
ISO PASCAL

ISO PASCAL

PAR 1- NO 0410,
ISSUE NO 1
JULY 1555

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited,
Fulbourn Road, Cherry Hinton, Cambridge CB 1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It is in
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0 907876 38 2 Acorn Scientific

ii

Contents

1 	Introduction to ISO Pascal 	 1
1.1 	The Pascal language 	 1
1.2 	Using ISO Pascal 	 1
1.2.1 	Installation 	 2
2 	Using the compiler 	 3
3 	A Description of ISO Pascal 	 7
3.1 	Language reference 	 7
3.2 	Restrictions and variations 	 7
3.2.1 	Implementation-defined features 	 7
3.2.2 	Implementation-dependent features 	 9
3.2.3 	Data sizes 	 10
3.3 	Extensions to ISO 7185 	 11
3.3.1 	Identifiers 	 11
3.3.2 	Non-decimal constants 	 11
3.3.3 	Bit-vector operators 	 11
3.3.4 	Reset and rewrite 	 11
3.3.5 	Miscellaneous functions 	 12
3.3.6 OTHERWISE 	 12
3.3.7 $INCLUDE 	 12
3.3.8 	Machine-code 	 13
3.3.9 	Modules 	 13
4 	Compatibility 	 17
4.1 	Compatibility with Acornsoft ISO Pascal 	 17
4.1.1 	Implementation-defined features in Acornsoft Pascal 	17
4.2 	Data sizes in Acornsoft Pascal 	 18
4.3 	Limitations in Acornsoft Pascal 	 18
4.3.1 	Identifiers 	 18
4.3.2 	Non-decimal constants 	 19
4.3.3 	Bit-vector operators 	 19
4.3.4 	Miscellaneous functions 	 19
4.3.5 OTHERWISE 	 19
4.3.6 INCLUDE 	 19
4.3.7 	Machine-code 	 19
4.3.8 	Modules 	 20
4.3.9 Warning messages 	 20
4.4 	Extensions in Acornsoft Pascal 	 20

iii

5 	Errors and debugging 	 21
5.1 	Compile-time messages 	 21
5.1.1 	Warning messages 	 21
5.1.2 	Non-Fatal Error messages 	 26
5.1.3 	Fatal compile errors 	 29
5.2 	Run-time errors 	 29
6 	Using Pascal with other languages 	 31
6.1 	Introduction 	 31
6.2 	Conformance 	 32
6.2.2 	Types 	 32
6.2.3 	Parameters 	 36
6.3 	Interfacing to Panos standard procedures 	 39
6.4 	Examples 	 41
Appendix A 	 47
Appendix B 	 99
Appendix C 	 103

iv

1 Introduction to ISO Pascal

1.1 The Pascal language

The Pascal programming language is a versatile, well-structured, and
strongly-typed high level language originally developed for use as a teaching
language, but now used for a wide variety of system and applications
software.

The major features of Pascal are its ease of use, legibility, rigorous checking
during compilation to reduce the number of coding errors and source
portability.

Note that this document is a reference manual intended as a guide to the
Acorn 32000 implementation of ISO Pascal; it is not a tutorial. Throughout
this document, ISO Pascal refers to Pascal as implemented on Acorn 32000
based products and running under the Panos Operating System.

1.2 Using ISO Pascal

ISO Pascal is a compiled language. It consists of a two-pass compiler which
translates Pascal source programs into 32000 machine code, and a
collection of pre-compiled modules (the Pascal library) to provide facilities
such as string to numeric conversion.

The first pass of the compiler checks that the program conforms to the rules
of Pascal and the second pass constructs the equivalent machine code
program.

In addition, useful facilities such as the ability to call routines written in
other languages (such as C and FORTRAN 77) have been included. This
uses the Acorn cross-calling standard introduced for use with Pascal in
chapter 6 of this document and described in full in the Panos Technical
Reference Manual.

The Pascal compiler produces extensive debugging and error trapping
information, though this can be disabled using compiler options. There are
also various extensions to the standard, e.g. bit-wise logical operations.

Pascal Issue 1 	 1

Chapter 1

1.2.1 Installation

The Pascal compiler is supplied on a 5Y4 inch double-sided floppy disc.
Procedures for installation are shown in the relevant chapter in the
appropriate User Guide supplied with this system. If the correct procedures
are not followed, then Pascal may not function correctly. Note that even
though Pascal has been supplied on floppy disc, and is going to be used with
the DFS, it still must be installed. If you wish to know more about file
extensions or utilities in general, consult the Panes Guide to Operations.

2 	 Pascal Issue 1

2 Using the compiler

There are a number of arguments which can be issued to the compiler
which give extra control over the input and output of the compilation, and
allow the compilation options to be used.

-list
This command specifies that a line-numbered listing is sent to
Prog-lis' (by default), or a given file name.
For example: Pascal PP rog -list Pp rogn will place the listing in
Pprogn-lis. The listing consists of the original source program along
with numbered lines, and any messages that may have been generated
during compilation. This can provide a useful reference when
de-bugging. See figure 1 for a demonstration of this command. The
numbering scheme is very simple: each physical line in a source file is
numbered sequentially starting from one. Some line numbers are
followed by the characters `{' or + '. These constitute aids to tracking
down potential sources of errors.
The symbol `{' signifies that the line is a continuation of a comment
started on a previous line. Omitting the closing right brace 'I' from a
comment is a common mistake resulting in subsequent statements
being taken as part of the comment. An 'extended comment' will be
terminated by the next properly specified comment, leading to parts of
the program disappearing mysteriously.
The + ' character indicates that the line is a continuation of the
previous line, and pin-points places where semicolons might have been
omitted.

-aof
The file containing the machine code equivalent program in Acorn
Object Format, is automatically sent to a file with the same name as
that of the source file, but with the extension `-aof' This command
allows the user to specify the name of the Acorn Object Format file.
For example: Pascal Prog -aof Ob j Prog will place the object
program in a file called `ObjProg-aof' Unless an alternative extension
is given, the default `-aof' is added by the compiler.

-extend
This option makes the compiler accept programs containing any of the
extensions to standard Pascal. By default, the compiler will not

Pascal Issue 1 	 3

Chapter 2

recognise any of the extensions and use of them will result in
compile-time error messages.

-nowarn
This option prevents the compiler from issuing warning messages. As
warning messages can often indicate trouble spots in a program, this
option should only be used by programmers experienced in the use of
the compiler.

-notify
If the `-extend' option is used and `-notify' is also given, then

Warning 158 -- this is a non-standard construction

is issued each time an extension is found.

-nochecks
This option should only be used with programs that have already been
fully tested. It prevents the compiler from generating code to

i. detect the use of unassigned variables while the program is executing;
ii. detect overflow during the evaluation of expressions;
iii. check that enough memory is available for the correct execution of

the program.

-noDiags
This option inhibits the generation of, i.e. information used in the
event of program failure which locates the faulty source line by
number and displays the names and values of active variables. Other
than the behaviour following execution errors, this option has no effect
on the execution of a program; however, it does reduce the size of the
object file.

-identify
This option requests identification of the compiler.

-help
This option prints out help text.

Example compiler commands

A. The Minimal Command

4 	 Pascal Issue 1

Using the compiler

Pascal Prog1

This command will compile the source program `Prog1-Pas'; default
settings are used throughout, i.e. the aof file is called Prog 1-aof, no listing
is generated, error messages are sent to the screen, warning messages are
given, full checking and diagnostic tables are included in the object code,
and Pascal extensions are unacceptable.

B. Specifying an error file and inhibiting diagnostic tables

Pascal dfs::2.Prog1 -error dfs::0.errs -nodiags

Compilation is carried out as in the first example, except that error
message's are sent to the file 'dfs::0.errs', and no diagnostic tables are
included in the object code.

Pascal Issue 1 	 5

3 A Description of ISO Pascal

3.1 Language reference

The language reference followed for ISO Pascal is the ISO 7185 Standard,
available in a slightly revised form as BS 6192:1982 Specification for
Computer programming language Pascal, from the British Standards
Institution, and reprinted elsewhere.

3.2 Restrictions and variations

3.2.1 Implementation-defined features

This section describes those details of the language implementation which
are left as implementation-defined ("possibly differing between processors
but defined for any particular processor"), by the ISO 7185 Standard. The
numbers in brackets below refer to sections in that standard.

(6.1.7)
String-characters may be any ASCII character. NL (ASCII 10) is
currently excluded pending clarification of various statements made in
the standard validation suite.

(6.4.2.2-b)
The real-type corresponds to the 64-bit double-precision floating-point
numbers of the proposed IEEE standard for Binary Floating Point
Arithmetic (Task P754).

(6.4.2.2-d)
The char-type defines values corresponding to the ASCII 7-bit
character set, extended to include the ordinal values 128 .. 255.

(6.6.5.2)
Except in the case of text files the operations rewrite, put, reset and get
are performed at the time the corresponding statement is executed. For
text files the operation is delayed until the next actual or implied use of
the buffer variable associated with the file.

Pascal Issue 1 	 7

Chapter 3

(6.7.2.2)
MAXINT has the value 2147483647 (16_7FFFFFFF).

(6.7.2.2)
Real operations are performed to the accuracy of the proposed IEEE
standard for Binary Floating Point Arithmetic (Task P754).
Floating-point functions return results correct to 12 decimal places.

(6.9.3.1)
The default values for TotalWidth are:

Integer-type : 1
Real-type : 3
Boolean-type : 5

(6.9.3.4.1)
ExpDigits has the value 3.

(6.9.3.4.1)
The exponent character is 'e'.

(6.9.3.5)
The value TRUE is output as 'True' and the value FALSE is output as
`False', in other words for both values all letters are in lower case
except for the first which is in upper case.

(6.9.5)
PAGE causes a form-feed character (ASCII 12) to be sent to the
specified file.

(6.10)
Program parameters may only denote files, and these may only be of
types which do not include pointers. Program parameters are bound to
external files which correspond to the newline-delimited text files of
the host system.

(6.1.9)
The following table gives the alternative tokens accepted by the
compiler:

8 	 Pascal Issue 1

A Description of ISO Pascal

Reference token Alternative token

1
(.

.)

(*

1 	 *)

3.2.2 Implementation-dependent features

This section describes those details of the language implementation which
are left as implementation-dependent ("possibly differing between
processors and not necessarily defined for any particular processor") by the
ISO 7185 Standard. The numbers in brackets below refer to sections in that
standard.

(6.5.3.2)
The index-expressions of indexed variables are evaluated from left to
right.

(6.7.1)
The expressions of a member designator are evaluated from left to
right.

(6.7.1)
The member-designators of a set constructor are evaluated from left to
right.

(6.7.2.1)
The operands of a dyadic operator are evaluated from left to right.

(6.7.3)
The actual parameters of a function-designator are evaluated from left
to right.

(6.8.2.2)
The variable of an assignment statement is accessed before the
expression is evaluated.

(6.7.3)
The actual parameters of a procedure-statement are evaluated from left
to right.

Pascal Issue 1 	 9

Chapter 3

(6.9.5)
Inspecting a textfile to which PAGE was applied will return the
ASCII character Form File (code 12). This does not mark the end of a
line.

(6.10)
Program parameters may only be bound to external entities which ate
files.

(6.6.5.2)
The file parameters to READ and WRITE are evaluated the number
of times given by:

MAX(1), number of parameters involving function calls

(6.6.5.4)
The array parameters to PACK and UNPACK are evaluated once
each for each implied assignment.

3.2.3 Data sizes

Integer 	 4 bytes, doubleword aligned
Real 	 8 bytes, doubleword aligned
Char 	 1 byte, byte aligned
Boolean 	 1 byte, word aligned
Set 	 32 bytes, doubleword aligned
Records 	 n bytes, doubleword aligned
Arrays 	 (first element), doubleword aligned

Enumerated
1 .. 255 items 	1 byte, byte aligned
256 .. 32767 items 2 bytes, word aligned
otherwise 	4 bytes, doubleword aligned

Subrange (Ordinal value)
0 .. 255 	 1 byte, byte aligned
-32768 .. 32767 	2 bytes, word aligned
otherwise 	4 bytes, doubleword aligned

10 	 Pascal Issue 1

A Description of ISO Pascal

3.3 Extensions to ISO 7185

Important: these extensions (with respect to ISO 7185) will only be accepted
if the compiler is run with the -extend option.

3.3.1 Identifiers

Dollar ($) and underline (_) may be used as the second or subsequent
characters in identifiers.

3.3.2 Non-decimal constants

The form BASE DIGITS may be used to specify constants with radix other
than ten. BASE is the decimal specification of the radix, and DIGITS is a
sequence of letters or decimal digits where the letters A, B, C represent
the values 10, 11, 12 	 For example:

16_CAFE3 = 831459 = 8_3127743

3.3.3 Bit-vector operators

The following operators act on fullword integer values:

& logical AND
inclusive OR

H 	exclusive OR
< < logical left shift
> > logical right shift
— one's complement

The precedence of these operators is as follows:

&, <<, , > > same as *
H 	same as +

same as unary -

3.3.4 Reset and rewrite

The file procedures 'reset' and 'rewrite' are extended to enable file variables
to be linked with external (i.e. filing system) names. The first parameter is

Pascal Issue 1 	 11

Chapter 3

the same as in the standard procedures. The second parameter is a string
giving the name to be used by the current filing system. An example is:

reset (infile, ':1.text1');

rewrite (outfile, 'text2');

The strings may be variables, e.g.

reset (data,usersName);

A special case of the extended forms for `reset' and `rewrite' is the null
string parameter, or carriage-return, e.g. ' reset (file, ")'. In this
case, the file is bound to the console i.e. the screen for output and the
keyboard for input. The file must be a text file. This is useful in enabling
users to specify the console as a file, for example, so that text can be seen on
the screen instead of being sent to a disc file which has to be examined later.
Programs which process data until the `eof' condition becomes true for a file
can still work when the keyboard is used. The character (urn) - CI used
as input sets eof to true for the input file (or any file reset as the console).

3.3.5 Miscellaneous functions

LINENUMBER returns the number of the source line containing the
reference to the function. Source lines are numbered starting from one for
each file contributing to the compilation (see $INCLUDE).

ADDRESS(anyvar : anytype) returns the machine address of the variable
given a parameter.

SIZE(anyvar : anytype) returns the number of bytes occupied by the
variable given as parameter.

3.3.6 OTHERWISE

The reserved word OTHERWISE may be used to introduce the final clause
of a CASE statement making that clause the action to be taken if no other
clause in the case statement has been selected.

3.3.7 $INCLUDE

The $INCLUDE statement may be used to include source text from other
files during the compilation. The form of the statement is:

12 	 Pascal Issue 1

A Description of ISO Pascal

$INCLUDE 'a-file-name'

The lines in each included file are numbered from one.

3.3.8 Machine-code

The compiler permits a form of assembly language to be included in
program text. It should be noted at the outset that this facility is only
intended as a last resort when other methods of achieving a result are totally
inappropriate. No responsibility whatever is accepted for erroneous
behaviour of programs containing machine-code statements.

The general form of the machine-code. statement is:

*<mnemonic>_<operand list›;

where < mnemonic > is a 32000 standard assembly language instruction
and < operand list > is a list of one or more operands separated by commas.
For example:

*MOVD_1,X;

*SVC_12;

*ADDR_142(0),4;

Because Pascal uses integer values rather than identifiers for labels,
destinations of branch instructions must be followed by a colon:

*BNE_99:;

Machine-code does not permit access to non-local variables.

The following examples demonstrate the various operand types:

*MOVD_#123456,2;

*MOVD_\1,%external(1)+4;

*MOVD_X,%TOS;

*MOVD_12(7)[4:%B],0(%SB);

*MOVD_12(16(%PC)), 16(12 (UP))

3.3.9 Modules

Modules provide a means for separate compilation. A module may contain
definitions of procedures, functions and variables, some of which may be

Pascal Issue 1 	 13

Chapter 3

made available to other programs or modules by preceding their definition
with the reserved word EXPORT. In order to overcome limitations in
linkage mechanisms and to give flexibility to naming conventions, an
optional ALIAS may be given to a procedure or function identifier. This
alias defines the string to be used for external linkage; it has no naming
significance within the text of the program. If no alias is given the procedure
or function name is used as the linkage name.

Procedures and functions which have been exported from other modules
may be referenced by giving a procedure or function heading preceded by
the reserved word IMPORT.

Variables global to the module must be prefixed by one of EXPORT,
IMPORT or STATIC. The use of VAR for global variable declarations is
not allowed in modules. Preceding variable declarations by EXPORT
allows them to be accessed by other modules that contain similar variable
declarations preceded by IMPORT.

Global variables preceded by STATIC remain local to that module but
retain their values between calls to that module. There exists a mechanism
to allow STATIC and EXPORT variables to have initial values assigned at
their declaration.

For example:

TYPE colour = (red, green, blue);

EXPORT counter : integer := 0;

EXPORT a : ARRAY [1..6] OF integer := 12,7,23,5,1,5;

STATIC stream : integer;

STATIC called : boolean := false;

STATIC colourmap : ARRAY C2..5] OF colour := red, red, green, red;

The variable 'counter' is initialised to zero. The integer array 'a' is initialised
to the six values following the variable declaration. Arrays cannot be
partially initialised, i.e. all or none of the elements should be initialised. The
variable 'stream' has no initial value but, once set, will hold its value
between calls to this module. The boolean variable 'called' is initialised to
the value 'false' and will have this value when the module is first entered.
Neither 'stream' nor 'called' can be accessed from outside this module.

The whole module must start with the statement: MODULE
module-identifier; and end with the statement END.

For example:

14 	 Pascal Issue 1

A Description of ISO Pascal

MODULE example;

EXPORT counter : integer := 0;

STATIC called : boolean := false;

IMPORT size : integer;

IMPORT FUNCTION other ALIAS 'EY_FN'(w : integer) : integer;

FUNCTION setup(p : integer) : integer; fa local function]

BEGIN

counter := counter+1;

if called then setup := other(counter*size)

else setup := other(p*size);

called := true;

END;

EXPORT FUNCTION inner ALIAS 'EX_INNER'(p, q : integer) : integer;

BEGIN

inner := setup(p) + other(p*q*size);

END;

END. [of module]

In this example 'setup' is only accessible locally whereas 'inner' is available
to other modules/programs via the linkage name EX_INNER'.

Pascal Issue 1 	 15

4 Compatibility

Programs developed for ISO Pascal compilers, for example, work without
alteration on the 32000 system, providing no system dependent extensions
have been used. This compatibility only applies to the source form, of
course. A language developed using another ISO Pascal would have to be
re-compiled before it could be run on Acorn Cambridge Series computers.

4.1 Compatibility with Acornsoft ISO Pascal

The following differences need to be taken into consideration when
compiling programs written for Acornsoft Pascal with 32000 ISO Pascal.
Both versions of Pascal conform to the ISO standard, however, there are a
few differences in the extensions to the standard. These arise because the
two compilers have different objectives. For example, one of 32000 Pascal's
objectives has been to permit porting software from superminicomputers
and mainframes, whereas Acornsoft Pascal has been constrained by
limitations with space, and the need for compatibility with other BBC
Microcomputer software.

4.1.1 Implementation-defined features in Acornsoft Pascal

The numbers in brackets refer to sections in the ISO 7185 standard.

(6.1.7)
The ASCII characters 4 (EOF) and 13 (CR) are excluded from
string-characters.

(6.4.2.2-b)
The real-type corresponds to the 40-bit double-precision floating-point
numbers of the proposed IEEE standard for Binary Floating Point
Arithmetic (Task P754).

(6.7.2.2)
Real operations are performed to the accuracy of the proposed IEEE
standard for Binary Floating Point Arithmetic (Task P754).
Floating-point functions return results correct to 10 decimal places.

Pascal Issue 1 	 17

Chapter 4

(6.9.3.1)
The default values for TotalWidth are:

Integer-type : 12
Real-type : 12
Boolean-type : 5

(6.9.3.4.1)
ExpDigits has the value 2.

(6.9.3.5)
The value TRUE is output as 'TRUE' and the value FALSE is output
as 'FALSE'.

(6.9.5)
PAGE causes an eoln character, then form-feed (if required) to be sent
to the specified file.

4.2 Data sizes in Acornsoft Pascal

These are the same as for 32000 ISO Pascal, with these exceptions: real
data as 5 bytes, doubleword aligned, and enumerated data does not exceed
255 items. Packed data sizes are:

Subrange
0 .. 255 	1 byte, byte aligned
0 .. 65535 	2 bytes, word aligned
any other 	4 bytes, doubleword aligned

4.3 Limitations in Acornsoft Pascal

4.3.1 Identifiers

Only underline (4 may be used as the second or subsequent character in
identifiers. Dollar ($) is not permitted.

18 	 Pascal Issue 1

Compatibility

4.3.2 Non-decimal constants

The only non-decimal constants in Acornsoft Pascal are hexadecimal (these
are represented by &HexNumber).

4.3.3 Bit-vector operators

The bit-vector operators in Acorn 32000 ISO Pascal do not apply to
Acornsoft Pascal. Note that le is used to represent hexadecimal values, and
`~' is used to print these.

4.3.4 Miscellaneous functions

LINENUMBER and SIZE are not available in Acornsoft Pascal, although
ADDRESS can be mimicked with a machine-code procedure.

4.3.5 OTHERWISE

In Acornsoft Pascal, the END statement precedes OTHERWISE:

CASE Thing OF

item : stuff;

blah : real;

END

OTHERWISE 	

4.3.6 INCLUDE

The INCLUDE statement does not exist in Acornsoft Pascal (a compiler
option is used to compile other programs).

4.3.7 Machine-code

Assembly code is not permitted in Acornsoft Pascal programs. Procedures
are used instead to call machine code.

Pascal Issue 1 	 19

Chapter 4

4.3.8 Modules

There are no modules in Acornsoft Pascal.

4.3.9 Warning messages

No warning messages are given in Acornsoft Pascal.

4.4 Extensions in Acornsoft Pascal

The following procedures and functions are present in Acornsoft Pascal, but
are not available in Acorn 32000 Pascal. They deal mainly with graphics
and accessing facilities provided by BASIC. A functionally equivalent
procedure library could be written to include most of these.

Procedures:

Mode, vdu, plot, point, sound, envelope

oscli, adval, inkey, settime.

Functions:

Time, lval, rval.

Shove procedures:

release

claim

free

20 	 Pascal Issue 1

5 Errors and debugging

5.1 Compile-time messages

5.1.1 Warning messages

Warning messages do not indicate that the program contains an error; they
bring attention to various features of the program which suggest that
something might be wrong. For example, one feature of Pascal which causes
a lot of confusion to beginners is exactly where and when to use the
semicolon. This can lead to semicolons being scattered liberally throughout
the program resulting in statements like:

IF cases > maximum THEN;

writeln('there were too many cases');

According to the rules of Pascal there is nothing wrong here, but it is
unlikely that the effect will be what the user wanted. The semicolon
following the THEN makes the IF control an empty (or null) statement.
The `writeln' will always be executed regardless of the values of 'cases' and
`maximum'. Once again it is important to stress that there is nothing wrong
with the program if the effect described above is what was wanted, but as it
is very likely to be a mistake the compiler will give the warning:

IF cases > maximum THEN;

Warning 5 -- check that an empty statement is really wanted here

Below are descriptions of all of the warning messages produced by the
ISO Pascal compiler.

Warning 4 -- this statement can never be reached

This warning is issued when the compiler detects that the indicated
statement can never be executed. This is not an error, but frequently
indicates an area in the program which should be checked carefully. It
should be noted that this warning is only generated when it is patently
obvious at compile-time that the statement cannot be executed;

Pascal Issue 1 	 21

Chapter 5

non-occurrence of this message cannot be interpreted as meaning that
statements can be executed.

PROGRAM warn(output);

CONST check = false;

BEGIN

IF check THEN writeln('checking is enabled');

END.

Warning 5 -- check that an empty statement is really wanted here

Certain constructions in Pascal control the execution of a statement, e.g. IF
and WHILE. In such cases it is possible to specify that a null or empty
statement be controlled. This is acceptable Pascal, but the compiler will
issue a warning as it is very likely that the null statement is the result of a
misplaced semicolon.

PROGRAM warn(output);

[this program will only output ONE Line because of the)

[dubious semicolon following the DO)

VAR n:1..10;

BEGIN

FOR N := 1 TO 10 DO;

writeln('Hello there');

END.

Warning 9 -- only the first 253 characters of this identifier

-- will be used

This warning is issued when an identifier contains more than 253
characters. As it is not at all easy to construct a program containing
identifiers of anything like this length, it is highly unlikely that the warning
will ever be issued except from programs which deliberately set out to
generate it.

Warning 19 -- <name> has not been used

Warning 19 -- the field <name> of the record at line <number>

-- has not been used

This warning indicates that < name > has been declared but has never been
used. It is intended to be used to help remove redundant variables and to

22 	 Pascal Issue 1

Errors and debugging

pinpoint some obscure errors. For example, it can sometimes indicate an
identifier which has been spelled incorrectly resulting in a global variable
being used by accident. The second form of the message is issued when a
field of a record has never been mentioned explicitly.

PROGRAM warn;

VAR thing : integer; 	(a global declaration)

PROCEDURE inner;

VAR thinl : integer; 	(should have been 'thing')

BEGIN

thing := 0; 	 (accesses the global variable)

END; 	 (thinl has not been used)

BEGIN

inner;

END.

Warning 19 -- label <number> has not been used

The given label has been declared and used to mark a statement but has
never been used as the destination of a GOTO statement. This is not an
error but may well indicate a potential mistake.

PROGRAM warn(output);

LABEL 123;

VAR x : integer;

BEGIN

x := 0;

123: writeln('complete');

x := 1;

END. 	 (label 123 has not been used)

Warning 28 -- check that label <number> really should be outside

-- this block

The specified label has been referenced from a procedure or function
declared inside the block which declared the label. This is correct Pascal but
because integer values must be used for labels it is very easy to use the
wrong label. The warning draws attention to places where an error in
specifying a label could have an obscure effect on the program.

Pascal Issue 1 	 23

Chapter 5

PROGRAM warn(output);

LABEL 1;

PROCEDURE jump; BEGIN

GOTO 1;

END;

BEGIN

jump;

1: writeln('here');

END.

Warning 85 -- this case label is out of range

Surprisingly, the Pascal standard does not proscribe the specification of case
labels which are outside the range of the case selector except when the
CASE is used to define record variants.

PROGRAM fail(output,input);

TYPE small = 1..3;

rec 	= RECORD CASE s:small OF

1: (a:integer);

2: (b:char);

3: (c:real);

4: (d:boolean); [error 4 is not in small)

END;

VAR tiny:small;

BEGIN

read(tiny);

CASE tiny OF

1: writeln('one');

2: writeln('two');

3: writeln('three');

4: writeln('four'); 	(warning 4 is not in small)

END;

END.

Warning 89 -- the case statement did not include all possible cases

A case statement has been found which has not provided a meaning for all
the possible values of the case selector. When this occurs in a RECORD
definition it is an error. When it occurs in a CASE statement it is only a
warning, however if the case selector takes one of the unspecified values
during execution a run-time error will be reported.

24 	 Pascal Issue 1

Errors and debugging

PROGRAM fail(output,input);

TYPE small = 1..3;

rec = RECORD CASE s:small OF

1: (a:integer);

3: (b:real);

END; 	(error - no case 2)

VAR tiny:small;

BEGIN

read(tiny);

CASE tiny OF

1: writeln('one');

3: writeln('three');

END; 	 (warning - no case 2)

END.

Warning 158 -- this is a non-standard construction

This warning is issued if the compiler detects the use of an extension to
standard Pascal and the -notify compile-time option has been selected.

Warning 161 -- this comment is within another comment

This warning is the result of the compiler discovering the opening bracket,
`{' or '(*', of a comment while it is processing a comment. Although this is
in no way an error it can point out problems caused by omitting or
mistyping the closing bracket of a previous comment.

PROGRAM warn(output);

BEGIN

(this comment is not terminated properly]

writeln('this line will not be output');

(this comment will terminate the comment started

back on the line following BEGIN)

END.

Warning 162 -- this type only defines a single value

This warning is issued when a type definition results in an object which may
only ever be given a unique value. This is not an error but is so strange that
it is almost certainly the result of some mistake.

Pascal Issue 1 	 25

Chapter 5

PROGRAM warn(output);

VAR unique : 12..12; [very strange]

BEGIN

unique := 12; 	(the only value it can 	ever be given)

END.

5.1.2 Non-Fatal Error messages

As the compiler translates the program into machine code, it checks that,
amongst other things, none of the rules of the Pascal language have been
broken. If an error is detected, a message will be displayed giving the nature
of the error and an indication of where it occurred. However, ir contrast to
Fatal errors (described in the next section), the compiler will not necessarily
abandon processing because an error has been detected. As an example, if
the program contained a statement declaring the same identifier twice, then
the following message would appear:

20 	VAR tom, dick, harry, tom : integer;

1

*ERROR 20 -- TOM has already been declared in this block

The first line shows the original program line in which the error was
detected preceded by its line number, in this case 20. The compiler numbers
each line in the program starting at the first line, so that errors may be
located easily, either by examining a listing file or by using an editor.

The second line is blank except for the 1 character which points into the
line above, marking the position where the fault was detected. This line will
be omitted from error messages in cases when it would give no useful
information.

The third line is an explanation of the error. A brief description of some of
the less obvious ones is given in Appendix A.

Figure 1 shows a compilation of a Pascal program from within the Panos
editor. The source is in the background window, the compilation command
in the upper command line window, and the listing file has been loaded into
the lower window.

26 	 Pascal Issue 1

Errors and debugging

Figure I A Demonstration of a Pascal Compilation

Care should be exercised when interpreting error messages, as it is very
common for the message to indicate a point in the program which is not the
position of the actual error.

For example, the Acorn Cambridge Workstation and the BBC
Microcomputer have the two symbols plus (+) and semicolon (;) on the
same key (the SHIFT key being used to select one or the other). It is quite
likely then that a plus could be mis-typed in place of a semicolon, giving rise
to the following piece of program where the second plus should be a
semicolon.

average := (this + that) / 2 +

product := this * that;

The compiler will see these two statements as a single statement:

average := (this + that) / 2 + product := this * that;

This is a valid statement up to the second : = at which point the compiler
will report an error:

Pascal Issue 1 	 27

Chapter 5

product := this * that;

*ERROR 11 -- a semicolon is required here

As you can see, the error is not reported at the exact point at which the
mistake was made.
It is also common for errors in one part of a program to cause consequential -
errors in other parts. For example, consider the following program:

PROGRAM test(output);

VAR sum.difference:integer; (error . should be ,)

BEGIN

sum := 12 + 7;

difference := 12 - 7;

END.

Because there is an error in the declarations of 'sum' and 'difference', the
compiler will report spurious errors when they are used. The actual errors
generated by this program are:

2 VAR sum.difference:integer; (error . should be ,1

*ERROR 15 -- ':' is required here

5 	difference := 12 - 7;

*ERROR 23 -- DIFFERENCE has not been declared

Note that even though the compiler has detected the error in line 2 at the
correct place, it has made the wrong guess as to the cause. A statement of
the form:

VAR sum:integer;

was expected.
If you cannot understand why an error has been reported on a particular
statement, it may be that an error exists earlier in the program, and the
error message is a result of a previous mistake.

Appendix A contains descriptions of error messages which may be
produced by the compiler. Each description is accompanied by one or more
complete (albeit incorrect) programs which demonstrate the fault, or the

28 	 Pascal Issue 1

Errors and debugging

correct use of features which the error indicates have been misused. In the
error message statements, any item enclosed in angle brackets e.g.
< something > will be replaced by an item appropriate to the context of the
message.

5.1.3 Fatal compile errors

Certain errors cause the compiler to abort the compilation without trying to
analyse the rest of the Pascal program.

Fatal errors are marked by the text

*FATAL ERROR nnn --

followed by the reason for stopping. The only way to prevent the same fatal
error occuring again is to change the program in the way recommended.
For example, if the fatal error was caused by the end of program token
`end.' being encountered too soon, look through the source for a `.' where
there should be a ;'.

The range of FATAL errors produced by the compiler is listed in Appendix
B.

5.2 Run-time errors

When an error is detected at run-time, an event is signalled to the diagnostic
package which generates a post-mortem backtrace of the error.

Following the report of the nature of the error, information is displayed
about the environment of the statement causing the error. This information
includes the line number at which the error was detected, the name of the
block containing that line, and the values of any local variables declared in
that block.

If no value has yet been given to a variable, its value is printed as 'not
assigned'. Large integer values will be printed in both decimal and
hexadecimal (base 16) representations. If an integer value corresponds to
the ASCII code for a printable character, then that character will be
displayed as well. This process is repeated for the statement (usually a
procedure call) which invoked this block, and so on back to the start of the
program. Finally, the error and information about where it occurred is
repeated in case the original copy has been scrolled off the top of the screen.

Pascal Issue 1 	 29

Chapter 5

An example of a Pascal run-time error can be seen in figure 2. This shows
the error message and backtrace produced when a type limit has been
exceeded.

Figure 2 Example run-time error

Appendix C contains a list of execution errors detected by Pascal. Note that
some of these will go undetected if error checking options have been
inhibited.

30 	 Pascal Issue 1

6 Using Pascal with other languages

6.1 Introduction

This chapter is a review of the outline code mechanisms of the Acorn 32000
Pascal system. It is intended to include sufficient detail to enable a program
written in Pascal to call a procedure written in any high-level language
which conforms to the Acorn Inter-Language Calling Standard (this
includes the Panos interface procedures as documented in the Panos
Programmer's Reference Manual), or in assembler. The Inter-Language
Calling Standard is specified fully in the Panos Technical Reference Manual.
A working knowledge of the 32000 architecture and instruction set is
assumed, in explaining the low-level technical details. See section 6.4 for
examples.

In the representation of memory in diagrams given here, numerically
greater addresses are represented higher up the page than lower addresses.
Bytes are arranged such that more significant (higher addressed) bytes
appear to the left of less significant ones, where these are represented at the
same height. Addresses where marked are given at the right-hand edge of a
diagram, and correspond to the least significant byte of the doubleword
referred to. This matches the natural byte ordering of the 32000-series
architecture, and is shown by example below:

Pascal Issue 1 	 31

Chapter 6

The form `x x x x' will be used to represent memory whose contents are not
defined for the purposes of an illustration.

6.2 Conformance

The Pascal implementation conforms very closely to the code mechanisms
defined in the Inter-Language Calling Standard. In particular the way in
which parameters are passed is exactly in accordance with the standard, as
far as Integers, Reals, Records and Booleans are concerned. Similarly,
results (such as Pascal allows, e.g. not Records) are returned in the standard
manner. Since Pascal does not have a String type, inter-facing with
languages which do (and with Panos) typically involves a little work in
mapping strings onto a corresponding Pascal structure, but will normally be
quite straightforward (i.e. there is no fundamental obstacle to doing this).
Further, returning Record results is very simply mapped onto updating a
VAR parameter. Full details of these mechanisms will now be given.

6.2.2 Types

Here is a full description of how Pascal types are mapped onto the
architecture of the 32000 series:

Integer

32-bit quantity, aligned on 4-byte boundary. A variable of type Integer may
hold any 32-bit signed value, except that when code is compiled with checks
for assignment included (the default), the value 16_80808080 is reserved for
the purpose of detecting use of a variable before it has been assigned to.

Real

64-bit double precision (32000 `-L' type), aligned on a 4-byte address
boundary. See note below on the use of 32-bit reals. If assignment checks
have been included in the compiled program then real variables are
initialised with the reserved pattern 16_8080808080808080.

32 	 Pascal Issue 1

Using Pascal with other languages

Char

8-bit unsigned byte quantity, without special alignment. When compiled
with checking for assignment, Pascal code may not access character
variables whose ordinal value is 16_80, since this is the value, preset into
variables, which is tested for on accessing a Char, to detect use before
assignment. With this check turned off, any 8-bit unsigned value (i.e. 0..255)
may be assigned to and read from a Char variable.

Boolean

8-bit unsigned byte, without special alignment. The boolean values False
and True are represented respectively by the binary values 0 and 1. As for
type Char, if assignment checking is in force then the value 16_80 indicates
that the variable has not been assigned to. The compiler, in generating code
to test the state of a single Boolean variable, produces the instruction
`CMPQB 0, var', i.e. the variable is held to be True if its value is non-zero.
Note however that this does not mean that ANY non-zero value will suffice
to represent True, since for the operations AND, OR and NOT, the code
generated relies on variables having the standard values if it is to execute
correctly.

Enumerated

Variables of an enumerated type occupy memory according to the number
of values defined by the type. For types with 1..256 values a single byte will
be allocated for each variable. No particular alignment of the byte is
imposed by the compiler. For types which define 257..32768 values a 16-bit
word aligned on a 2-byte boundary is allocated, and in the unlikely event of
more than 32768 values being defined by the type, a 4-byte doubleword,
aligned on a 4-byte address boundary, would be allocated.

Subrange

Variables of subrange type occupy an amount of memory determined by the
values of the subrange bounds. For types where the ordinal values of the
lower and upper bounds both lie in the range 0..255, a single byte,

Pascal Issue 1 	 33

Chapter 6

byte-aligned, is allocated for each variable; if they both lie in the range
-32768..32767, a 2-byte word is allocated, aligned on a 2-byte boundary;
otherwise a 4-byte doubleword is allocated, aligned on a 4-byte boundary.

Record

The structure of a record is a function of the types of its fields. In general a
simple field in a record will be aligned as specified in the descriptions above,
relative to the start of the record. The record as a whole will be aligned on a
4-byte boundary, and the total size of the record is always rounded up by
the compiler to be a multiple of 4 bytes. A field of a record which is itself a
record will follow the same rules (recursively). Note that the keyword
PACKED has no effect at all (in the Pascal compiler described, Version
2.2.4), hence the structure and alignment requirements of a packed record
are the same as for a non-packed one. Records having variant sections are
implemented in such a fashion that the variant having the largest overall
size determines the total allocated size of the record; this is true even when
the heap allocation mechanism, NEW, is used with the tags of the variant
selectors being provided. This latter point may change in a future version of
the Pascal system, however.

Pointer

Pointers occupy 32 bits, aligned on a 4-byte address boundary. There are no
unusual points to observe about their use, other than that when Pascal code
is compiled with assignment checks, every access via a pointer is checked, to
ensure that (a) the pointer is not NIL, and (b) that it points to a block of
heap memory previously allocated by the Pascal NEW mechanism. In
consequence of check (b), any Pascal code which interfaces to another
language system, or Panos, where pointers are imported via the interface,
should be compiled with these checks turned off; otherwise the program is
liable to fail on check (b), since a foreign pointer will not in general satisfy
this condition. A pointer is foreign if it occurs either as a parameter to an
exported Pascal procedure or function, or as the result of an imported
non-Pascal function.

34 	 Pasca] Issue 1

Using Pascal with other languages

Array

Arrays are implemented in the obvious simple fashion, as contiguous linear
sequences of elements, each of which will be aligned as the element type
requires. It should be noted that, as for records, use of the keyword
PACKED has no effect on the storage layout adopted for arrays.
Multi-dimensional arrays are stored in order such that the elements of an
array accessed by the two sets of subscripts [i 1,i2..ij] and [i 1,i2..ij + 1] are
stored in adjacent memory locations. This is a consequence of the definition
of multi-dimensional arrays in Pascal, i.e. ARRAY [T1; T2] OF T3 is
defined to be the same as ARRAY [T1] OF ARRAY [T2] OF T3;

Note

32-bit single precision reals are not used in Pascal, and so there is no simple
way to interface to a procecdure with parameter(s) or result(s) which are
32-bit reals, unless such objects are not to be interpreted or modified by the
Pascal code. In this case it is possible to treat the object simply as an
integer, for purposes of assignment and parameter passing. However by
using the facilities of extended Pascal to incorporate machine code in a
program, such an object may be converted into a standard Pascal Real
variable, and vice versa. This process is illustrated below:

TYPE

Real32 = Integer; {NB Cannot manipulate Real32's directly)

FUNCTION RealOfReal32 (r: Real32): Real;

VAR

res: Real;

BEGIN

*MOVFL_r,res; 	(MOVe Floating (32-bit) to Long (64-bit))

RealOfReal32 := res

END;

FUNCTION Real32OfReal (r: Real): Real32;

VAR

res: Real32;

BEGIN

[NB the instruction below will fail (i.e. generate an I

I 	exception) if r is too large to be represented as I

Pascal Issue 1 	 35

Chapter 6

I 	a 32-bit real number I

*MOVLF_r,res; IMOVe Long (64-bit) to Floating (32-bit)]

Real320fReal := res

END;

6.2.3 Parameters

Parameters to a Pascal procedure are evaluated left-to-right, but are pushed
on the stack (using the 32000 TOS mechanism) in the order defined by the
Calling Standard, i.e. right-to-left. The following details govern the
individual parameter mechanisms:

VAR parameters

For all parameter types except conformant arrays, the address of the object
concerned is pushed as a 32-bit unsigned pointer; for (non- conformant)
arrays this is the address of the first element of the array.

A conformant array is passed as a VAR parameter by means of a number of
32-bit items, pushed on the stack in the following order:

1. The address of element [0] (or [0,0] etc) of the actual array parameter.
This is defined even if there is no such element in the array; for
instance the address of the 0 element of an array specified as 'ARRAY
[2..5] OF Char' is 2 bytes less than the address of the first actual
element. Where the bounds are of an enumerated type, the ordinal
value of the lower bound is used for this calculation.

2. For each dimension of the array, working from the right-most index to
the left-most, 3 items are pushed:

a. the ordinal value of the lower bound of this dimension of the actual
array parameter;

b. the ordinal value of the upper bound;

c. the size in bytes of this dimension of the array: this is determined
by considering the array in the form:

36 	 Pascal Issue 1

Using Pascal with other languages

ARRAY ETU OF ARRAY [T2] .. OF ARRAY Urn] OF TE

For each dimension j (= 1..n), the dimension size is computed as the
number of values in the type Tj multiplied by the size of the type to
the right of the corresponding 'OF'; for dimension n this is the
number of values in Tn multiplied by the size of the element type
TE, for dimension k < n it is given by the expression:

size of dimension (k + 1) * number of values in type Tk

Hence the total number of 32-bit items pushed for a conformant array
parameter is given by the expression:

1 + (number of dimensions) * 3

For example, when an actual array parameter specified as:

Jim: ARRAY [1..10, 0..3] OF Integer

(which could equally be specified as:

Jim: ARRAY [1..10] OF ARRAY [0..3] OF Integer)

is passed to a procedure specified as:

PROCEDURE Fred (VAR par: ARRAY [lo1..hi1; lo2..hi2] OF Integer)

the code generated is:

ADDR 	Jim-16, TOS 	; 0th element 16 bytes before Jim[1,0]

MOVQD 	0, TOS 	; low bound(2)

MOVQD 	3, TOS 	; high bound(2)

ADDR 	_16, TOS 	; dimension size(2)

MOVQD 	1, TOS 	; low bound(1)

ADDR 	_10, TOS 	; high bound(1)

ADDR 	_160, TOS 	; dimension size(1) = total size of array

Value parameters

Integer, Char, Boolean, and Enumerated

Parameters of any of these types are pushed as 32-bit (doubleword) items.
Where the basic storage size of a parameter type is less than 4 bytes, the
object is zero-extended to occupy the full 32-bit parameter slot on the stack.

Pascal Issue 1 	 37

Chapter 6

Subrange

Parameters of subrange types are pushed as 32-bit items, and if the lower
bound of an integer subrange is negative then the object is sign-extended to
32-bits if necessary (ie. if the basic storage size is less than 4 bytes); all other
parameters of subrange type are zero-extended if necessary.

Pointer

Parameters which are pointers to any type are pushed as 32-bit unsigned
objects.

Real

Parameters of type Real are pushed as 64-bit (8-byte) floating- point
quantities, using the instruction form `MOVL < par > , TOS'.

Record

For Record types, the item which is pushed on the stack for a value
parameter is the address of the actual record parameter (i.e. of a variable,
since there are no record-type expressions in Pascal). It is the responsibility
of the called procedure to copy the parameter value, via this pointer, into its
own stack frame so that the original record is not modified by the called
procedure (as required by Pascal semantics).

Non-conformant array

As for VAR parameters, the address of the first element of the actual array
parameter is pushed. It is the responsibility of the called procedure to copy
the array via this pointer into its own stack frame so that the original array
is not modified. For a non-conformant array no size information need be
passed since the size is fixed by the type of the array.

Conformant array

The information pushed on the stack for a value-type conformant array
parameter is exactly the same as that for a conformant array parameter
passed as VAR. It is the responsibility of the called procedure to copy the
array into its own stack frame so as to prevent modification of the actual
parameter. The size and bounds information passed is used to control this
copying operation.

38 	 Pascal Issue I

Using Pascal with other languages

6.3 Interfacing to Panos standard procedures

To convert a procedure call specification given in abstract form (e.g. one
from the Panos Programmer's Reference Manual) into a form suitable for
use in a Pascal IMPORT statement, the following process should be
applied. (Note that standard procedures having procedure-type parameters
cannot be called from Pascal, and so should not be imported, and Pascal
procedures with procedure-type parameters similarly cannot be called from
a non-Pascal environment, and so should not be exported other than to
another Pascal module. This is because procedures in the calling standard
are passed purely by descriptor (they are not closures, i.e. there is no value
environment in which they expect to operate), whereas Pascal procedure
parameters are passed as full closures, and not in the standard manner.

1. Write down the abstract specification of the procedure.

2. If the type of any parameter or result includes the structure
RECORD(< format >), write a suitable record type specification in Pascal
for each such format. If the form 'RECORD(< format >) REF' occurs,
also define a type < rec_type > _ref as < rec_type > '. Rewrite the
specification using these new type names instead of the original forms, and
change the abstract syntax into the Pascal form, i.e. < param_name > :
< type >

3. If any parameters are of type STRING, then for each:

(a) decide on the maximum length of string which will be supplied to the
procedure from this module, for that parameter;

(b) define a type String < N > (if it does not already exist), where < N > is
the maximum length decided on in (a), and the type is defined as
PACKED ARRAY [1.. < N > OF Char;

(c) rewrite the parameter specification as two items: the first having the
original parameter name, but written in Pascal form, with its type
being String < N > ; the second having the parameter name with '_len'
appended, of type Integer, i.e. 'STRING: < par_name > ' is rewritten as
< par_name > : String < N >; < par_name > _len: Integer'.

4. If any parameters or results are of type HIDDEN, CARDINAL or
INTEGER, rewrite these parameter specifications as the parameter name
followed by the type Integer, e.g. 'HIDDEN: < par_name > ' becomes
< par_name > : Integer', and so on.

Pascal Issue 1 	 39

Chapter 6

5. For all results other than the first (left-most), move their specifications to
inside the parameter brackets, at the left-hand end of the list, preserving
their left-to-right order, and apply the following transformation to each,
according to its type:

(a) for scalar (Integer, Real(64-bit), Boolean etc) and record-type results,
prefix the specification by 'VAR%

(b) for results of type STRING:

(1) decide on the maximum length of this string result which the
procedure is expected to return for calls made from this module;

(2) if this has not already been done, define a type String < M > , where
< M > is the maximum result length and the type is specified as
PACKED ARRAY [1.. < M >] OF Char (as at step 3(b))

(3) rewrite the specification (which should still be in the form
`STRING: < res_name >'
as three items in the form
`VAR < res_name > : String < M >; < res_name >_max: Integer; VAR

< res_name > _len: Integer'

6. (a) If the remaining result is of scalar type (Integer, Real, Boolean etc)
remove the result name, to leave < result_type > outside the parameter
list brackets. Prefix the procedure name with the keywords IMPORT
FUNCTION.

(b) If the remaining result is of type RECORD, move this result
specification also inside the brackets and prefix it by the keyword VAR, as
in step 5(a). Prefix the procedure name with the keywords IMPORT
PROCEDURE.

(c) If the remaining result is of type STRING, move it inside the brackets
(at the left-hand end), and rewrite it as two items: the first (left-most) a
VAR parameter of type String < M > , where < M > is the maximum length
of string result expected (as for step 5 (b)(1,2)); the second an Integer whose
name is formed from the result name with '_len' appended. Then add
Integer' after the right-hand parameter list parenthesis and prefix the
procedure name with the keywords IMPORT FUNCTION.

40 	 Pascal Issue 1

Using Pascal with other languages

6.4 Examples

1. The process of producing an interface specification in Pascal for a Panos
procedure is illustrated using the function `GetGlobalString':

Step 1:

GetGlobalString (STRING: Name) INTEGER: Result, STRING: Value

Step 2: inapplicable

Step 3:

(a) decide on 20 (for example)
(b) define type

String20 = PACK ED ARRAY[1..20] OF Char
(c) yields:

GetGlobalString (Name: String20; Name_len: Integer)

INTEGER: Result, STRING: Value

Step 4:

GetGlobalString (Name: String20; Name_len: Integer)

Result: Integer, STRING: Value

Step 5:

GetGlobalString (VAR Value: String128; VaLue_max: Integer;

VAR Value_len: Integer;

Name: String20; Name_len: Integer) Result: Integer

Step 6(a):

IMPORT FUNCTION GetGlobalString

(VAR Value: String128; Value_max: Integer;

VAR Value_len: Integer;

Name: String20; Name_Len: Integer): Integer

An example program fragment using this procedure is:

VAR

sys_ver_len, status, j: Integer;

sys_ver: String128;

Pascal Issue 1 	 41

Chapter 6

status := GetGlobalString

(sys_ver, 128, sys_ver_len,

'SYS$Version 	 11);

IF status < 0 THEN

WriteLn ('Couldn't get system version...');

ELSE

BEGIN

Write ('System version: ');

FOR j := 1 TO sys_ver_len DO Write (sys_ver[j]);

WriteLn

END;

2. Calling a Fortran Function from Pascal (refer to the Acorn 32000
Fortran 77 Reference Manual).

An integer function FNC with two integer parameters written in Fortran
might be referenced from Acorn 32000 (extended) Pascal as:

TYPE

IntRef =IInteger;

FNCParams = RECORD p1, p2 : IntRef END;

FNCParamsRef =IFNCParams;

IMPORT FUNCTION FNC (p: FNCParamsRef): IntRef;

and used as:

PROCEDURE LocaIFNC (n1, n2: Integer): Integer;

VAR

rp: IntRef; (NB rp does not point into heap,)

(so no NEW/DISPOSE

param: FNCParamsRef;

BEGIN

NEW (param);

WITH paramiDO BEGIN

NEW (p1); NEW (p2);

p11 := a; p21 := b;

rp := FNC (param);

DISPOSE (p1); DISPOSE (p2)

END;

DISPOSE (param);

42 	 Pascal Issue I

Using Pascal with other languages

LocaIFNC = rip.; 	Idereference for F77 result)

END;

(N.B. As described in section 6.2.2 it is necessary to compile this code with
assignment checks disabled, otherwise the reference to the Fortran result
variable via a Pascal pointer will probably fail since the result variable will
not have been allocated on the Pascal heap.)

This is the obvious logical method of interfacing the procedure, but is by no
means the most efficient way of calling a Fortran function! The main
problem is that the only (legal) way of using pointers in standard Pascal is
in claiming, accessing and disposing of heap memory via NEW, DISPOSE
etc. - it is not possible to point pointers at normal local variables. In the
above example some improvement would obtain by specifying FNC as
taking a VAR parameter of type FNCParams, rather than a pointer to such
a structure - VAR parameters are implemented by the same mechanism in
low-level terms. Thus:

IMPORT FUNCTION FNC (VAR p: FNCParams): IntRef;

PROCEDURE LocaIFNC (n1, n2: Integer): Integer;

VAR

rp: IntRef;

paramBlock: FNCParams;

BEGIN

WITH paramBlock DO BEGIN

NEW (p1); NEW (p2);

p1l := n1; p21 := n2;

rp := FNC (paramBlock);

DISPOSE (p1); DISPOSE (p2)

END;

LocalFNC = rpt;

END;

If the function is to be called more than once, it might be worthwhile
removing the calls on NEW and DISPOSE from the procedure, since these
involve an amount of heap management activity. This could be done by
making the parameter block a global variable, and claiming the space for
the parameters (via p1 and p2) only once, before the first call on LocalFNC
was made. Thus we would arrive at:

Pascal Issue 1 	 43

Chapter 6

TYPE

IntRef =tInteger;

FNCParams = RECORD p1, p2: IntRef END;

VAR

FNCParamBlock: FNCParams;

IMPORT FUNCTION FNC (VAR p: FNCParams): IntRef;

PROCEDURE LocalFNC (n1, n2: Integer): Integer;

VAR

rp: IntRef;

BEGIN

WITH FNCParamBlock DO BEGIN pit := a; p21:= b; END;

rp := FNC (FNCParamBlock);

LocalFNC = rpi;

END;

BEGIN

WITH FNCParamBlock DO BEGIN NEW (p1); NEW (p2) END;

WITH FNCParamBlock DO BEGIN DISPOSE (p1); DISPOSE (p2) END;

END.

In this version, the total cost of an individual call on LocalFNC has been
reduced to a modest level, but at some cost in terms of program clarity.
However the program does remain within the bounds of what is nominally
`legal' Pascal (ignoring the IMPORT mechanism itself). An alternative, but
less 'clean' method is to use an extension of the Pascal compiler which
permits the calculation of the run-time address of a variable, as below:

TYPE

IntRef =iInteger;

FNCParams = RECORD p1, p2: Integer END;

IMPORT FUNCTION FNC (VAR p: FNCParams): IntRef;

FUNCTION LocalFNC (a, b: Integer): Integer;

VAR rp: IntRef;

paramBlock: FNCParams;

BEGIN

paramBlock.p1 := ADDRESS (a);

paramBlock.p2 := ADDRESS (b);

44 	 Pascal Issue

Using Pascal with other languages

rp := FNC (paramBlock);

LocaLFNC := rpt;

END;

In real desperation, if speed of call were of the utmost importance, one
could resort to machine code, by writing an interface routine in assembler
and specifying this, rather than the actual Fortran procedure, as the
external function - LocalFNC would then disappear, and the function
reference might be written as:

IMPORT FUNCTION FNC ALIAS 'My_FNC' (a, b: Integer): Integer;

In assembler the interface function could be written as:

MODULE 	Pascal—Fortran Interface

EXPORTC My_FNC 	; interface procedure (defined here)

IMPORTC FNC 	; ref. to main function (in F77)

My_FNC

; on entry (via CXP) the stack looks like:

I

, 	+ 	

; 	I 	b 	1 12

; 	+ 	

	

a 	1 	8

;

1 	x x x 	1 	MOD' 	14

; 	I 	PC' 	1 	0 	<— SP

; 	+ 	

; create parameter vector on stack..

ADDR 	12(SP), TOS 	; address(b) as 2nd element

ADDR 	12(SP), TOS 	; address(a) as 1st

; pass the address of the vector as the single F77 argument

ADDR 	TOS, TOS

; call the function proper

CXP 	FNC

Pascal Issue 1 	 45

Chapter 6

; fetch the result via the pointer returned

MOVD 	0(R0), RO

; clear parameter vector space from stack

ADJSPB =-8

; return to Pascal (or other suitable language) procedure

- the 2 parameters to My_FNC are removed.

RXP 	8

END

It should be noted that while the code generated in Pascal for the function
LocalFNC in the preceding example may be slightly less compact than the
above hand-coded version, there will be an overhead in the cost of
performing the CXP/RXP through My_FNC, relative to the BSR/RET
which would be performed for the call to LocalFNC. The difference
between the two methods may in consequence be very small.

46 	 Pascal Issue I

Appendix A

Non-Fatal Compiler error messages

*ERROR 1 -- this is not recognisable as a Pascal statement

This message is issued when the compiler cannot make any sense of the
input. It may also be generated as a direct result of previous errors which
cause confusion.

PROGRAM fail;

BEGIN

?Garbage

END.

*ERROR 2 -- the name of the program has been left out

No identifier has been found following the reserved word PROGRAM (or
MODULE).

PROGRAM (output);

BEGIN

writeln('no program name');

END.

*ERROR 3 -- the final item in a program must be a full stop

The end of a program (or module) must be marked by the reserved word
`END' followed by a full stop. Sometimes this message is issued when the
compiler has got out of step with the program because of previous errors.

PROGRAM fail;

BEGIN

END;

Pascal Issue 1 	 47

*ERROR 6 -- an illegal space has been detected in <symbol>

The compiler has detected that an otherwise meaningless input sequence
could be made understandable by removing one or more spaces. The error is
usually caused by inserting spaces into the compound symbols such as < >,
< = , > = etc.

PROGRAM fail;

VAR j,k:integer;

BEGIN

k := 0; 	 (ok)

J : = 1; 	 (wrong)

END.

*ERROR 7 -- digits are required here

This message indicates that a numerical constant has been formed
incorrectly. The common cause is the omission of digits following a decimal
point or following the exponential marker 'E'.

PROGRAM fail;

VAR r : real;

BEGIN

r := 1.; 	(should be 1.0;)

r := 1.2e; 	[should be 1.2e3 for example)

END.

*ERROR 8 -- a space is required here

This message is given when a reserved word immediately follows a sequence
of digits without an intervening space. Even though there is no practical
reason why such input must be rejected, the unfortunate choice of wording
in the standard requires conforming compilers to report an error.

PROGRAM fail;

VAR j,k:integer;

BEGIN

k := 19;

IF k > 0THEN j := 12;

(! space needed here)

j := 123MOD k;

48 	 Pascal Issue 1

Appendix A

[space needed here)

END.

*ERROR 10 -- digits are required before the decimal point

This error is generated when the compiler detects a floating-point constant
which has no leading digits. It is commonly caused by specifying constants
such as one half as '.5' rather than '0.5'.

PROGRAM fail;

VAR r : real;

BEGIN

r := sin(2.34e-3);

IF r > .9 THEN writeln('strange');

END.

*ERROR 11 -- a semicolon is required here

The input will only make sense if the compiler assumes that a semicolon has
been omitted at the indicated point.

PROGRAM fail(output);

VAR j : integer;

BEGIN

j := 123

- there should be a semicolon here)

writeln('The square root of 123 is ', SQRT(j));

END.

*ERROR 12 -- a reference to a variable is required here

This message is issued when the context demands a reference to a variable
and none has been found. The most common cause of this error is passing a
constant when a VAR parameter was specified in the procedure heading.

PROGRAM fail;

PROCEDURE clear(VAR x:integer); BEGIN

x := 0;

END;

BEGIN

clear(1);

END.

Pascal Issue 1 	 49

*ERROR 13 -- PACKED is not permitted here

The reserved word PACKED may only be used to qualify the type-defining
words ARRAY, RECORD, SET and FILE.

PROGRAM fail;

TYPE thing = PACKED 1..10; 	(wrong)

pset = PACKED SET OF char; {ok}

BEGIN

END.

*ERROR 14 -- FORWARD is not permitted here

The directive FORWARD must replace the body of a procedure or
function in order to make the procedure or function available for use before
its actual definition. FORWARD may only be used once with any given
procedure or function.

PROGRAM fail(output);

PROCEDURE hello; FORWARD;

PROCEDURE hello; FORWARD;

PROCEDURE hello; BEGIN

writeln('hello');

END;

BEGIN

hello;

END.

*ERROR 15 -- <item> is required here

The syntax of Pascal requires that the specified symbol < item > should be
found at the indicated point.

*ERROR 16 -- <item> should not appear in this position

The specified symbol < item > has been found where it was not expected.

PROGRAM fail;

VAR k : real;

BEGIN

DO := k; 	(DO is misplaced)

END.

50 	 Pascal Issue I

Appendix A

*ERROR 17 -- <item> is a reserved word and may not be used as

an identifier

The Pascal words which are known to the compiler: BEGIN, VAR, IF etc.
are reserved and must not be used to identify objects to be used in the
program

PROGRAM fail;

VAR from, to, high, low : integer; (TO is reserved)

BEGIN

END.

*ERROR 18 -- <item> may not be used as a set operator

The only permissible set operators are + ' (set union), `-' (set difference),
"" (set intersection) and the comparison operators = < >', < =' and
t> =,.

PROGRAM fail;

VAR s,t,u:SET OF char;

BEGIN

T :=

U :=

S := T / U; 	(what would this mean?)

END.

*ERROR 20 -- <name> has already been declared in this block

This error is generated when the compiler detects that < name > is being
declared for the second or subsequent time in a block. Each identifier in any
block may only have a unique meaning.

PROGRAM fail;

VAR max : integer; 	(correct declaration)

n 	: char;

max : real; 	(max cannot be both integer and real)

BEGIN

END.

Pascal Issue 1 	 51

*ERROR 21 -- <name> has been used in its own definition

This error is caused by attempting to use < name > to define itself. Note
that the definition of a record may include a pointer to a record of its own
type.

PROGRAM fail;

CONST fool = -fool; 	 [???]

TYPE t = ARRAY [1..5] OF t; 	I???)

BEGIN

END.

*ERROR 22 -- <name> has already been defined

This error is caused by attempting to define a procedure or function more
than once in the same block.

PROGRAM fail(output);

PROCEDURE fred; BEGIN

writelm('fred 1');

END;

PROCEDURE fred; BEGIN

writeln('fred 2');

END;

BEGIN

fred;

END.

*ERROR 23 -- <name> has not been declared

< name > has been used either before it has been declared or without any
declaration.

PROGRAM fail;

VAR j : integer;

BEGIN

j := k; 	[k is unknown)

END.

52 	 Pascal Issue I

Appendix A

*ERROR 24 -- <name> is not the name of a field in this record

<name> has been used to select a particular field from a record but the
record does not contain a field called < name > .

PROGRAM fail;

TYPE r = RECORD a,b,c : integer END;

VAR x : r;

BEGIN

x.b := 0; 	 (right)

x.d := 0; 	 (wrong)

END.

*ERROR 25 -- <name> has already been used in this block to refer

to an object declared in an outer block

This message indicates an attempt to use a name in two different ways
inside the same block.

PROGRAM fail;

CONST max = 10; 	(outer declaration)

PROCEDURE local;

CONST localmax = max; (line Al

max 	= 20; 	(line B)

BEGIN

END (of local);

BEGIN

END.

The procedure 'local' uses the name 'max' for two different purposes. It is
the constant 10 in line A but is redefined to be the constant 20 in line B.

*ERROR 26 -- there is no definition for <name>

This message is issued when the end of a block is reached in which there
was either a FORWARD declaration of < name > or a forward reference to
a pointer type < name > . The error indicates that the required definition of
< name > has not been found.

Pascal Issue 1 	 53

PROGRAM fail;

PROCEDURE Lost; FORWARD;

BEGIN

Lost;

END. 	 (the definition of 'Lost' is missing]

*ERROR 27 -- the bound identifier <name> may not be altered

The identifiers used to represent the actual bounds of a conformant array
parameter are given values each time the procedure or function containing
them is invoked. These values may not be altered by the program.

PROGRAM fail;

VAR a : ARRAY [1..5] OF char;

PROCEDURE p(a : ARRAY [low..high:integer] OF char)

BEGIN

REPEAT

high := high-1; 	(wrong)

a[high] := 'x';

UNTIL high = low;

END;

BEGIN

p(a);

END.

*ERROR 29 -- a constant is required here

The compiler is expecting a constant of some type.

PROGRAM fail;

CONST nothing = NIL; (NIL is not valid here)

VAR a : +..19; 	(+ is not a constant)

BEGIN

END.

*ERROR 30 -- an integer value is required here

This message is issued when a machine-code statement is incorrectly
specified. Machine-code is an extension to standard Pascal.

54 	 Pascal Issue 1

Appendix A

*ERROR 31 -- this expression has not been formed correctly

This message indicates that the compiler cannot make any sense of an
expression.

*ERROR 32 -- <name> is a procedure and may not be used in

an expression

The name of a procedure is not a valid operand in an expression as a
procedure call does not return a result. Procedures may only be called or
passed as parameters.

PROGRAM fail;

VAR j : integer;

PROCEDURE twenty;

VAR result : integer;

BEGIN

result := 20;

END;

BEGIN

j := twenty; 	(wrong)

END.

*ERROR 33 -- <item> must be followed by a boolean expression

This error indicates that the given < item > is only meaningful if followed
by an expression which gives a boolean result but no such expression has
been found.

PROGRAM fail(output);

VAR x : integer;

BEGIN

x := 1;

IF x THEN writeln('oops'); 	(x isn't boolean)

END.

*ERROR 34 -- the operand to the left of <item> must give a boolean value

The reserved words AND and OR may only follow a boolean operand. In
particular they may not be used to form conjunctions or disjunctions of bit

Pascal Issue 1 	 55

patterns (integer values); if the extended form of the compiler is being used,
the bit-vector operators le and `1' may be used.

PROGRAM fail;

VAR x : integer;

b : boolean;

BEGIN

IF x AND b THEN writeln('hello'); 	[x isn't boolean}

END.

*ERROR 35 -- the operand to the right of <item> must give

a boolean value

The reserved words AND, OR and NOT must be followed by a boolean
operand. In particular they may not be used to form conjunctions,
disjunctions or inversions of bit patterns (integer values); if the extended
form of the compiler is being used the bit-vector operators le, `1' and `~'
may be used.

PROGRAM fail;

VAR x : integer;

b : boolean;

BEGIN

IF b AND x THEN writeln('hello');

END.

*ERROR 36 -- this integer value is too large .

This message is issued when the compiler detects that the function SQR has
as its parameter an integer constant which is larger than the square root of
the largest possible integer. Attempting to square this value would lead to
an arithmetic fault at run-time.

PROGRAM fail(output);

BEGIN

writeln(SQR(123456)); 	(123456 is too big for SQR}

END.

56 	 Pascal Issue 1

Appendix A

*ERROR 37 -- the value <number> is out of range

This message is issued when it is obvious to the compiler that PRED or
SUCC must return a value which is outside the range of the parameter type.
< number > will be replaced by the ordinal value of the erroneous quantity.

PROGRAM fail;

VAR n : (one, two, three);

BEGIN

n := SUCC(three); 	[three is too big for SUCC]

END.

*ERROR 38 -- more values are required here

This error is issued when a list of constants used to initialise a STATIC or
EXPORT array does not contain enough values. The list must provide one
value for each element of the array. STATIC and EXPORT are extensions
to standard Pascal.

PROGRAM fail; 	 [needs the EXTEND option]

STATIC a : ARRAY[1..6] of integer := 1,22,333,4444,5555;

BEGIN

END.

*ERROR 39 -- a record field identifier is required here

A record selector (.) has been followed by something which is not an
identifier.

PROGRAM fail;

VAR r : RECORD x,y,z : integer END;

BEGIN

r.+ := 2; 	1+ isn't a field identifier}

END.

*ERROR 40 -- a record variable is required here

One of the items following WITH is not a variable.

Pascal Issue 1 	 57

PROGRAM fail(output);

CONST one = 1;

BEGIN

WITH one DO 	(one is not a record variable}

writeln('oops');

END.

*ERROR 41 -- this is not a record

One of the items following WITH is not a record variable.

PROGRAM fail(output);

VAR r : RECORD x,y,z : integer END;

BEGIN

WITH r DO BEGIN 	 (ok}

WITH y DO writeln('oops'); by isn't a record}

END;

END.

*ERROR 42 -- label <number> is no longer a valid destination for

a GOTO statement

A GOTO statement is not permitted to transfer control into a compound
statement from outside; it may only jump within a compound statement or
out of it.

PROGRAM fail;

LABEL 1, 2;

VAR x : integer;

BEGIN

IF x <> 0 THEN BEGIN

IF x = 1 THEN GOTO 1; 	(valid}

GOTO 2; 	 (valid - jumping outwards}

1: x := x+1;

END ELSE BEGIN

GOTO 1 	 [invalid - jumping inwards}

END;

2: x := 0;

END.

58 	 Pascal Issue 1

Appendix A

*ERROR 43 -- label <number> has already been located in this block

The given label has already been attached to a statement. If more than one
position for a label could be specified the destination of GOTO statements
would be uncertain.

PROGRAM fail;

LABEL 123;

VAR j,k:integer;

BEGIN

123: 	j := 1;

GOTO 123;

123: 	k := 2; 	(duplicate 123:}

END.

*ERROR 44 -- placing label <number> here invalidates a previous

GOTO statement

A previous GOTO statement referred to the specified label which is being
located on the current statement. The position of this label now means that
the earlier GOTO statement is transferring control into a compound
statement, which is not permitted.

PROGRAM fail;

LABEL 1;

VAR x : integer;

BEGIN

IF x > 3 THEN GOTO 1;

IF x = 99 THEN BEGIN

1: 	x := 0; 	 (invalid}

END;

END.

*ERROR 45 -- a text file is required here

Several of the required procedures and functions in Pascal take parameters
which must be files of type TEXT. This error indicates that the given object
is not a text file. Note that the type TEXT is different from a type of the
form 'FILE OF char;'.

Pascal Issue 1 	 59

PROGRAM fail;

VAR f:FILE OF integer;

x:integer;

BEGIN

rewrite(f); 	 (any file will do here}

writeln(f); 	 (this must be text}

END.

*ERROR 46 -- data cannot be input into an object of this type

A READ or GET statement has attempted to input data into an object
which cannot accept values, for example a PROCEDURE or a TYPE.

PROGRAM fail(input);

VAR x : SET of char;

y : RECORD z : integer END;

BEGIN

read(x); 	 (wrong}

read(y.z); 	 {ok}

read(y); 	 (wrong(

END.

*ERROR 47 -- an item to receive input is required here

The procedure READ requires at least one variable to receive input data.
Note that READLN may be specified with no parameters.

PROGRAM fail(input);

BEGIN

readln; 	 {ok}
read; 	 (wrong}

readln(input); 	{ok}

read(input); 	 (wrong}

END.

*ERROR 48 -- a component of a packed variable may not be passed

as a variable conformant array parameter

An attempt has been made to pass as a variable conformant array parameter
an array which is a component of a packed structure. This is explicitly
prohibited by the Standard.

60 	 Pascal Issue 1

Appendix A

PROGRAM fail;

TYPE tiny = 1..10;

VAR r : PACKED RECORD a : array[1..5] OF tiny END;

PROCEDURE test(VAR x : ARRAY {low..high:integer] OF tiny);

BEGIN

END;

BEGIN

test(r.a) 	(r.a is packed}

END.

*ERROR 49 -- data cannot be output from an object of this type

A WRITE or PUT statement has attempted to output data from an object
which cannot generate values, for example a PROCEDURE or a TYPE.

PROGRAM fail(output);

VAR x : SET of char;

y : RECORD z : integer END;

BEGIN

write(x); 	 (wrong}

write(y.z); 	(ok}

write(y); 	 (wrong}

END.

*ERROR 50 -- a field width specification is not allowed here

This message is issued when a parameter to write or writeln is followed by
more field width specifications than are required.

PROGRAM fail(output);

VAR x : char;

BEGIN

x := '?';

writeln(x:1:2); (only one field needed}

END.

*ERROR 51 -- an item to be output is required here

The procedure WRITE must be given at least one value to be output. Note
that WRITELN may be specified without any parameters.

Pascal Issue 1 	 61

PROGRAM fail(output);

BEGIN

write; 	 (wrong}

writeln; 	 fold

write(output); 	(wrong}

writeln(output); (old

END.

*ERROR 52 -- a file variable is required here

When the procedures WRITE, WRITELN, READ, READLN, RESET,
REWRITE and PAGE, or the functions EOLN and EOF are used, they
will either use a default file (input or output), or the file must be specified as
the first or only parameter.

PROGRAM fail;

VAR j : integer;

BEGIN

rewrite(j); 	(j isn't a file}

END.

*ERROR 53 -- field widths must be greater than zero

When writing to text files, a field width may be specified as an integer
expression following a colon. All such expressions must return values which
are strictly greater than zero. This message indicates that a field width is
less than one. Note that this error can only be generated if the field width
expression is a constant; when a more complex expression is given, the error
has to be detected at run-time.

PROGRAM fail(output);

BEGIN

writeln('oops':0);

END.

*ERROR 54 -- an expression for an element of the set is required here

The set constructor [...] must contain a list of expressions, each of which
identifies an item in the set. The error is usually caused by a spurious
comma within the set constructor.

62 	 Pascal Issue I

Appendix A

PROGRAM fail;

VAR S : SET OF 1..9;

BEGIN

s := [1,2„3];

END.

*ERROR 55 -- the ordinal values of components of sets are restricted

to being in the range 0..255

The Pascal standard does not prescribe any limits on the range of ordinal
values that components of sets may take. This implementation restricts the
ordinal values of all components of sets to the range 0..255.

PROGRAM fail;

TYPE big 	= 1..1000;

small = 5..30;

VAR bs : SET OF big; 	(too big}

ss : SET OF small; 	(ok}

BEGIN

END.

*ERROR 56 -- the name of a type is required here

This error indicates that the compiler expected an identifier which has been,
or is to be declared as a type. The common cause of such errors is
attempting to define types explicitly (e.g. 1..10) rather than giving them a
name in a TYPE declaration first.

PROGRAM fail;

TYPE small = 1..10;

7 = 1..7; 	 17 is not an identifier}

VAR p :t1..12; 	((needs a type identifier}

r : RECORD

CASE x :1..2 OF (CASE needs a type identifier}

1: (a : real);

2: (b : integer)

END;

BEGIN

END.

Pascal Issue 1 	 63

*ERROR 57 -- the objects in the set constructor do not all have

the same type

When square brackets are used to construct a set value, the expressions
contained within must all yield values of the same type.

PROGRAM fail;

TYPE t1 = (this, that, other);

t2 = (here, there, everywhere);

VAR s : SET OF t1;

BEGIN

s := [this, there, that]; 	['there' is the wrong type}

END.

*ERROR 58 -- the operands of <item> are of unsuitable types

The operator < item > has been given operands to which it cannot be
applied.

PROGRAM fail;

VAR a, b, c : char;

BEGIN

a := b + c; [chars cannot be added together}

END.

*ERROR 59 -- the operands for <item> are of incompatible types

The operator < item > has been used to operate upon operands of
different and incompatible types.

PROGRAM fail;

VAR c : boolean;

s : SET OF char;

BEGIN

IF c IN s THEN writeln; [c is not a char}

END.

*ERROR 60 -- this type does not define a range of values

Certain types in Pascal, known as 'ordinal types', define ranges of values.
These types are: integer, char, boolean and all enumerated types. In

64 	 Pascal Issue 1

Appendix A

addition, any type which is a subrange of these is an ordinal type. Whenever
a type is used to select an object from a number of objects, an ordinal type is
required.

PROGRAM ok;

TYPE colour = (red, yellow, green, blue);

VAR vector : ARRAY [colour] OF integer;

BEGIN

END.

The error message is generated if an enumerated type is required and the
given type is not enumerated.

PROGRAM fail;

TYPE enum1 = (alpha, beta, gamma);

VAR bad1 : ARRAY [real] OF integer;)real isn't ordinal}

good : SET OF enum1; 	 [enuml is ordinal}

BEGIN

END.

*ERROR 61 -- integer index types are not permitted

The compiler will not permit arrays to be declared where the type of the
index is integer. If it were to do so the program would require more
working memory than most computers can provide.

PROGRAM fail;

VAR a : ARRAY [integer] of char; (this would be huge}

BEGIN

a[-maxint] := 'a';

a[+maxint] 	'o';

END.

*ERROR 62 -- an object of this type may not be given a '+' sign

*ERROR 62 -- an object of this type may not be given a '-' sign

Plus or minus signs may only be given to numerical objects. In particular
enumerated type and char type values may not be signed.

Pascal Issue 1 	 65

PROGRAM fail;

TYPE ok 	= (red, yellow, green, blue);

PROCEDURE thing;

CONST bad1 = —'a';

bad2 = +green;

BEGIN

END;

BEGIN

END.

*ERROR 63 -- this type must not have a component which is a file

In certain contexts Pascal places the restriction on the type of acceptable
objects that they must not have any component which has the type FILE.

PROGRAM fail;

TYPE rf = RECORD j : integer;

f : FILE OF real

END;

VAR a, b : rf;

BEGIN

a := b; (cannot copy records containing files}

END.

*ERROR 64 -- a type specification is required here

This message indicates that a general type specification is needed, that is,
either the name of a type or an explicit type definition such as 1..10.

PROGRAM fail;

VAR j,k:; 	 (no type given}

BEGIN

END.

*ERROR 65 -- the identifier of a type which defines a range of values is

required here

Certain types in Pascal, known as 'ordinal types', define ranges of values.
These types are: integer, char, Boolean and all enumerated types. In
addition any type which is a subrange of these is an ordinal type. Whenever

66 	 Pascal Issue 1

Appendix A

a type is used to select an object from a number of objects an ordinal type is
required. This message is issued when the identifier of such a type is needed
but has not been given.

PROGRAM fail;

VAR a : ARRAY [2..8] OF integer;

PROCEDURE p(w : ARRAY [min..max:real] OF integer);

(real is not an ordinal type 11

BEGIN

END;

BEGIN

p(a);

END.

*ERROR 66 -- the type of result <name> returns must be defined here

< name> is being defined as a function which means that when it is
invoked it will return a value as its result. The type of that result must be
specified at the indicated point.

PROGRAM fail;

FUNCTION unknown(x:integer); BEGIN

(result type here 1}

unknown := x-1;

END;

BEGIN

END.

*ERROR 67 -- the type of <name> was given in a previous FORWARD

declaration and must not be repeated here

< name > has already been declared as a function in a FORWARD
declaration at which time the type of result it returns must have been
defined. The current statement is the actual definition of the function. Sadly
Pascal forbids the repetition of the result type under these circumstances.

Pascal Issue 1 	 67

PROGRAM fail(output);

FUNCTION two:integer; FORWARD;

PROCEDURE show; BEGIN

writeln(two);

END;

FUNCTION two:integer; 	{not permitted}

BEGIN

two := 22222;

END;

BEGIN

show;

END.

*ERROR 68 -- the type of result returned by <name> does not

match a previous FORWARD declaration

This message is issued when the type of a function is different from a
previous specification of that function. The error is an additional indication
of trouble as it is only ever generated under the circumstances when error
70 will also be issued.

PROGRAM fail(output);

FUNCTION two:integer; FORWARD;

PROCEDURE show; BEGIN

writeln(two);

END;

FUNCTION two:real; 	[not permitted}

[and the wrong type}

BEGIN

two := 22.222;

END;

BEGIN

show;

END.

68 	 Pascal Issue I

Appendix A

*ERROR 69 -- this is not a pointer type

This message is issued when NEW or DISPOSE are called with
parameters which are not pointers.

PROGRAM fail;

VAR x:integer;

BEGIN

NEW(x); 	Ix isn't a pointer}

END.

*ERROR 70 -- the type of the expression following := is unsuitable

for assigning to the variable to the left of :=

An assignment statement has been found which attempts to assign a value
to a variable whose type is incompatible with the type of the value.

PROGRAM fail;

VAR j : integer;

r : real;

s : SET OF char;

BEGIN

j := r; 	(wrong}

r := j; 	fright]

s := 'c'; 	(wrong - 'c' is not a set}

END.

*ERROR 71 -- the type of result <name> returns may be only

a simple type or a pointer type

Functions may only return results which are of a simple type (integer, real,
char, Boolean, enumerated or a subrange) or a pointer type.

PROGRAM fail;

TYPE stype = SET OF char;

VAR s : stype;

FUNCTION f:stype; 	(wrong - sets aren't simple}

BEGIN

f :=

END;

Pascal Issue 1 	 69

BEGIN

s := f;

END.

*ERROR 72 -- the upper and lower limits of this subrange are of different

types

When defining a subrange type the upper and lower limits of the range must
be constants of the same type.

PROGRAM fail;

TYPE day = (sun, mon, tue, wed, thurs, fri, sat);

season = (spring, summer, autumn, winter);

range = mon..winter; 	 (very strange}

BEGIN

END.

*ERROR 73 -- the upper limit of the subrange is less than the

lower limit

This message indicates that the limits of a subrange definition are
inside-out, that is, the lower limit is greater than the upper limit. This
would imply that the subrange contains no members.

PROGRAM fail;

TYPE backwards = 10..1;

BEGIN

END.

*ERROR 74 -- the upper limit of the subrange is required here

This error indicates that the upper limit of a subrange definition has either
been omitted or specified incorrectly.

PROGRAM fail;

TYPE bad = 1..;

BEGIN

END.

70 	 Pascal Issue 1

Appendix A

*ERROR 75 -- sets may not be compared in this way

The comparison operators < ' and > ' may not be used to compare set
values.

PROGRAM fail(output);

VAR s1, s2 : SET OF boolean;

BEGIN

IF s1 <= s2 THEN writeln('right');

IF s1 < s2 THEN writeln('wrong');

END.

*ERROR 76 -- sets may only be compared to sets

This message is caused by an attempt to compare a set value with another
value which is not a set.

PROGRAM fail(output);

VAR s : SET OF 1..10;

t : 1..10;

BEGIN

IF s = t THEN writeln('wrong');

END.

*ERROR 77 -- incompatible sets may not be compared

Two set values may only be compared if they are made of items of the same
type.

PROGRAM fail(output);

VAR s1 : SET OF char;

s2 : SET OF boolean;

BEGIN

IF s1 = s2 THEN writeln('wrong');

END.

Pascal Issue 1 	 71

*ERROR 78 -- values of incompatible types may not be compared

Two values may only be compared if their types are compatible.

PROGRAM fail(output);

VAR j : real;

c : char;

BEGIN

IF j <> c THEN writeln('wrong');

END.

*ERROR 79 -- <item> may not be compared

The standard does not permit the comparison of file or record variables.

PROGRAM fail(output);

VAR f1, f2 : FILE OF integer;

r1, r2 : RECORD x,y,z : integer END;

BEGIN

IF f1 = f2 THEN writeln('wrong');

IF r1 = r2 THEN writeln('wrong');

END.

*ERROR 80 -- <item> may not be used to compare pointers

Pointer types may only be tested for equality or inequality.

PROGRAM fail(output);

VAR p1, p2 : !integer;

BEGIN

IF p1 	= p2 THEN writeln('equal'); 	(ok}

IF p1 <> p2 THEN writeln('different'); 	(ok}

IF p1 <= p2 THEN writeln('strange'); 	(wrong}

END.

*ERROR 81 -- no statement has been marked with Label <number>

This message is issued at the end of a block which contained the
declaration of the label < number > but did not use that label to identify a
statement.

72 	 Pascal Issue 1

Appendix A

PROGRAM fail(output);

PROCEDURE test;

LABEL 10, 20;

BEGIN

10: writeln('label 10 identifies this statement');

END; (no statement labelled 20: 1

BEGIN

END.

*ERROR 82 -- labels must be in the range 0..9999

The Pascal standard states that labels are distinguished by their apparent
numerical value and that this value must be in the range 0..9999.

PROGRAM fail(output);

LABEL 1, 	 {ok}

10000; 	 [wrong}

BEGIN

1: 	writeln('ok');

10000: writeln('bad');

END.

*ERROR 83 -- a label is required here

In Pascal a label must be an integer constant in the range 0..9999. This
message is issued when such a label is required but has not been found.

PROGRAM fail(output);

LABEL x; 	 (x is not an integer constant}

BEGIN

GOTO x; 	 (ditto}

x: writeln('here'); 	[and ditto}

END.

*ERROR 84 -- this case label has already been used in this CASE

statement

This message is issued when a constant is used to label a statement for a
second or subsequent time.

Pascal Issue I 	 73

PROGRAM fail(input, output);

TYPE t = 1..3;

VAR x : t;

BEGIN

read(x);

CASE x of

1: writeln('one');

2: writeln('two');

3: writeln('three');

2: 	writeln('oops!'); 	[duplicate 2:1

END;

END.

*ERROR 85 -- this case label is out of range

Surprisingly, the Pascal standard does not proscribe the specification of case
labels which are outside the range of the case selector except when the
CASE is used to define record variants.

PROGRAM fail(output,input);

TYPE small = 1..3;

rec 	= RECORD CASE s:small OF

1: (a:integer);

2: (b:char);

3: (c:real);

4: (d:boolean); [error 4 is not in small}

END;

VAR tiny:small;

BEGIN

read(tiny);

CASE tiny OF

1: writeln('one');

2: writeln('two');

3: writeln('three');

4: writeln('four'); 	(warning 4 is not in small}

END;

END.

74 	 Pascal Issue 1

Appendix A

*ERROR 86 -- a case constant is required here

This message indicates that the compiler expected a case label to be
appended to the current statement. This is commonly caused by forgetting
to bracket several statements with BEGIN and END when all of those
statements are to be executed for the selected case.

PROGRAM fail(input, output);

VAR tiny:1..3;

BEGIN

read(tiny);

CASE tiny OF

1:write('one');

	

writeln('and only'); 	(no label?)

2: writeln('two');

3: writeln('three');

END;

END.

*ERROR 87 -- the type of the case constant differs from the type

of the case index

This message is issued when the value used to identify one of a list of
statements in a CASE construction is not of the same type as the value used
to select the particular case.

PROGRAM fail(output);

TYPE month = (jan, feb, mar, apr, may);

season = (spring, summer, autumn, winter);

VAR date : month;

BEGIN

CASE date of 	 (date is a 'month'-type thing}

winter: writeln('cold'); [winter is a 'season'-type thing}

	

summer: writeln('warm') 	(so is summer}

END;

END.

Pascal Issue 1 	 75

*ERROR 88 -- the item used to select a particular case

is not of a type which defines a range of values

Certain types in Pascal, known as 'ordinal types', define ranges of values.
These types are: integer, char, boolean, enumerated types and all subranges.
Whenever a type is used to select an object from a number of objects an
ordinal type is required, in particular the value used as a selector in a CASE
statement must be of ordinal type.

PROGRAM fail(output);

VAR r : real; 	(this isn't ordinal}

BEGIN

CASE r OF

1: 	writeln('one');

3: 	writeln('three');

END;

END.

*ERROR 89 -- the case statement did not include all possible cases

A case statement has been found which has not provided a meaning for all
the possible values of the case selector. When this occurs in a RECORD
definition it is an error. When it occurs in a CASE statement it is only a
warning, however if the case selector takes one of the unspecified values
during execution a run-time error will be reported.

PROGRAM fail(output,input);

TYPE small = 1..3;

rec 	= RECORD CASE s:small OF

1: (a:integer);

3: (b:real);

END; 	 (error - no case 2}

VAR tiny:small;

BEGIN

read(tiny);

CASE tiny OF

1: writeln('one');

3: writeln('three');

END; 	 (warning - no case 2}

END.

76 	 Pascal Issue 1

Appendix A

*ERROR 91 -- this is not a valid case selector

This message is issued when the extended forms of NEW or DISPOSE are
used and the extra parameters do not correspond to the variables in the
CASE parts of the record description.

PROGRAM fail;

TYPE three = 1..3;

rec = RECORD CASE x:three of

1:(a : integer);

2:(b : real);

3:(c : char);

END;

point =trec;

VAR thing : point;

BEGIN

new(thing, 2); 	 (2 is ok for x above(

new(thing, 4); 	 (but 4 is not(

END.

*ERROR 92 -- this statement threatens to alter the loop control

variable <name>

The control variable of a FOR loop may not be used inside the body of the
loop in such a way as to threaten to alter it. This means that the variable
cannot appear to the left of : = , as a VAR parameter or as the control
variable of a nested FOR statement. Note that the error only indicates that
the variable is threatened; it is still an error even though the variable can
never actually be altered.

PROGRAM fail(input);

VAR j, k : integer;

BEGIN

FOR j := 1 to 10 DO BEGIN

read(k)

IF k = 0 THEN j := 10 	(wrong}

END;

END.

Pascal Issue 1 	 77

*ERROR 93 -- the name of the control variable is required here

The name of the variable to be used to control a FOR loop must be specified
immediately following the word FOR.

PROGRAM fail(output);

BEGIN

FOR 1 TO 10 DO 	 (no control variable}

writeln('hello');

END.

*ERROR 94 -- this is not a variable and so may not be used to

control the FOR statement

A FOR statement must use a variable declared in the current block to
control the repeated execution of the controlled statement. This error
indicates that an attempt has been made to use something other than a
variable as the control variable.

PROGRAM fail(output);

TYPE cvar = 1..10;

BEGIN

FOR cvar := 1 TO 10 DO 	{cvar is not a variable}

writeln('hello');

END.

*ERROR 95 -- the control variable <name> was not declared in

this block

The FOR loop control variable must be a local variable, that is, it must have
been declared in the VAR section of the current block. Note in particular
that a formal parameter to a procedure or function may not be used as a
control variable.

PROGRAM fail(output);

VAR global : integer;

PROCEDURE print; BEGIN

FOR global := 1 to 10 DO 	(global not declared in 'print'}

writeln('printingg');

END;

78 	 Pascal Issue 1

Appendix A

BEGIN

print;

END.

*ERROR 96 -- the control variable <name> is not of a type

which defines a range of values

The control variable of a FOR statement must have a type which defines a
range of values (an ordinal type). This type must be integer, char, boolean,
enumerated type, or a subrange type.

PROGRAM fail(output);

VAR x : real;

BEGIN

FOR x := 1 TO 10 DO lx isn't ordinal]

writeln('hello');

END.

*ERROR 97 -- either TO or DOWNTO is required here

When specifying a FOR statement the initial and final values for the
control variable must be separated by either TO or DOWNTO.

PROGRAM fail(output);

VAR j:integer;

BEGIN

FOR j := 1, 10 DO

writeln('hello '):

END.

*ERROR 98 -- the initial value cannot be assigned to <name>

The initial value of a FOR loop cannot be assigned to the loop control
variable <name > because it is not of a suitable type or not in the correct
range.

PROGRAM fail(output);

TYPE days =0(sun, mon, tue, wed, thurs, fri, sat);

week = mon..fri;

VAR w : week;

BEGIN

Pascal Issue 1 	 79

FOR w := sun TO fri DO writeln('day'); 	(not in range}

FOR w := 1 TO fri DO writeln('day'); 	(wrong type}

END.

*ERROR 99 -- the final value cannot be assigned to <name>

The final value of a FOR loop cannot be assigned to the loop control
variable < name > because it is not of a suitable type or not in the correct
range.

PROGRAM fail(output);

TYPE days = (sun, mon, tue, wed, thurs, fri, sat);

week = mon..fri;

VAR w : week;

BEGIN

FOR w := mon TO sat DO writeln('day'); (not in range}

FOR w := mon TO 7 DO writeln('day'); [wrong type}

END.

*ERROR 100 -- a procedure or function contains a statement which

threatens to alter the loop control variable <name>

Note that this error is commuted into a warning if the EXTEND option is
specified.

The variable which is used to control the execution of a FOR statement
may not be used inside a procedure or function in such a way as to threaten
to alter it, even if the variable will not in fact be altered during the execution
of the loop.

PROGRAM fail(output);

VAR x : integer;

PROCEDURE proc;

BEGIN

X := 0 	(this is the threatening statement}

END;

BEGIN

FOR x := 1 to 10 DO writeln('hello'); 	[incorrect}

END.

80 	 Pascal Issue 1

Appendix A

*ERROR 101 -- parameters must be defined here

The declaration of a formal parameter is expected here. The common cause
for this message is a spurious semicolon separating formal parameters.

PROGRAM fail;

PROCEDURE thing(x : integer; ; z : real);

BEGIN 	[nothing here 1}

END;

BEGIN

END.

*ERROR 102 -- the parameters required by <name> were defined in a previous

FORWARD declaration and must not be repeated here

When a procedure or function is declared as being FORWARD the
parameters it requires must be specified at that point. These parameters
must not be specified again when the actual definition of the procedure or
function is made.

PROGRAM fail;

PROCEDURE thing(x : integer); FORWARD;

PROCEDURE thing(x : integer); 	(credible, but wrong}

BEGIN

END;

BEGIN

END.

*ERROR 103 -- a parameter in brackets is required here

A procedure or function has been invoked with no parameters when its
definition required at least one.

PROGRAM fail;

VAR x : integer;

BEGIN

x := ABS; 	[ABS needs one parameter}

END.

Pasca] Issue 1 	 81

*ERROR 104 -- this statement requires that the name INPUT appear in

the list of parameters following PROGRAM

If the file parameter is omitted from a call on the procedures READ or
READLN, or the functions EOLN or EOF, the required file INPUT is
assumed. In such cases INPUT must appear as one of the program
parameters at the head of the program. However it must not appear in an
outermost VAR statement.

PROGRAM fail;

BEGIN

readln; 	(implies use of INPUT}

END.

*ERROR 105 -- this statement requires that the name OUTPUT appear

in the list of parameters following PROGRAM

If the file parameter is omitted from calls on the procedures WRITE,
WRITELN or PAGE the required file OUTPUT is assumed. In such cases
OUTPUT must appear as one of the program parameters at the head of the
program. However it must not appear in an outermost VAR statement.

PROGRAM fail;

BEGIN

writeln('hello'); (implies use of OUTPUT}

END.

*ERROR 106 -- the field width parameters must be of integer type

The parameters used in WRITE and WRITELN to specify field widths
must yield integer values.

PROGRAM fail(output);

BEGIN

writeln('hello ' :9.5);

END.

*ERROR 107 -- ABS needs a real or integer type parameter

The function ABS returns the absolute value of either integer or real values;
it cannot be used with any other types.

82 	 Pascal Issue I

Appendix A

PROGRAM fail;

VAR c:char;

BEGIN

c := ABS('x');

END.

*ERROR 108 -- SQR needs a real or integer type parameter

The function SQR returns the square of either integer or real values; no
other type of value may be given as the parameter.

PROGRAM fail(output);

BEGIN

writeln(sqr(FALSE));

END.

*ERROR 109 -- CHR needs an integer type parameter

The parameter given to CHR may only be of type integer or a subrange of
integer.

PROGRAM fail;

VAR c : char;

x : real;

BEGIN

x := 1;

c := CHR(x); 	lx isn't an integer}

END.

*ERROR 110 -- ODD needs an integer type parameter

The function ODD may only be given a parameter of type integer or a
subrange of integer.

PROGRAM fail(output);

VAR b : boolean;

BEGIN

IF ODD(b) THEN writeln('not even');

END.

Pascal Issue 1 	 83

*ERROR 111 	PRED needs a parameter of a type which defines

a range of values

The parameter given to PRED may only be of an ordinal type, that is
integer, char, boolean, an enumerated type or a subrange.

PROGRAM fail;

VAR val : real;

BEGIN

val := PRED(val);

END.

*ERROR 112 -- SUCC needs a parameter of a type which defines

a range of values

The parameter given to SUCC may only be of an ordinal type, that is
integer, char, boolean, an enumerated type or a subrange.

PROGRAM fail;

VAR val : real;

BEGIN

val := SUCC(val);

END.

*ERROR 113 -- TRUNC needs a real type parameter

The parameter given to TRUNC must be of real type. Note that even
though an integer value can often be used in the context of a real value the
standard does not permit integer parameters for TRUNC.

PROGRAM fail;

VAR x 	: real;

n, m : integer;

BEGIN

x := 1.54;

m := TRUNC(x);

n := TRUNC(m); 	 [sadly, not permitted}

m := TRUNC(TRUE); 	 [just rubbish}

END.

84 	 Pascal Issue 1

Appendix A

*ERROR 114 -- ROUND needs a real type parameter

The parameter given to ROUND must be of real type. Note that even
though an integer value can often be used in the context of a real value the
standard does not permit integer parameters for ROUND.

PROGRAM fail;

VAR x 	: real;

n, m : integer;

BEGIN

x := 1.54;

m := ROUND(x);

n := ROUND(m); 	 (sadly, not permitted}

m := ROUND(TRUE); 	 (just rubbish}

END.

*ERROR 115 -- a real or integer type parameter is needed here

This error is issued when a required function is called with a parameter
which does not give either an integer or a real value.

PROGRAM fail;

VAR x : real;

BEGIN

x := SIN('s'); 	('s' is neither integer nor real}

END.

*ERROR 116 -- this parameter does not match the specification

given in the declaration of <name>

This message is issued when an actual parameter given to a procedure or
function, < name > , is not of the correct type as defined by the declaration
of < name > .

PROGRAM fail;

VAR x : real;

PROCEDURE thing(VAR w : integer);

BEGIN

END;

BEGIN

Pascal Issue (85

thing(x); 	[x is not an integer variable}

END.

*ERROR 117 -- the parameters required by <name> are different from

those specified in the definition of this parameter

This message is issued when an attempt is made to pass a procedure or
function as a parameter to another procedure or function, < name > , and
the parameters required by the actual parameter do not match those
required by the formal parameters of the parameter of < name > . Note that
the standard is very strict about the matching.

PROGRAM faiL(output);

PROCEDURE actual1(x : integer; y : integer); BEGIN

writeln('actual1');

END;

PROCEDURE actual2(x, y : integer); BEGIN

(NOTE - these parameters are DIFFERENT from actual1's}

writeln('actual2');

END;

PROCEDURE actual3(w : real); BEGIN

writeln('actual3');

END;

PROCEDURE try(a : integer;

PROCEDURE formal(p, q : integer);

c : integer);

BEGIN

formal(a, c);

END;

BEGIN

try(1, actual1, 3); (strictly wrong}

try(1, actual?, 3); (right}

try(1, actual3, 3); (wrong}

END.

86 	 Pascal Issue I

Appendix A

*ERROR 118 -- <name> does not require any parameters

< name > is the identifier of a procedure or function which has been
specified with a list of parameters even though the definition of < name >
did not include any parameters.

PROGRAM fail(output);

PROCEDURE thing; BEGIN

writeln('this is thing');

END;

BEGIN

thing(output); {thing doesn't take parameters}

END.

*ERROR 119 -- more parameters have been given than are required

by <name>

The parameters given to a procedure or function reference must match the
formal parameters in the definition in number, position and type. This
reference to < name > has been given too many parameters.

PROGRAM fail(output);

PROCEDURE show(x, y : integer); BEGIN

writeln('x+y =', x+y);

END;

BEGIN

show(1, 2, 3); 	[only two parameters needed}

END.

*ERROR 120 -- <name> needs a list of parameters in brackets here

The procedure of function < name > has been specified without any
parameters when the definition of < name > included at least one
parameter.

PROGRAM fail(output);

PROCEDURE show(x : integer); BEGIN

writelri('x=', x);

END;

Pascal Issue 1 	 87

BEGIN

show; 	 [parameter needed here}

END.

*ERROR 121 -- program parameter <name> has not appeared in a

VAR statement

< name > was specified in the parameter list following the initial
PROGRAM statement. Except in the case of INPUT and OUTPUT all
such parameters must also appear in the outermost VAR statement so that
they may be given a type.

PROGRAM fail(output, data);

(should be VAR data:text here}

BEGIN

readln(data); 	(data has not been defined}

END.

*ERROR 122 -- program parameter <name> is restricted to being

a file

This implementation restricts the type of the objects which appear in the
parameters following the initial PROGRAM statement to being files. An
attempt to give them any other type will invoke this message.

PROGRAM fail(thing);

VAR thing : integer;

BEGIN

END.

*ERROR 123 -- program parameter <name> may not be a file of

pointers

This implementation of Pascal prohibits the use of files of pointers as
program parameters.

PROGRAM fail(ipoint);

TYPE pi = linteger;

VAR ipoint : FILE OF pi;

BEGIN

END.

88 	 Pascal Issue 1

Appendix A

*ERROR 124 -- this parameter must have packed type

The first parameter of UNPACK and the third parameter of PACK must
be references to arrays which have been declared PACKED.

PROGRAM fail;

VAR p : ARRAY [1..5] OF char;

u : ARRAY [1..5] OF char;

BEGIN

pack(u, 1, p); 	(p is not PACKED}

unpack(p, u, 1); (p is not PACKED}

END.

*ERROR 125 -- this parameter must not have packed type

The first parameter of PACK and the third parameter of UNPACK must
not be references to arrays which have been declared PACKED.

PROGRAM fail;

VAR p : PACKED ARRAY [1..5] OF char;

u : PACKED ARRAY C1..5] OF char;

BEGIN

pack(u, 1, p); 	(u is PACKED}

unpack(p, u, 1); 	(u is PACKED}

END.

*ERROR 126 -- this item may not be passed as a VAR parameter

The variable used to define the currently active variant of a record may not
be passed to a procedure or function as a VAR parameter.

PROGRAM fail;

VAR r : RECORD

CASE x : boolean OF

true: (t : integer);

false:(f : real);

END;

PROCEDURE test(VAR v : boolean);

BEGIN

END;

BEGIN

Pascal Issue I 	 89

test(r.x); 	 (r.x is a case selector}

END.

*ERROR 127 -- PROGRAMs may not export procedures or functions

A compilation unit that starts with PROGRAM is not permitted to define
EXPORT PROCEDUREs or EXPORT FUNCTIONS, however, it may
export variables. This is an extension to standard Pascal.

PROGRAM fail;

EXPORT PROCEDURE thing;

BEGIN

END;

BEGIN

thing;

END.

*ERROR 128 -- a procedure identifier is required here

In the definition of a procedure the name of the procedure must
immediately follow the word PROCEDURE.

PROGRAM fail;

PROCEDURE; BEGIN

END;

BEGIN

END.

*ERROR 129 -- a function identifier is required here

In the definition of a function the name of the function must immediately
follow the word FUNCTION.

PROGRAM fail;

FUNCTION:integer; BEGIN

END;

BEGIN

END.

90 	 Pascal Issue 1

Appendix A

*ERROR 130 -- declarations must appear in the order

LABEL, CONST, TYPE, VAR, PROCEDUREs and FUNCTIONs

Pascal defines that the order of declarations must be: LABELs then
CONSTs then TYPES then VARs then PROCEDUREs and FUNCTIONs
in any order.

PROGRAM fail;

TYPE t = 1..10;

VAR a : t;

VAR b : integer; (wrong - repeated VAR}

CONST one = 1; 	(wrong - just out of order}

BEGIN

END.

*ERROR 131 -- a variable, function or procedure identifier is

required here

The compiler is expecting a statement of the form:

variable := expression;

procedureid;

OT

functionid := expression;

PROGRAM fail;

TYPE thing = 1..10;

Var x : thing;

BEGIN

x := thing;

END.

*ERROR 132 -- <name> may not be passed as a procedural parameter

The Pascal standard does not allow any of the required procedures (or
functions) to be passed as procedural (or functional) parameters. Function
results, however, may be passed as value parameters.

Pascal Issue 1 	 91

PROGRAM fail(output);

PROCEDURE try(FUNCTION x(n : integer):integer); BEGIN

writeln(x(123));

END;

BEGIN

try(PRED); 	(wrong}

try(SQR); 	(wrong}

END.

*ERROR 133 -- this function cannot execute an assignment

of the form: <name> := result

All functions must contain at least one executable statement of the form:

functionid := expression;

in order that the result of the function shall be defined. The error message
indicates that either no such statement occurred at all, or that it is known to
the compiler that none can ever be executed.

PROGRAM fail;

CONST flag = 1;

VAR 	x : integer;

FUNCTION one:integer

BEGIN

IF flag = 0 THEN one := 1; [can never be executed}

END;

BEGIN

x := one;

END.

*ERROR 134 -- the assignment of a value to <name> may occur only

within the definition of the function <name>

The result of a function is assigned by a special form of the assignment
statement in which the name of the function appears on the left-hand side,
This form of assignment is only permitted within the definition of the
function, and will be faulted if it occurs in any other context.

92 	 Pascal Issue 1

Appendix A

PROGRAM fail;

VAR n : integer;

FUNCTION one:integer;

BEGIN

one := 1; 	[correct}

END;

BEGIN

n := one; 	 (correct}

one := 1; 	(incorrect - not inside 'one'}

END.

*ERROR 135 -- function <name> cannot be used in this way

This message is issued when a required function is used as though it were a
variable.

PROGRAM fail;

BEGIN

sqrt := 0;

END.

*ERROR 136 -- the type of the array index does not match the type

given in the array declaration

The expression used to select an element of an array must give a value
which is of the same type as was used to declare the array.

PROGRAM fail(output);

TYPE person = (fred, fill, anne, jim);

VAR who : person;

lucky : ARRAY [person] of Boolean;

BEGIN

IF lucky[who] THEN writeln('yes')

(OK - who is 'person'-type}

IF lucky[true] THEN writeln('no')

[wrong - true is not 'person'-type}

END.

Pascal Issue I 	 93

*ERROR 137 -- the array has been given more subscripts than are

required by its declaration

The declaration of every array defines the number of expressions that are
required to select an element from the array. This error indicates that too
many subscripts have been given. Note that giving a smaller number of
subscripts than the maximum permitted by the declaration is valid; it will
result in an object which is itself an array.

PROGRAM fail;

VAR s : ARRAY [1..3] of PACKED ARRAY [1..4] OF char;

BEGIN

s[1] 	:= 'abcd'; 	(ok}

s[1][2] 	:= '?'; 	{ok}

s[1,2] 	:= '?'; 	{ k - same as the previous assignment}

s[1,2,3] := '.'; 	(wrong}

END.

*ERROR 138 -- an array type is required here

The first and third parameters of PACK, and the first and second
parameters of UNPACK must be of type ARRAY.

PROGRAM fail;

VAR a : ARRAY [1..5] of char;

x : char;

BEGIN

pack(a, 1, x); 	 (x isn't an array}

unpack(x, a, 1); 	(ditto}

END.

*ERROR 139 -- the type of this parameter is not the same as the

type of the previous parameter but the declaration

of these parameters requires them to have identical types

When a conformant array parameter is declared two names are reserved to
hold the lower and upper bounds of the actual array passed. If the
declaration specifies that two or more parameters share these names than
the arrays actually passed in these positions must have the same bounds.

94 	 Pascal Issue 1

Appendix A

PROGRAM fail;

VAR a, b : ARRAY C1..5] of integer;

VAR c 	: ARRAY C2..6] of integer;

PROCEDURE unique(x : ARRAY[low..high : integer]

of integer;

y : ARRAY[small..big : integer]

of integer)

BEGIN

END;

PROCEDURE share(x, y : ARRAY[low..high : integer]

of integer)

BEGIN

END;

BEGIN

unique(b, a); 	{ok}

unique(a, c); 	{ok}

unique(c, c); 	{ok}

share(b, a); 	{OK a & b have the same bounds}

share(a, c); 	{not OK a & c have different bounds}

share(c, c); 	{OK - they must be the same}

END.

*ERROR 140 -- more values have been supplied than are required by

the array

This error is issued when the list of constants used to initialise an EXPORT
or STATIC array contains more values than the array has elements.
EXPORT and STATIC are extensions to standard Pascal.

PROGRAM fail;

STATIC a : ARRAY C1..3] OF char := 'a', 'b', 'c', 'd';

BEGIN

END.

*ERROR 141 -- PACK and UNPACK may only be used to move data between

arrays whose elements are of identical type

This message is issued when an attempt is made to use PACK or UNPACK
to assign values of an unsuitable type to the destination array.

Pascal Issue 1 	 95

PROGRAM fail;

VAR p : PACKED ARRAY C1..5] OF char;

u : 	ARRAY [2..6] OF Boolean;

BEGIN

pack(u, 2, p); [boolean can't be assigned to char}

END.

*ERROR 142-- the type of this expression is not suitable as an

index into the unpacked array

This error indicates an attempt to use a value of an unsuitable type to index
the unpacked array in a PACK or UNPACK statement.

PROGRAM fail;

TYPE t1 = (a, b, c, d);

t2 = 0..3;

VAR p : PACKED ARRAY [t1] OF char;

u : ARRAY [t2] OF char;

BEGIN

pack(u, a, p); 	(a is not of type t2}

unpack(p, u, a); (ditto}

END.

*ERROR 143 -- this string contains more than 255 characters

The compiler limits the maximum number of characters in a string constant
to 255. It is unlikely that this message will ever be generated as it takes a
fair degree of effort to generate a source file containing such a constant
(which is why no sample program is given here).

*ERROR 144 -- string constants must contain at least two characters

This error is caused by a string or character constant which contains no
characters, i.e. two consecutive quotes. The Pascal standard states that one
character between quotes is a constant of type CHAR and that string
constants must have two or more characters in them.

PROGRAM fail(output);

BEGIN

writeln("); 	{" is a null string}

END.

96 	 Pascal Issue I

Appendix A

*ERROR 145 -- a string constant is required here

The keywords INCLUDE and ALIAS must be followed by a sequence of
characters enclosed in single quotes. INCLUDE and ALIAS are extensions
to standard Pascal.

PROGRAM fail(output);

IMPORT PROCEDURE process ALIAS jim(x:integer);

BEGIN

process(123);

END.

*ERROR 146 -- a string constant may not extend over more

than one line

This error is issued when a line-break is found inside a string constant. It is
usually caused by omitting the closing quote of the string.

PROGRAM fail(output);

BEGIN

Writeln('the final quote is missing);

END.

*ERROR 147 -- strings of differing lengths may not be compared

The standard does not permit strings to be compared unless they contain
the same number of characters.

PROGRAM fail(output);

BEGIN

IF 'cat' > 'mouse' THEN writeln('bigger');

END.

*ERROR 159 -- an underline is required between a machine-code

mnemonic and its operands

Assembly language statements embedded in Pascal programs must be
written with a underline character between the instruction mnemonic and
the first operand. Machine-code is an extension to standard Pascal.

Pascal Issue 1 	 97

PROGRAM fail; 	[this needs the EXTEND option}

VAR x, y : integer;

BEGIN

*MOVE x,y;

END.

*ERROR 160 -- only STATIC, IMPORT or EXPORT variables may be declared here

When a MODULE is being defined only objects which have some existence
when the module is not being executed may be declared at the outermost
level. Modules are an extension to standard Pascal.

MODULE fail; (this needs the EXTEND option}

VAR j,k,l : integer;

END.

98 	 Pascal Issue 1

Appendix B

Fatal compilation errors

*FATAL ERROR 148 -- the compiler cannot complete the compilation

as $INCLUDE files are nested too deeply

This implementation of Pascal will limit the depth to which an included file
may contain an included file, and so on. This error indicates that that limit
has been exceeded. The usual solution is to expand the deepest include files
in place.

*FATAL ERROR 149 -- the compiler cannot complete the compilation

as the program is too big to be compiled

This error indicates that the program has managed to fill all of the
compiler's tables. The only solution is to provide more memory for the
compiler to use.

*FATAL ERROR 150 -- the compiler cannot complete the compilation

as faults are occurring at too great a rate

During the compilation of a program the compiler keeps track of the rate at
which errors are being detected. If this rate becomes too great the
compilation is abandoned as it is likely that more error messages will only
be confusing. The common cause of this is attempting to compile something
which is not a Pascal source program, for example a data file or an object
file.

*FATAL ERROR 151 -- the compiler cannot complete the compilation as

the end of the program has been found too soon

This fatal error is caused by the compiler discovering either the physical end
of the source file or the sequence 'END.' when it was expecting more Pascal
statements. The common cause for this is the omission of END statements
either explicitly or as a side-effect of previous errors which confused the
compiler.

Pascal Issue 1 	 99

*FATAL ERROR 152 -- the compiler cannot complete the compilation

as the program contains too many identifiers

This message is issued when the compiler has filled the tables used to hold
information about all the named objects in the program. The solution to the
problem is to alter the program so that more use is made of local variables
rather than global ones. Local variables only require space in the compiler
while the block which contains them is being processed. All the space used
is made available for re-use once the final END of the block is reached.

*FATAL ERROR 153 -- the compiler cannot complete the compilation

as this expression is too complicated to be analysed

This error is generated when the space reserved by the compiler for
processing expressions has been filled. Such an error should only ever be
generated by programs with enormous expressions, hundreds of additions in
one expression for example. The solution is to break the expression into two
or more simpler expressions. For example:

rewrite: 	A := B+C+D+E+F+G+ 	 +X+Y+Z;

as: 	T1 := B+C+D+E+F+....+M+N;

A := T1+O+P+Q+ 	+X+Y+Z;

*FATAL ERROR 154 -- the compiler cannot complete the compilation

as an internal compiler error has occurred.

please submit an error report

This error indicates that the compiler has got itself hopelessly lost. If any
other errors have been detected then correct them and try the compilation
again. If it still generates this message then a Fault Report Form should be
submitted to Acorn Scientific (see beginning of this manual for address).

*FATAL ERROR 155 -- the compiler cannot complete the compilation

as there are too many long identifiers

This error indicates that the compiler's dictionary, in which it holds the text
of identifiers, has become full. Try replacing some of the longest identifiers
with shorter ones.

100 	 Pascal Issue 1

Appendix B

*FATAL ERROR 156 -- the compiler cannot complete the compilation

as there is not enough store to compile this program

This message means that the compiler cannot get the memory it needs to
compile the program. The only solutions are either to simplify the program
or to get more memory.

*FATAL ERROR 157 -- the compiler cannot complete the compilation

as the file <name> cannot be included

The program has indicated that the file < name > is to be included but the
compiler cannot read the file, either because it does not exist or because the
file is protected in some way.

Pascal Issue 1 	 101

Appendix C

Execution errors

*Execution error -- user termination

This systems permits the user to force an executing program to stop with
this message in order to provide diagnostic information, for example when a
program goes into an infinite loop.

*Execution error -- real value too large

This message indicates that an real (floating-point) operation has resulted in
a value which is too large to be handled by the normal real hardware.

PROGRAM error(output);

VAR n 	: real;

times : integer;

BEGIN

n := 1.0;

FOR times := 1 TO 100 DO

	

n := SQR(n); 	 (bound to get too big}

writeln('Error not detected');

END.

*Execution error -- attempted division by zero

The program has attempted to divide one quantity by zero.

PROGRAM error(output);

VAR j, k : integer;

BEGIN

j := 123;

k := 0;

writeln('123/0 = 	j/k); 	(wrong}

writeln('Error not detected');

END.

Pascal Issue 1 	 103

*Execution error -- x MOD <number> is not permitted

The definition of the operator MOD states that it shall be an error if in an
expression of the form: i MOD j the value of j is less than or equal to zero.

PROGRAM error(output);

VAR i, j, k : integer;

BEGIN

i := 123;

j := -1;

	

k := i MOD j; 	(wrong}

writeln('Error not detected');

END.

*Execution error -- zero or negative argument for logarithm

The mathematical function LN (logarithm to base 'e') is not defined for
arguments less than or equal to zero.

PROGRAM error(output);

VAR j : integer;

: real;

BEGIN

FOR j := 5 DOWNTO -5 DO

	

:= LN(j); 	 (should fail)

writeln('Error not detected');

END.

*Execution error -- negative argument for square root

The mathemetical function SQRT (square root) is not defined for
arguments less than zero.

PROGRAM error(output);

VAR j : integer;

r : real;

BEGIN

FOR j := 5 DOWNTO -5 DO

r := SQRT(j); 	 (should fail}

writeln('Error not detected');

END.

104 	 Pascal Issue 1

Appendix C

*Execution error -- significance lost

The trigonometric functions are most accurate when their arguments are in
the primary range (about -PI..PI). The further the argument gets from this
range the less accurate is the result. The error indicates that the argument
was too far from the primary range that the result is likely to be so
inaccurate as to be meaningless.

PROGRAM error(output);

VAR s, a : real;

n 	: integer;

BEGIN

a := 1;

FOR n := 1 TO 1000 DO BEGIN

a := 2*a;

	

s := SIN(a); 	 (should fail eventually}

END;

writeln('Error not detected');

END.

*Execution error -- not enough store

The program has requested more working memory than is available. The
common causes for this error are either declaring enormous arrays or
calling procedures or functions recursively without a suitable termination
condition. Note that arrays of arrays can use up space very quickly.

PROGRAM error(output);

[Note that this program could just blow up if}

(the compiler's check for running out of store}

(fails to catch the error}

PROCEDURE recurse(n : integer);

BEGIN

IF n > 0 THEN recurse(n+1);

END;

BEGIN

recurse(1); 	[this will never come back}

END.

Pascal Issue 1 	 105

*Execution error -- out of range

This message indicates that a value is outside the range demanded by its
use. This is commonly caused by using an incorrect value as an index into
an array.

PROGRAM error(output);

TYPE small = 1..5;

VAR a : array [small] of integer;

j : integer;

BEGIN

FOR j := 1 	TO 	5 DO a[j] := SQR(j); 	(fill the array}

FOR j := 5 DOWNTO 0 DO writeln(a[j]); 	(fails when j = 0}

writeln('Error not detected');

END.

*Execution error -- unassigned variable

This message is caused by attempting to use the value of a variable before
any value has been put into it. When a variable is declared its contents are
undefined and remain so until a value is assigned.

PROGRAM error(output);

VAR a : ARRAY [1..6] OF integer;

j : integer;

c : char;

(Note that the variable c is left unassigned throughout}

(the execution of this program, but as its value is}

(not used this cannot cause an error}

BEGIN

FOR j := 1 TO 5 DO a[j] := -j;

FOR j := 1 TO 6 DO writeln(a[j]); 	1.3[6] is unassigned}

writeln('Error not detected');

END.

*Execution error -- input/output error -- <reason>

This message is detected by the operating system and indicates that
something has gone wrong with an input or an output operation. The
message < reason > should give further information about the cause of the
error.

106 	 Pascal Issue 1

Appendix C

*Execution error -- NIL pointer used

This message indicates that an attempt has been made to follow a pointer
which is currently NIL. As this means that the pointer is not pointing at
anything the operation would be meaningless.

PROGRAM error(output);

TYPE pi = !integer;

VAR a : pi;

BEGIN

a := NIL;

a! := 123; 	(wrong}

writeln('Error not detected');

END.

*Execution error -- disposing NIL pointer

This error is the result of calling DISPOSE on a pointer which has the value
NIL.

PROGRAM error(output);

VAR pi : !real;

BEGIN

pi := NIL;

Dispose(pi);

writeln('Error not detected');

END.

*Execution error -- reference to DISPOSED object

This message indicates that a pointer has been left pointing to the remains
of an object that has been disposed. This is usually the result of copying a
pointer variable and using the copy after DISPOSE has been applied to the
original.

PROGRAM error(output);

TYPE pi =Tinteger;

VAR original, copy : pi;

BEGIN

NEW(original);

original! := 123; 	(valid}

Pascal Issue 1 	 107

copy := original; 	(copy it}

DISPOSE(original)

copy. := 0; 	 (there's nothing there}

writeln('Error not detected');

END.

*Execution error -- missing case

This message indicates that a CASE statement has attempted to select a
case which has not been specified. Note that the compiler will often warn
that this is a possibility while the program is being compiled.

PROGRAM error(output);

TYPE tiny : 1..3;

VAR n : tiny;

BEGIN

FOR n := 1 TO 3 DO BEGIN

CASE n OF 	 (fails when n = 2}

1: writeln('one');

3: writeln('three');

END; 	 (no case 2}

END;

writeln('Error not detected');

END.

*Execution error -- GET after EOF

This error indicates that the procedure GET has been called when the file it
is operating on is at end-of-file (EOF) and so there is no more data
available. The call on GET could either be explicit or implied by a reference
to READ or READLN.

PROGRAM error(output);

VAR f : text;

c : char;

BEGIN

rewrite(f); 	(make it empty}

reset(f); 	(prepare to read it}

read(c); 	(nothing to read}

writeln('Error not detected');

END.

108 	 Pascal Issue 1

Appendix C

*Execution error -- reset on non-existent file -- <filename>

This message is the result of calling RESET on a file which does not exist.
The most common cause is declaring a file variable and applying reset to it
before anything has been sent to it.

PROGRAM error(output);

VAR f : text;

BEGIN

reset(f); 	 (it doesn't exist yet}

writeln('Error not detected');

END.

*Execution error -- rewrite fails -- <reason>

This message is issued when the host operating system cannot open a file for
output. One of the more common causes of this is an attempt to open more
files at once than is permitted. < reason > should be an explanatory
message from the operating system.

*Execution error -- no association for <name>

This message is generated when an attempt is made to execute a program
without specifying the actual file to be used when the program parameter
< name > is referenced.

*Execution error -- RESET required before read access

This error is caused by an attempt to read from an output file. Before the
data in an output file may be accessed the file must be made an input file by
calling the procedure RESET.

PROGRAM error(output);

VAR f : text;

c : char;

BEGIN

rewrite(f); 	{it's an output file}

read(f, c); 	(wrong}

END.

Pascal Issue 1 	 109

*Execution error -- REWRITE required before write access

This error is caused by an attempt to write to an input file. Before the data
in an input file may be accessed the file must be made an output file by
calling the procedure REWRITE.

PROGRAM error(output);

VAR f : text;

BEGIN

rewrite(f); 	 (create it}

writeln(f, 	this is a line'); 	(fill it}

reset(f); 	 (make it input}

writeln(f, 'oops'); 	 (wrong}

writeln('Error not detected');

END.

*Execution error -- EOLN invalid at EOF

This error is caused by calling the Boolean function EOLN when the file is
at end-of-file (EOF). The function EOF(file) should usually be tested before
EOLN to avoid this error.

PROGRAM error(output)

VAR f : text;

BEGIN

rewrite(f);

writeln('one line');

reset(f)

readln; 	 (nothing left in f now}

IF EOLN(f) then writeln('end of line');

writeln('Error not detected');

END.

*Execution error -- invalid number syntax

This error is caused by an attempt to read a numerical value (integer or
real) from a file if the input cannot be interpreted as a number. Note that
the Pascal standard only permits spaces and end-of-lines to be skipped
before a valid number is found. In particular a comma will not be skipped
and will invoke this error.

110 	 Pasca] Issue 1

Appendix C

PROGRAM error(output);

VAR f 	: text;

n, m : integer;

BEGIN

rewrite(f);

writeln(f, '123, 456');

reset(f)

read(f, n); 	(will input the value 123}

(leaving the comma as the next}

(character to be input}

read(f, m); 	(the comma makes this fail}

writeln('Error not detected');

END.

*Execution error -- <number> is not an acceptable field width

This error is caused by attempting to specify an output field width with a
value which is less than one.

PROGRAM error(output);

VAR f : text;

j : integer;

BEGIN

rewrite(f);

FOR j := 3 DOWNTO -3 DO

writeln(f, 12345:j); 	(fails when j=0}

writeln('Error not detected');

END.

*Execution error -- cannot extend heap

The heap is the area of memory in which the compiler manages the storage
claimed and released by calls on NEW and DISPOSE. This error is issued
when the area is full and no more memory can be found. The common
cause of this error is calling NEW repeatedly without releasing unwanted
space by DISPOSE.

PROGRAM error(output);

TYPE bigrec = RECORD a : ARRAY C1..1007 OF integer END;

VAR pr : •bigrec;

Pascal Issue 1

BEGIN

REPEAT

NEW(pr);

UNTIL false; 	(loops forever}

(there is no way out of the loop}

END.

*Execution error -- corrupt program

This message is usually only generated from programs which have been
compiled with all of the run-time checks disabled. It is the result of parts of
the program being overwritten as the result of undetected errors elsewhere
in the program. If this occurs try recompiling the program with all checks
turned on (or the default state). If the fault persists please submit a Fault
Report Form to the address at the beginning of this manual.

112 	 Pasca] Issue 1

Index

C 	 M
Case 8 	 Machine code /
Compilation options 3 	 MAXINT 8
Constants 	 Member designator 9

non-decimal //
Cross-calling standard 1

Nochecks 4
D
Diagnostic tables 4

PAGE 8, 10
E 	 Parameters
ExpDigits 8 	 actual 9
Exponent 8 	 array 10
Extensions 4, 11 	 file /0

program 8, 10
F
FALSE 8
Files 	 READ 10

external //
text 7

Floating-point 7 	 Standard 7
Statement 9

I 	 String-characters 7
Identification 4
Identifiers 11
IEEE standard 7, 8 	 Tokens 8
Installation 2 	 TotalWidth 8
Inter-Language Calling Standard 31 	TRUE 8

L 	 W
Library I 	 Warning messages 4
Listing 3 	 WRITE /0

113

■

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122

