 65

Chapter 6

Used in conjunction with catch, this provides a form of
non-local control. Control continues from the last catch in the
execution path that has the tag TAG, and the catch returns the
value VAL.

6.1 Common LISP Control Structures

The following functions are based on Common LISP functions. Refer to a
Common LISP Manual for extra detail.

(let ((v1 va 11) (v2 val2...)) bodyl..bodyn)
Type: MACRO

Equivalent to lamda expressions binding variable1 to value1 and then
evaluating the sequence body. let performs all the bindings in parallel.
Thus

(let ((x y)(y x))...)

temporarily swops the value of x with the value of y.

let*
Type: MACRO As let but performs bindings sequentially.

(do ((va r1 init1 inc1)(var2 init2 inc2)..)

(exitcondition resultvalue)

body 1...)

Type: MACRO

do binds var2 to init2 and obeys the body until the condition is true.
The expression (inc2..) is used to establish new values for var2. do
updates values in parallel.

do*
Type: MACRO

As do but updates variables sequentially.

(loop body1 .. body n)

Type: MACRO

The body iterates until a return is obeyed. Within a loop, the forms

66 	 LISP Issue 1

Control Structures

(while condn val)

(until condn val)

may be used to provoke exits. These are not part of common LISP but
are extensions based on Acornsoft LISP.

(if cond value)

(if cond then-value else-value)

(when cond bodyl .. bodyn)

(unless cond bodyl .. bodyn)

(dolist (var init-list result) bodyl ...)

Type: MACRO

(dotimes (var count result) body1...)
Type: MACRO

Obey the body within the variable bound to 0, 1,..[count - 1].

(dolist (x '(0 1 2) 'done) (print (times x x)))

(dotimes (x 3 'done) (print (times x x))

have the same effect.

LISP Issue 1 	 67

7 Loops

The map functions of LISP provide the capacity for iterative operations
over data structures. The functions mapc, mapcar and mapcan apply a
given function to successive cars of a given list, thereby processing each top
leve1 element of the list; the functions map, map list and mapcon apply the
given function to successive cdr ' s of the given list. The functions map 1 i st
and mapcar return copied lists of the results of these multiple applications;
mapcon and mapcan use rep la cd ' s to modify the list of accumulated
results.

There are also a collection of similar functions which have arguments in
MacLISP order and support mapping over multiple lists. These are:
cl:mapc, cl:mapcan, cl:mapcar, cl:mapcon, cl:mapl,

cl:maplist.

(map x:list FN:function):any
Type: eval, spread, core

Applies FN to successive cdr segments of X, i.e. X, (cdr X) , (cddr
X) ... The list X is returned.

(mapc X:list FN:function):any
Type: eval, spread, core

FN is applied to successive car segments of list X (i.e. (car X),
(cad r X), (caddr X) ...) . The list Xis returned.

(mapcan X:list FN:function):any
Type: eval, spread, core

A concatenated list of FN applied to successive ca r segments of X is
returned. Note that FN must return a value that is a list for mapcan to
work.

(mapcar X:list FN:function):any
Type: eval, spread, core

A constructed list of FN applied to successive car segments of list X is
returned.

(mapcar '(1 2 3) (lambda (x)(plus x x)

> (2 4 6)

LISP Issue 1 	 69

Chapter 7

(mapcon X:list FN:function):any
Type: eval, spread, core

A concatenated list of FN applied to successive cdr segments of X is
returned. (i.e. X, (cdr X) , (cddr X) ...) . Note that FN must return
a value that is a list.

(map List X:list FN:function):any
Type: eval, spread, core

A constructed list of FN applied to successive cdr segments of X is
returned.

(maplist '(a b c d e f) (lambda (x)(compress x)

> (abcdef bcdef cdef def of f)

70 	 LISP Issue I

8 Logic Functions

The functions and, or, and not are commonly used to implement a
control structure analogous to some cond form. For bit leve1 comparisons
see logand and logor

(or [U:any]):extra-boolean
Type: noeval, nospread, Base

U is any number of expressions which are evaluated in order of their
appearance. When one is found to be non-nil, it is returned as the value
of or . If all are nil, nil is returned.

(and [U:any]):extra-boolean
Type: noeval, nospread, Base

and evaluates each U until a value of nil is found or the end of the list
is encountered. If a non-nil value is the last value, it is returned,
otherwise nil is returned.

(not U:any):boolean
Type: eval, spread, Base

If U nil, return t else return nil (same as null function).

8.1 Bit-level Operations

Acorn Cambridge LISP supports bit leve1 logical operations over integers.
These functions are constrained to work on small integers in the range
[0,2**24]. Versions of these functions with names prefixed by i may
compile into in-line code, but do not check their arguments as thoroughly as
the more general versions.

(l og a nd [U:logical]) :logical

(i log a nd [U:logical]):logical
Type: noeval, nospread, Base

The result returned is the logical AND of all the arguments. Ilogand
accepts only quantities with 24-bit values as arguments.

LISP Issue 1 	 71

Chapter 8

(logand2 U:logical

(i Log and2 U:logical V:logical):logical

Type: eval, spread, Base

ogand2 behaves like logand except that it expects exactly two
arguments. Compiled references to logand get converted into

sequences of calls to log and2.

(Logo r [U:logical]):logical

(ilogor [U:logical]):logical

Type: noeval, nospread, Base

logor forms the logical (i.e. bitwise) OR of a sequence of 24 bit values,
and is otherwise similar to logand.

(logor2 U:logical V:logical):logical

(ilogor2 U:logical

Type: eval, spread, Base

Like logor, but expecting exactly two arguments. See logand2.

(logp U:number):boolean

Type: eval, spread, Base

Returns t if U is an integer in the range 0 to 2**24-1, i.e. if the binary

representation of U is at most 24 bits long and so U can be used

directly in logand, logor etc.

(logxor [U:logical]):logical

(i log xo r [U:logical]):logical

Type: noeval, nospread, Base

As logand and logor, but forms the bitwise exclusive or

(non-equivalence) of its arguments.

og x o r 2 U :logical V:logical):logical

(i logxor2 U:logical V:logical):logical

Type: eval, spread, Base

Like logxor but expecting exactly two arguments.

72 	 LISP Issue I

Logic Functions

(lef tshi f t U:logical V:integer):logical

Type: eval, spread, Base

The 24-bit value U is shifted left by V places, keeping only the bottom
24 bits of the result. If the second argument is negative, a right shift is
indicated. See also logand, logor and logxor.

(i lef tshi f t U:integer V:integer):integer
Type: eval, spread, Base

Similar to lef tshi f t but will not accept a negative second argument.
i right shif t is provided for right shifts. See iadd1 .

(i rightshi f t U:integer V:integer):integer
Type: eval, spread, Base

Since i l e f t s h i f t can not accept a negative second argument, this
routine is provided. It shifts a (small) number right. See i lef tshi f t,
iplus.

LISP Issue 1 	 73

9 I/O and File Handling

9.1 Files

At any one time, Acorn Cambridge LISP has one file selected for input and
one for output. Reading and printing use these two files. Functions are
provided to open and to select new streams.

(open FILE:any HOW:id):any
Type: eval, spread, Base

Open the file with the name FILE for output if HOW is eq to output,
or input if HOW is eq to input. After calls to pds i nput and
pdsoutput , FILE is treated as the name of a member of the directory
specified by these calls. Alternatively, FILE can be a list consisting of
the name of the directory and the membername required. If a third
argument, of the same form as FILE, is given to open the effect is the
same as c lose performed on the third argument followed by open
performed on the first. If the file is opened successfully, a file-handle is
returned. This handle should be used to refer to the file when using
other I/O routines. An error occurs if HOW is something other than
input or output, or if the file cannot be opened.

input,output

flag values, used as the second argument to open.

(c lose FILE:any):any
Type: eval, spread, Base

Closes the file with file-handle FILE, releasing store used for buffers
and control blocks. FILE can refer to a member of a directory (see
open). nil is returned. An error occurs if the file cannot be closed. The
functions rds and w r s provide a temporary diversion for input and
output streams.

LISP Issue 1 	 75

Chapter 9

(rds FILE:any):any

Type: eval, spread, Base

Input from the currently selected input file is suspended and further

input comes from the file with name FILE. If FILE is nil, the standard

input device is selected. When end of file is reached on a non-standard

input device, the standard input device is reselected. When end of file
occurs on the standard input device the Standard LISP reader

terminates. rds returns the name of the previously selected input file.

(wrs FILE:any):any

Type: eval, spread, Base

Output to the currently active output file is suspended and further
output is directed to the file with file-handle FILE. The file named

must have been opened for output. If FILE is nil, the standard output

device is selected. w r s returns the file-handle of the previously selected

output file.

A default directory for connection is specified by pds input and
pdsoutput

(pdsinput FILE:any):nil

Type: eval, spread, Base

Causes calls to open, rds and c lose to refer to members of the

directory with name FILE. This returns nil.

(pdsoutput FILE:any):nil

Type: eval, spread, Base

As pdsinput but for open, wrs and close.

9.2 Printing

(prettyprint U:any):any

Type: eval, spread, LISPSPRI

Print the LISP expression U in an indented style.

(p r i n U:any):any

Type: eval, spread, Base

The value of U is printed with any special characters preceded by the

escape character. The value of U returned.

76 	 LISP Issue 1

I/O and File Handling

(princ U:any):any

Type: eval, spread, Base

The value of U is printed with no escape characters. The value of U is

returned.

(princl. U:any):any

Type: eval, spread, LISPSPRI

As princ but ensures that printing starts at the beginning of a line.

(p r i ncs U:any):any

Type: eval, spread, lispcomp

The same as pr i nc except that it prints a newline before U if the line

is not at the beginning.

(prinex U:number Vinteger):number

Type: eval, spread, Base

The number U is printed in hexadecimal in a field width V.

(pr i n l U:any):any
Type: eval, spread, LISPSPRI

Like pr i n but treats circular lists correctly.

(print U:any):any

Type: eval, spread, Base

The value of U is printed, with escape characters, followed by a new

line. print will fail if given cyclic structures, and there is no guarantee

that the output it produces will be acceptable to the read function - in
particular gensym s and binary code print legibly, but not in a way

where they can be re-input.

(print ' !*comp) 	prints !*comp

(printc U:any):any

Type: eval, spread, Base

As for print but with no escape characters.

(printc ' !*comp) 	prints *comp

(pr i nt cm U:any N:integer):any
Type: eval, spread, Base

LISP Issue 1 	 77

Chapter 9

As for pr i n t c but leaving a left margin of size non line overflow.

(printl U:any):any
Type: eval, spread, LISPSPRI

Prints circular lists without looping for ever. Reference points are
labelled in the output with %%Ln: and referred to by %%Ln.

(pri ntm U:any N:integer):any
Type: eval, spread, Base

As for prnnt but leaving a left margin of size N on line overflow.

(supe rpr i nm U:any N:integer)
Type: eval, spread, LISPSPRI

Same as superpri nt but leaves a left margin of width N.

(supe rp rint U:any):any
Type: eval, spread, LISPSPRI

Prints U in an indented format (if it will not all fit on one line) which
is intended to make the structure of the list more readily visible. The
detailed print style is tuned for the display of LISP programs, and so
some words (e.g. prog, lambda, quote) are treated specially by
superprint, forcing it to split lines in standardized places. The value
returned is the argument.

(superpr i ntm U:any N:integer)

Type: eval, spread, LISPSPRI

Same as superpri nt but leaves a left margin of width N, and
terminates with a number of newlines.

(tyo U:integer) Type: eval, spread, Base

Prints the character with internal code U.

(tyo 65) 	prints an A

(terpri):nil
Type: Base

The current print line is terminated (i.e. a new line is started).

(eject):nil
Type: Base

78 	 LISP Issue 1

I/O and File Handling

Causes a skip to the top of the next output page if the destination
supports carriage controls.

i ne length LEN:{integer nil}):integer
Type: eval, spread, Base

If LEN is an integer, the maximum line length to be printed before the
print functions initiate an automatic terpri is set to the value LEN.
The initial linelength is 72 characters. If LEN is nil, the current
linelength is returned but is not reset. Values of the line length less
than 24 are not permitted.

(lposn):integer
Type: Base

lposn always returns zero. It is intended to record the line on the
page.

(out radix RADIX:integer):nil
Type: eval, spread, Base

Sets the radix that will be used when printing subsequent integer
values. Legal arguments are 2,8,10 and 16 (decimal). Note that only
small numbers are printed under control of this option - numbers
bigger than 2**24 are always printed in decimal.

(posn):integer
Type: Base

Returns the number of characters in the output buffer (ie. position in
output line). When the buffer is empty, 0 is returned.

(t t a b U:integer):nil
Type: eval, spread, Base

Enough spaces are printed to move the next character position in the
line to U.

(xtab U:integer):nil
Type:eval, spread, Base

Prints U spaces on the current line.

LISP Issue 1 	 79

Chapter 9

9.3 The Programmable Reader

(t y i):integer
Type: Base

Reads one character and returns its internal code.

(t y i pee k):integer
Type: Base

Returns the internal code for the next character in the input without
reading it. i.e. a subsequent call to tyi will return this character.

(t y i q):integer
Type: Base

As tyi but does not echo what it reads.

(read):any
Type: LIspread

Returns the next expression from the file currently selected for input.
Valid input forms are: dot-notation, list-notation, numbers,
function-pointers, strings, and identifiers with escape characters.
Identifiers are interned on the ob list. read returns eof when the
end of the currently selected input file is reached.

(read-token):atom
Type: Llspread

Reads one symbol and sets the variable *token-type* to one of number,
symbol or break-character.

(read-tokenq):atom
Type: Llspread

As read-token but does not cause echo.

(readch):id
Type: Llspread

Returns the next character from the file currently selected for input. If
all the characters in an input record have been read, the id eol is
returned. If the file selected for input has all been read, the id eof is

80 	 LISP Issue 1

I/O and File Handling

returned. Note that the normal LISP escape character conventions and
macro expansion do not operate in character by character reading.

(readchq):id
Type: Llspread

As readch but does not cause echo.

(readq):any
Type: LIspread

As read but does not cause echo.

(asci i CODE:integer):character
Type: eval, spread, Base

Returns the character corresponding to the given internal code e.g.
(ascii 48) returns the character !O.

(character N:integer):integer
Type: MACRO, LISPSPRI

character gives the character corresponding to the integer N by
reading the character-atom-table.

character-atom-table

A table of characters used by the reader and by character. It
translates from internal code to ASCII, and allows synonyms.

fin

 The atom fin is used to mark the end of a LISP program, and it is
recommended that most files end with the sequence:

f in)))))))))))))))))))))))))))))))

If f in is omitted, the system will stop on end-of-file, but will print a
warning message to this effect.

9.4 Syntax

The LISP system read functions are driven by the syntactic properties of the
characters encountered. The syntax properties are defined by a read-syntax
table. A copy of the existing one can be made by the function
(copy-synt ax-t ab e <t ab e>) and the free variable
read-syntax-table rebound.

LISP Issue 1 	 81

Chapter 9

(s e t s yn t a x U:chars V:property W:value):chars
Type: eval, spread, LISPRDMC

U specifies a character or characters that are to be given special
properties with respect to input. U can be a single-character id, a list of
such ids or a string, which is treated as a list of characters. V specifies
the property and if W is non-nil this property is set up for each
character. If W is nil then the property is cancelled for the given
characters. V can take the following values. The value returned is that
of U.

escape 	enables the character to force any character following it
to be treated as a letter.

break-character causes the character to terminate identifiers.

digit 	 initially applies to 0 	9, not wise for user to change!

lowercase 	initially applies to a 	z, not wise for user to change!

macro 	value should be a function, which is called (with no
arguments) whenever the character is encountered in the
input. The result returned by this function becomes an
element of the list being read.

splice 	 as for macro except a list of items to include in the list
being read is expected to be returned from the function.
A special case is when the function returns nil, when the
macro character plus anything read by the function are
ignored by the main reader. (This is how comments are
implemented).

The characters that have special input properties initially are:

ignore 	 eol, ff, blank, tab

break-character 	eol, ff, blank, tab, eof (.){}#$%%& = -
\[] + ;,*:()?/

escape

digit 	 0123456789

may-start-number +

upper case 	ABCDEFGHIJKLMNOPQRSTUVWXYZ

82 	 LISP Issue 1

I/O and File Handling

letter 	 abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

For example, to rename the characters * and - from the set of
break-characters, evaluate (set syntax " -*" ' b r ea k ! -c ha ra cter I

token-type

This variable is set by the tokenizes of the LISP reader to indicate the
type of the token read. Possible values are: break-character,
result-of-read-macro, number, symbol or escape.

The meanings of these are obvious when taken with setsyntax .

(b r ea kp U:any):boolean
Type: eval, spread, Base

breakp tests its argument to see if it is a character such as a dot,
bracket or blank that would terminate an atom. See also di g i t ,
liter.

(liter U:any):boolean
Type: eval, spread, Base

Returns t if U is a character of the alphabet, nil otherwise.

(i nte rna code U:id):integer
Type: eval, spread, Base

If U is a single character id its ascii code is returned. See asc i i .

9.4.1 Character leve1 syntax

Comments are by default introduced by %, and they last until the
end of a line. Since they are implemented by a splice readmacro, the
character that introduces comments can be changed (see
set syntax).

blank The atom blank has an initial value that is either the character
blank or space. To test if 'ch' is a space, you can either type:

(eq ch blank)

Or

(eq ch (quote !)).

See entry under ! for further explanation of the above.

LISP Issue 1 	 83

Chapter 9

dollar The initial value of dollar is the character

f 	The initial value of f is nil, and so f can be used as a name for 'false'.
Unlike some other systems, in Cambridge LISP f can be used as a
bound variable, and the local binding will override the global value.

1par 	The initial value of l par is the atom '{', a left parenthesis.

period The initial value of the atom period is the atom

rear The initial value of the atom rpa r is the atom ')', a right
parentheses.

tab 	Variable having the value of the character tab.

eqsign The initial value of eqsign is = .

9.5 Interacting with the LISP supervisor

(p r a rg U:mode):mode
Type: eval, spread, core

mode is one of nil, t, pretty or expanded. After (pra rg nil) , the
LISP supervisor does not echo what it reads and interprets. (pra rg t)
causes the supervisor to print arguments; (pra rg ' pret ty) causes it
to superprint them; and (pra rg ' expanded) causes it to superprint
them after expansion of readmacros. See prva l and prmsg. The initial
state is no echo. The function returns the previous value.

(prmsg U:boolean):boolean
Type: eval, spread, core

If U nil, then the printing of messages by the LISP supervisor is
inhibited. The function returns the previous value.

(p r va U:any):integer
Type: eval, spread, core

prval can be used to control the way in which the LISP supervisor
prints the values of expressions it processes. After (prva L 0) it prints
nothing. (prva L 1) or (prval nil) , which are the default, use
print to display the result of a computation; while after (p rval 2)
the function pr i n t c is used. If U is 3, or pretty, values are
superprinted. The function returns the previous value.

84 	 LISP Issue 1

9.6 Saving Work

(preserve U:function)
Type: eval, spread, Base

a LISP core-image can be created by executing preserve. The name
DUMP refers to a directory. The state of LISP is written out onto the
file, in a format suitable for loading as an initial image. After the
system has been dumped, LISP stops. Store images are reloaded by
providing them to LISP under the directory IMAGE when the system
starts up. If a function was specified by U when preserve was done,
this function is called when LISP starts up again. If none was
specified, then the supervisor that was being used when preserve was
called is used. The image is written to the member LSPROOT.

(rdf INFILE:id OUTFILE:id):nil
Type: eval, spread, core

Reads and executes the LISP code in the given file, with the output
going to the other file. If OUTFILE is null, or is ommitted (the
normal use), then the terminal is used.

(s et ret urn code U:integer):integer
Type: eval, spread, Base

Sets the eventual OS return code. set retu rnc ode nil reads the
return code currently set up.

(supervisor)
Type: core

supervisor is a user entry into the standard LISP loop that reads,
echoes and evaluates LISP code. It can be useful for processing
data-files that contain executable LISP statements. There is no exit.

(stop U:integer)
Type: eval, spread, Base

Exits directly from LISP. (stop n) gives a return code of at least n.
See set returncode for a more general way of controlling return
codes.

LISP Issue 1 	 85

10 Evaluating Functions

(eva l U:any):any
Type: eval, spread, Base

U is evaluated as a piece of LISP code with respect to the current
collection of variable bindings. eval is the function used by the LISP
interpreter to evaluate LISP code. eval is an inverse of quote, hence
(eval ' a) is equivalent to requesting the value of a.

(evlis U any):any
Type: eval, spread, Base

ev l i s returns a list of the evaluation of each element of U.

(apply FN:{id function} ARGS:any-list):any
Type: eval, spread, Base

FN must be a function in the form of a code pointer or lambda
expression, or else an id which has been defined as a function. ARGS
must be a list of arguments in a form ready to be bound to the formal
parameters of FN (i.e. if FN expects evaluated arguments then they
must be already evaluated). The result of evaluating FN with the
values given in ARGS bound to its formal parameters is returned. If
ARGS contains more items than FN has formal parameters, then the
excess items are ignored, and if ARGS has fewer items, the excess
formal parameters are set to nil.

(progn

(setq x car)

(setq y'((a . b)))

(apply x y)

> a

(mkquot e U:any):any-list

This is a function of one argument and its definition is equivalent to
(lambda (X) (list 'quote X)).

(quote U:any):any
Type: noeval, nospread, Base

Returns U unevaluated.

LISP Issue 1 	 87

Chapter 10

(function fn:function):function

Type: noeval, nospread, Base

The function f n is to be passed to another function. If f n is to have

side effects, its free variables must be fluid or global. This function is

like quote (indeed, the interpreter does not distinguish between them),
but if (function (Lambda ...)) occurs in code that is being

compiled, the lambda expression will be compiled, and indeed may be

expanded into in-line code, rather than into a separate sub r.

(g t s U:id):any

Type: eval, spread, Base

This returns the current value of the identifier U, or nil if it is unset.

g t s is intended particularly for evaluating non-local variables, where it
is a cheap but restricted equivalent to (eva L U) , except perhaps for its

treatment of unset values.

10.1 Declarations and Binding

(fluid IDLIST:id-list):nil

Type: eval, spread, core

The ids in IDLIST are declared as fluid type variables. Ids not

previously declared are initialised to nil. Variables in IDLIST already

declared fluid are ignored. Changing a variable's type from global to

fluid is not permissible and results in an error.

(f L u i dp U:any):boolean

Type: eval, spread, core

If U has been declared fluid (by declaration only), t is returned,

otherwise nil is returned.

(g L oba L IDLIST:id-list):nil

Type: eval, spread, core

The ids of IDLIST are declared global type variables. If an id has not

been declared previously, it is initialised to nil. Variables already

declared global are ignored. Changing a variable's type from global to

fluid is not permissible and results in an error.

88 	 LISP Issue 1

Evaluating Functions

(globalp U:any):boolean
Type: eval, spread, core

If U has been declared global or is the name of a defined function, t is
returned, otherwise nil is returned.

(un fluid IDLIST:id-list):nil
Type: eval, spread, core

The variables in IDLIST that have been declared as fluid variables are
no longer considered as fluid variables. Others are ignored. This affects
only compiled functions, as free variables in interpreted functions are
automatically considered fluid.

(ungobal U:id):nil
Type: eval, spread, core

Undoes effect of global.

(prog VARS:id-list [PROGRAM:{id any}]):any
Type: noeval, nospread, Base

VARS is a list of ids which are considered fluid when the prog is

interpreted, and local when compiled. The prog ' s variables are
allocated space when the prog form is invoked, and are deallocated
when the prog is left. prog variables are initialised to nil. The
PROGRAM is a set of expressions to be evaluated in order of their
appearance in the prog function. Identifiers appearing in the top level
of the PROGRAM are labels which can be referenced by go. The
value returned by the prog function is determined by a return function
or nil if the prog "falls through". The VARS introduced by prog may
have to be declared fluid if it is required to reference a binding made in
this prog within a function called from within the prog

10.2 Function Definition

(de NAME:id PARAMS:{id 	FN:any):id
Type: noeval, nospread, Base

The function FN with formal parameter(s) specified by PARAMS is
added to the set of defined functions with the name NAME. Any
previous definitions of the function are lost. The function is left
unchanged unless the *comp variable is t in which case the expression
FN is compiled. The name of the defined function is returned.

LISP Issue 1 	 89

Chapter 10

(de structEqual (x y)

(cond ((eq x y) t)

((atom x) nil)

((structEqual (car x)(car y))

(structEqual (cdr x)(cdr yl

(def st U:dlist IND:id):id-list
Type: eval, spread, Base

A dlist is a list in which each element is a two element list: (ID:id
PROP:any). Each id in U has the indicator IND with property PROP
placed on its property list by the put function. The value of def list
is a list of the first elements of each two element list. Like put ,
def st may not be used to define functions.

(def p rop U:dlist IND:id):list
Type: eval, spread, core

Like de f list, but tries to compile the properties before placing them
on the property list. No error occurs if a property is not compilable.

(df NAME:id PARAM:Iid id-list} FN:any):id
Type: noeval, nospread, Base

The function FN with formal parameter(s) specified by PARAM is
added to the set of defined functions with the name NAME. Any
previous definitions of the function are lost. The function created is of
type f expr unless the *comp variable is t, in which case the expression
FN is compiled and an f sub r is created. The name of the defined
function is returned.

(dm MNAME:id PARAM:fid id-list} FN:any):id
Type: noeval, nospread, Base

The macro FN with formal parameter(s) specified by PARAM is
added to the set of defined functions with the name MNAME. The
result of the macro should be an expression to be evaluated. Any
previous definitions of the function are overwritten. The function
created is of type ma c ro, and the name of the macro is returned. If
*comp is true, then the macro is compiled.

For example, if a macro to enable writing (push x L) with the effect of
(setq (cons xL)) is required:

90 	 LISP Issue 1

Evaluating Functions

(dm push(LL)

(list 'car (list 'setq (caddr LL)

(list 'cons (cadr LL)(caddr LL)

(expand L:list FN:function):list
Type: eval, spread, lispcomp

FN is a defined function of two arguments to be used in the expansion
of a macro. expand returns a list in the form:

(fnL[0] (fnL[1] 	(fnl[n-1] l[n])))

where "n" is the number of elements in L, L[i] is the ith element of L.

(f nt ype U : f unc t i on):{(ftype . nargs) atom}
Type: eval, spread, Base

If U is either a piece of binary code, or a lambda expression, the result
returned will be a dotted-pair (type . na rgs) specifying the type and
number of arguments that U requires. The possible types are expr,
fexpr, sub r and f sub r, and if na rgs is given as negative, it means
that the function will accept an indefinite number of arguments. If
given a non-functional or malformed argument, some atomic value is
returned.

lambda

lambda is a marker atom that identifies a piece of LISP structure as
representing a function. The correct syntax for its use is

(lambda variables expr1 expr2 	exprn)

where variables is a list of formal arguments that the function needs,
and the expressions are the body of the function. See lambdaq.

lambdaq

lambdaq introduces a function that will receive its arguments
unevaluated. Except for supressing argument evaluation, lambdaq
behaves exactly like Lambda . The lambdaq facility in Cambridge
LISP takes the place of fexpr/f subr activity in some other systems.

macro

Macros are introduced by calls to dm, and subsequently calls of the
form (name args) will get trapped, and the entire function application
passed to the macro definition for processing. See dm for details.

LISP Issue 1 	 91

Chapter 10

(cons tantp U:any):boolean
Type: eval, spread, Base

Returns t if U is a constant (a number, string, function-pointer, or
vector).

(make-constant NAME:id VALUE:any):id
Type: eval, spread, LISPRDMC

The identifier NAME is made into a constant with value VALUE.
NAME cannot now be bound as an argument to a function.

(remd FNAME:id)anil dotted-pairi
Type: eval, spread, Base

Removes the function named FNAME from the set of defined
functions. Returns the ef type . f unct i on) dotted-pair or nil as does
getd. The global/function attribute of FNAME is removed and the
name may be used subsequently as a variable.

10.3 Compiler Functions

(codep U:any):boolean
Type: eval, spread, Base

Returns t if U is a pointer to compiled code.

(compi Le U:id-list):id-list
Type: eval, spread, fispcomp

comp i le takes a list of names of functions and compiles them. See also
carcheck, *pgen, prof i le.

Example:

(compi le ' (FUN1 FUN2 FUN3))

(comprop U:id-list PROPNAME:id):id-list Type: eval, spread, lispcomp

For each id in U its property with name PROPNAME is compiled.
These properties must be lambda expressions.

92 	 LISP Issue 1

Evaluating Functions

(modu e U:id):nil
Type: eval, spread, Base

This directs the compiler to put the code that it generates into a
module for later use. The code will be written directly to the DUMP
directory if present, otherwise it will be written to the IMAGE
directory, as well as being kept in store in case it is needed in a
bootstrapping process. The module selected by modu e will replace
any previous one with the same name. Empty modules are eventually
purged from the system. The name nil and any starting with the
characters `LSP' should be avoided. (endmodue) or another call to

module terminates a module.

(excise NAME:{ id id-list})

Type: eval, spread, Base

LISP has a load-on-call mechanism, and the function excise can be
used to unload previously loaded modules. If name is nil then
everything is unloaded, otherwise the named module(s) are unloaded.
As a particular case, excise can be used to recover the store taken up
by the LISP compiler, in that (excise ' LSPCOMP) purges the relevant
functions. Note that after excise has been called, further reference to
the excised module will result in it being reloaded.

(endmodule)

See module .

LISP Issue I 	 93

11 Editor entry Points

(f ed i t FN:id):any
Type: noeval, spread, lispedit

f ed i t enters the structure editor to edit the function defined with the
name ID. For more details of the editor see chapter 2. If the editor is
entered with no argument, then the last edit is resumed, either from
the start if the edit was left via s top or ok , or at the same place if the
last edit was left by save .

(ed i tp U:id):any
Type: noeval, spread, lispedit

ed i tp enters the structure editor to edit the property list of the
identifier U. For more details of the editor see chapter 2 and f ed i t .

(ed i tv U:id):any
Type: noeval, spread, lispedit

ed i t v enters the structure editor to edit the value of the identifier U.
For more details of the editor see chapter 2 and f ed i t .

LISP Issue 1 	 95

12 Error Control

(errorset U:any FLAG:integer):any
Type: eval, spread, Base

A LISP program can call eva 1 to get a fragment of code explicitly
evaluated. If this is done, however, errors in the code will cause a
complete backtrace of all the functions being executed. error set is a
variant of eval that overcomes this problem, and allows the user to
obey code while keeping control if the code turns out to be faulty. The
result returned is the same as (list (eval U)) if the evaluation
works, but if there is an error, the result returned is atomic and is a
number identifying the type of error that occurred. See error for
further details. The value of FLAG determines how much information
about the error is reported to the user. A value of zero results in no
notification about the error, and values 1 to 5 result in progressively
more information about the functions being obeyed and the variables
on the stack being printed.

(progn

(setq inputVariable (errorset (read) 0))

(cond ((numberp inputVariable) (setq inputVariable "error"))

(t inputVariable)

is a first attempt to cope with errors in input

*emsg

is set by errors to the error message produced, and so is useful after
errorset catches the error.

(error NUMBER integer MESSAGE any)
Type: eval, spread, Base

NUMBER and MESSAGE are passed back to a surrounding
errorset (the Standard LISP reader has an er rorset). MESSAGE

is placed in the global variable *emsg and NUMBER becomes the
value of the errorset . error can be called with a single argument
which becomes the message, the error number defaulting to zero. Fluid
variables and local bindings are unbound to return to the environment
of the errorset . Global variables are not affected by the process.

LISP Issue 1 	 97

Chapter 12

(ba c kg a g U:integer):integer
Type: eval, spread, core

The amount of information printed after an error can be controlled by
the use of ba c kg a g . This function takes one argument, which sets the
leve1 of printing desired. Arguments should be integers in the range 0
to 6:

0 means no notification of errors at all;
1 gives the header message ERROR:... ;
2 in addition notes the names of functions being obeyed.
Codes 3,4 and 5 give progressively fuller printing of
variables found on the stack.

nil is treated as meaning 0, and any argument out of range is treated as
5.

98 	 LISP Issue 1

13 Debugging in LISP

13.1 Tracing Functions

(t race U: I id id—list]):{id id-list}
Type: eval, spread, Base

Sets up tracing for any function whose name appears in the list U or
the function U.

(t r a c es e tq U:id-list):id-list
Type: eval, spread, Base

After a call to t racesetq in interpreted code, the use of set or setq
to update the variables named in U leads to a message being printed.
Unlike trace, tracesetq has one list of traced variables, and to stop
tracing a call (tracesetq nil.) should be used.

(untrace U:id-list)
Type: eval, spread, Base

Undoes the effect of trace for the variables named in U.
(tracecount N:integer):nil

Type: eval, spread, Base

Causes system to suppress next N items of trace output. This is •
useful for delayed errors by switching on trace before a problem
occurs.

(embed NAME:id NEWDEF:function)
Type: eval, spread, core

embed is used to provide more detailed tracing than is
available with trace, or to control the behaviour of system routines. The definition

of the function NAME is replaced by NEWDEF, where
definition may contain calls to the current value. The old definition is
stored and can be recovered by unembed. For example if the global
variable GLOB was of interest before and after the function change,
one could use the following to get the information:

LISP Issue 1 	 99

Chapter 13

(embed 'change(lambda (X)

(print (list "Value of glob on entry:" GLOB))

(changeX)

(print (list "changed by change to:" GLOB))))

(unembed U:id)
Type: eval, spread, core

Undoes effect of embed .

13.2 Tracing Memory Use

(readcount U:function V:any):integer
Type: eval, spread, Base

Reads a call-count accumulated in a function compiled with the profile
option set. If V is non-nil then the count is reset to O.

(setbtr LEV:integer):integer
Type: eval, spread, Base

setbtr sets the leve1 of backtrace information.

0 Totally silent error recovery
1 Give the message only
2 Message and list of function on the stack
3 Like 2 with extended list of functions
4 Like 3 but includes all fluids bound
5 Message, functions, fluids and arguments to compiled functions
6 As 5 with expressions prettyprinted
7 As 6 with the loop printer printl used
8 As 5 with compiler temporaries as well
9 bcplstack printed before style 8.

Values higher than 8 are only useful for system developers. The value
returned is the previous leve1 value. Note that setbtr works at the
lowest level, and as such calls to other functions, especially errorset

will nullify the effect of this function. In general, users are
recommended to use the backgag function which changes the
backtrace characteristics at a higher, and hence more predictable level.

100 	 LISP Issue 1

Debugging in LISP

(count N:integer):integer
Type: eval, spread, Base

After (count n) has been obeyed, LISP will allow about n cons es to
occur before causing an error:

'CONS COUNTER OVERFLOW'.

Note that the counting is very approximate, and that generally n
should have a value of several thousand. count returns as its value the
previous value of the cons counter. If a count of zero is established,
the cons count er trap is disabled. count is intended for use with
errorset and makes it possible to limit the amount of computation
that a piece of code can perform. See speak.

(s pe a k):integer
Type: Base

speak returns the current value of the cons counter. Note that a value
of 0 means that the counter is disabled, and that the number inspected
by speak is only updated when a garbage collection occurs.

13.3 Timing Functions

(tempus-fugi t)
Type: Base

A call to tempus-fugit will result in LISP printing a line of text
containing timing and store use figures.

(tempus!-fugit)

prints

tempus-fugit after 3.21+41.11 secs - 40.9% store used

(t i me):integer
Type: Base

Returns the elapsed time (in milliseconds) used so far this run,
excluding overheads (see gct i me) .

(t imeofday):string
Type: Base

Returns a string giving time of day.

LISP Issue 1 	 101

Chapter 13

(timeofday)

> "20:16:36"

(d a t e):string
Type: eval, spread, Base

This returns a string giving the current date.

102 	 LISP Issue 1

14 Miscellaneous Functions

(maps tore U:boolean)
Type: eval, spread, Base

maps to re prints details of all compiled functions present in the LISP
heap. If any of these were compiled with the statistics option (see
prof i le) , the counts will be displayed and reset to zero. (maps to re
t) prints a similar map of the core LISP system for use by system
programmers.

(reclaim):nil
Type: Base

A user call to the function rec la i m forces LISP to garbage-collect. A
side effect of garbage collection may (see verbos) be the printing of
some store-use statistics.

gcdaemon
Type: User provided function

If a function gcdaemon is defined by the user, it will get called at the
end of each garbage collection if it is compiled and not traced.
gcdaemon will be handed one argument, which will be the serial
number of the garbage collection just completed. The gcdaemon
facility will be inhibited within execution of itself, so garbage
collections triggered by work done within gcdaemon will not normally
lead to re-entry to the function. Erroneous exits from the gcdaemon
function will lead to the function's definition being removed, and so
after the deliberate creation of such an error state gcdaemon should be
redefined.

(gct ime):integer
Type: eval, spread, Base

The value returned by gct i me is the mount of time (in milliseconds)
consumed by 'overheads' since the start of the current LISP run. For
these purposes, 'overheads' include initial loading of LISP, the
dynamic loading of modules and garbage collection.

(verbos N:integer):integer
Type: eval, spread, Base

LISP Issue 1 	 103

Chapter 14

Sets garbage message leve1 to N. N = 0 for no messages, N = 1 for
garbage collection, N > 1 for commentary on FASL activity. The
initial setting is N = O. The value returned is the previous value.

14.1 Graphics Functions

Acorn Cambridge LISP provides a set of graphics routines. In order to use
them, a graphics screen mode must be selected by calling (mode n) with n
= 0, 1, or 2. Mode 0 provides 640 * 256 resolution in monochrome, mode 1
is 320 * 256 with 4 colours, and mode 2 is 160 * 256 with 16 colours. The
co-ordinate system for the screen can be reset by (sca le h), but by default
the screen has height 1024. After a call to (sca le h), the top of the screen
has y co-ordinate h. The width of the screen is always 5/4 times its height.
(cls) clears the screen, and (home) moves a notional graphics cursor to the
centre of the screen. Two styles of graphics are supported:

(1) simple cartesian graphics
(moveto x y), (drawto x y)

(2) turtle graphics
(turn n), (turnto n)
(move I.), (draw l)

If a closed convex figure is drawn on the screen between calls (fill t) and
(fill nil) the area will be filled in. (circler) and (circleat x r y)
draw circles, and with (fill t) set, they draw filled in circles.

The effect of ink depends upon the screen mode; small arguments will lead
to solid colours, and larger values will give a variety of shaded effects.

(circle r) 	 draw circle at current position
(circleat x y r) 	draw circle at position x,y
(fill <flag>) 	set/clear area - fill mode

(ink n) 	 establish colour
(mode n) 	 set screen mode
(move l) 	 Turtle graphics
(draw l) 	 Turtle graphics
(drawto x y) 	 Cartesian graphics
(moveto x y) 	 Cartesian graphics
(cis) 	 clear screen

104 	 LISP Issue 1

Miscellaneous Functions

(home) 	 go to mid-screen
(scale h) 	 set logical screen height
(paper n) 	 establish colour
(turnto n) 	 turns through a specified angle:
(turnto 0) 	 points to 12 o' clock, and positive

angles turn clockwise.

LISP Issue 1 	 105

Appendix A Error Messages

0 	User call to error function
1-5 	Bad argument for plus
7 	Bad argument for a division function
8 	Bad argument for minus
9 	Malformed number in buffer detected by numob
10 	Bad argument for evenp
11 	Bad argument for shift function
12-13 Bad argument for logand
14-15 Bad argument for logor
16-17 Bad argument for logxor
18 Argument for remob not an identifier
19-21 Bad argument for expt
22-23 Bad argument for greaterp or lessp
24 	Attempt to take car of an atom
25 	Attempt to take cdr of an atom
26 	Rplaca given atomic first argument
27 	Rplacd given atomic first argument
28 	Orderp can not process gensyms
29 	Bad argument for gts
30-31 Bad syntax for quote function
32 	Bad argument for unset
33-34 Bad syntax in cond expression
35 	Bad argument for plist
36 	Second argument for open neither input nor output
37 	Bad first argument for open
38 	Mkatom failed-atom assembly buffer not set up
39 	Numob failed-atom assembly buffer not set up
40 	Atom assembly buffer empty
41 	Pack failed-atom assembly buffer not set up
42 	Bad argument for pack
43 	Unset variable
44 	Illegal object used as a function
45 	Undefined function
46 	Circular definition of function
47 	Unset variable in macro-expansion
48 	Funargs not implemented

LISP Issue 1 	 107

49 	Bad syntax in lambda expression
50 	Illegal call to code1 function
51 	Illegal call to fcode function
52 	Megal call to lambdaq function
53 	Too many arguments in lambda expression
54 	Too many arguments for function
55 	Illegal call to (lambda x ...) function
56 	Illegal call to a macro
57-58 Illegal item in list of bound variables
59 	Illegal item in list of prog variables
60 	Return not directly in a prog
61 	Attempt to divide by 0.0
62 	Bad argument for fix
63 	Argument for fix > 10**9
64-66 Bad format for define
67 	Bad argument for set or setq
68 	Attempt to set the value of nil
69-71 Bad syntax for setq
73-74 Bad format for deflist
75 	Bad format in deflist/fexpr
76 	Bad argument for put
77 	Bad argument for flag
85 	Bad argument for remflag
86 	Bad argument for remprop
87 	Bad argument for prop
89 	Not enough store for vector request
90 	Casego not directly in a prog
91 	Go not directly in a prog
92-96 Bad argument for times
97 	Atom too long (limit is 253 chars)
98 	Bad syntax in number
99-100 Bad argument for xtab
101-102 Bad argument for ttab
108 	Illegal multiple assignment
109 	Bad argument for linelength
110-111 Bad syntax for prog
112 	Bad syntax for go
113 	Labe1 not found
114 	Attempt to divide by zero
115 	Unable to convert fp number to rational form

108 	 LISP Issue 1

Appendix A Error Messages

129 	Store jam
131 	Bad argument for gctrap
132 	Not enough store to load basic LISP system
133 	Failure in LISP supervisor
134 	Bad argument for tobig
135 	Bad argument for torat
136 	Numeric argument expected
138 	Argument for prin1 should be atomic
139 	Error detected by operating system
140-142 Attempt to divide by zero
143 	Bad syntax for define
144 	Bad syntax for deflist
145-147 Error in mkvect
148-150 Error in access to vector
151-153 Error in attempt to update vector element
154 	Open failed-file does not exist
155 	Open failed-file already in use
156 	Bad argument for preserve
157 	Preserve failed-file not found
158 	Preserve failed-file already opened
159 	Bad argument for digch
160 	Non-atomic arg to chdig
161-162 Argument for chdig not a digit
163 	Bad argument for trace
164 	Bad argument for untrace
165 	End of file detected by read
166 	Not an atom for orderp
168 	Output radix must be 2,8,10 or 16
169 	Bad argument for gcd
173 	Illegal car access in compiled code
174 	Illegal cdr access in compiled code
175 	Illegal rplaca in compiled code
176 	Illegal rplacd in compiled code
177 	Rplacw read access illegal
178 	Rplacw write access illegal
179 	Bad argument for count
180 	Function type assumptions wrong in compiled code
181 	Bad use of car, cdr or rplaca/d in compiled code
182 	Bad argument to modular arithmetic routine
183 	Bad argument for arcsin/arccos

LISP Issue 1 	 109

184 	Bad argument for atan
185 	Bad argument for exp
186 	Bad argument for log/log10
187 	Bad argument for expt (base = 0.0)
188 	Bad argument for sin/cos
189 	Negative argument for sqrt
190 	Bad argument for tan/cot
191 	Bad argument for tan/cot
192 	Bad argument for abs
196 	Boffo overflowed in pack
197 	Bad use of 'function'
198 	Bad function name for define
199 	Maximum length of integer exceeded
201 	Bad argument for (integer) sqrt
202 	Negative argument for (integer) sqrt
203 	Exponent too large in floating point number
206 	Bad argument for bps
208 	Type code bad in bps
210 	Overflow of quotecell region
211 	Unable to open dumpfile
213 	Type code bad for getbps
214 	Attempt to open sysin for output
215 	Attempt to open sysprint for input
216 	Close failed on file
217 	Lost file in close
218 	Bad syntax in use of de, df or dm
219-220 Conflict between flag and indicator name
225 	Module already loaded
226 	Module not found
227 	Loading module did not load required function
228 	Bad syntax in call to fasl
229 	Module empty or irrelevant
230 	Format error in module
231 	Bad argument for dumpfile
232 	Dumping inhibited by return code
233 	Failed to write up core image file
234 	Bad argument for setreturncode
235 	Bad member name for faslcopy
236 	Member not found for faslcopy
237 	Faslcopy unable to open output file

110 	 LISP Issue 1

Appendix A Error Messages

242 	File already open as a sequential dataset
243 	File already open as a partitioned dataset
244 	Attempt to open file for both reading and writing
245 	Attempt to read and write same pds member
246 	Lost file in wrs
247 	Lost pds on wrs
248 	Bad argument for wrs
249 	Lost file in rds
250 	Lost pds in rds
251 	Bad argument for rds
252 	Fast loading failed-system may be in inconsistent state
253 	Function definition not recovered from module
254 	Type code bad in excise
255 	Bad member in image file found by faslcopy
256 	Bad argument for module
257 	Module already in use
258 	Unable to open module output file
265 	Cons counter overflow

LISP Issue 1 	 111

Appendix B Bibliography

A good introductory text for LISP programming:

LISP, AC Norman and G Cattell, Acornsoft Ltd 1983.

The following texts explore many of the areas where LISP is found to be the
most convenient programming tool.

Artificial Intelligence Programming, E Charniak C Riesbeck
D McDermott, Lawrence Erlbaum Associates 1980.

LISP, P Winston and B K Horn, 2nd edition Addison-Wesley 1984.

LISP 1.5 users manual
or the

Stanford LISP reference manual.

This publication describes a version of LISP which is fairly close to
32000 Cambridge Lisp:

ACM SIGPLAN Notices Vol. 14 No. 10 Oct 1979

LISP Issue 1 	 113

Index

A 	 Interpreter 18
Acornsoft LISP 8

Lambda / I, 18
Bakroot 21 	 Lambdaq II, 18
Bound variable list 11 	 Lexprs /0
Buffer 25 	 List 11

object 7
Load-on-call 21

Case 8, 9, 32 	 Loading 21
Clearbuff 25 	 Lspcomp 18, 19
Common 19 	 Lsproot 20
Compilation 18
Customisation 4

Macros /0

Diagnostics 23
Name lists 46
Numob 25

Editor 11
Eval 18 	 0
Excise 6, /9 	 Object list 7, 49
Explode 26 	 Oblist 8

Options 5

Fedit 11
Fexpr 11 Pack 25

Fluid /9 	 Panos 3
Freestore 6 	 Plus 11
Function 	 Preserve 20

definition 4 	 Prin 26
Progn 18

Garbage collection 6
Quote 18

Hash tables 46
Rdf 10

Read 25
Implied progn 18 	 Readch 25
Initialsupervisor 2/

Lisp Issue 1 	 115

Sedit //
Setsyntax 9
Special 19
Stack 6
Store 6
Stream 23
Supervisor 21

Unfluid 19

V
Value cell / 7

116 	 Lisp Issue 1

M

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128

